

## REVIEW ARTICLE ON FORMULATION AND EVALUATION OF SEASONIQUE (ETHINYLESTRAZOL AND LEVONORGESTROL) MATRIX TABLETS BY USING VARIOUS POLYMERS

Shaik Reshma Kousar\*, Shaik Nafisa, D. Mounika, D. Mythri, C. Sowmya, D. Sirisha

India.

Article Received on 15 Jan. 2026,  
Article Revised on 05 Feb. 2026,  
Article Published on 16 Feb. 2026,

<https://doi.org/10.5281/zenodo.18670056>

\*Corresponding Author

Shaik Reshma Kousar

India.



How to cite this Article: Shaik Reshma Kousar\*, Shaik Nafisa, D. Mounika, D. Mythri, C. Sowmya, D. Sirisha (2026). Review Article On Formulation And Evaluation of Seasonique (Ethinylestradiol And Levonorgestrel) Matrix Tablets By Using Various Polymers. World Journal of Pharmaceutical Research, 15(4), 1372–1380.

This work is licensed under Creative Commons Attribution 4.0 International license.

### ABSTRACT

The aim of this study was to prepare matrix tablets of ethinyl estradiol and levonorgestrel using different polymers for controlled drug release in PCOS treatment. The tablets were prepared by the direct compression method. Compatibility studies showed no interaction between the drugs and excipients. The prepared tablets were evaluated for physical properties and drug content, and all results were within acceptable limits. In-vitro dissolution studies showed that the polymers helped in sustained release of the drugs for a longer time. The optimized formulation provided controlled release and good tablet quality. This study concludes that matrix tablets are a simple and effective approach for sustained delivery of ethinyl estradiol and levonorgestrel, which may improve patient compliance in PCOS management.

**KEYWORDS:** Ethinyl estradiol, Levonorgestrel, Matrix tablets, Polymers, Sustained release, PCOS, Oral drug delivery system.

### INTRODUCTION

Drug delivery is closely linked with dosage form and route of administration, the latter of which is sometimes considered to be part of the definition<sup>[1]</sup>. Although the terms are often used interchangeably, they represent distinct concepts. The route of administration refers specifically to the path by which a drug enters the body<sup>[2]</sup> such as oral, parenteral, or transdermal<sup>[3]</sup>. In contrast, the dosage form refers to the physical form in which the drug is

manufactured and delivered, such as tablets, capsules, patches, inhalers or injectable solutions. These are various dosage forms and technologies which include but not limited to nanoparticles, liposomes, microneedles, and hydrogels that can be used to enhance therapeutic efficacy and safety<sup>[4]</sup> The same route can accommodate multiple dosage forms; for example, the oral route may involve tablet, capsule, or liquid suspension. While the transdermal route may use a patch, gel, or cream<sup>[5]</sup> Common routes of administration include oral, parenteral (injected), sublingual, topical, transdermal, nasal, ocular, rectal, and vaginal. However, modern drug delivery continues to expand the possibilities of these routes through novel and hybrid approaches<sup>[6]</sup>

## **ADVANTAGES OF NDDS**

- Drugs are protected from physical and chemical degradation.
- It provides sustained delivery.
- NDDS improved tissue macrophages distribution.
- Enhancement of drug stability.
- Enhancement of pharmacological activity.

## **DISADVANTAGES OF NDDS**

- Requires skilled manpower for manufacturing,
- storage and administration
- Difficult to maintain stability of dosage forms
- Drug loading can be slow
- Dose dumping can occur.

## **CLASSIFICATION OF NDDS BASED ON DRUG RELEASE PROFILE**

### **1. Immediate Release System**

Example: Soluble tablets of paracetamol, aspirin.

### **2. Sustained Release Systems**

Example: Sustained-release tablets of Diclofenac, Propranolol.

### **3. Controlled Release Systems**

Example: Zero-order release osmotic pump systems like Glucotrol XL.

### **4. Delayed Release Systems**

Example: Enteric-coated tablets that resist stomach acid and dissolve in the intestine (e.g., omeprazole EC tablets).

**CLASSIFICATION OF NDDS BASED ON ROUTE OF ADMINISTRATION:****1. Oral Drug Delivery Systems**

Examples: Osmotic pumps, Floating tablets, Colon-targeted systems

**2. Transdermal Drug Delivery Systems**

Examples: Transdermal patches (e.g., nicotine, fentanyl), Microneedle arrays

**3. Parenteral Drug Delivery Systems**

Examples: Liposomes, Nanoparticles, Depot injections

**4. Ocular Drug Delivery Systems**

Examples: In situ gels, Ocular inserts, Nanomicelles

**5. Nasal Drug Delivery Systems**

Examples: Nasal sprays, Nanoparticle suspensions

**6. Pulmonary Drug Delivery Systems**

Examples: Dry powder inhalers (DPI) Nebulizers, Liposomal aerosols

**7. Buccal and Sublingual Systems**

Examples: Mucoadhesive films, Fast-dissolving tablets

**8. Rectal and Vaginal Drug Delivery Systems**

Examples: Suppositories, Vaginal rings.

**APPLICATIONS of NDDS**

- Cancer therapy – Targeted nanoparticles, liposomes (e.g., Doxil)
- Diabetes management – Sustained-release insulin systems
- Cardiovascular diseases – Controlled-release antihypertensives
- Neurological disorders – Brain-targeted nasal or nanoparticulate delivery
- Ophthalmic diseases – Ocular inserts for glaucoma
- Infectious diseases – Sustained antibiotic release
- Hormone therapy – Vaginal rings, transdermal patches
- Vaccines – Nanocarrier-based vaccine delivery.

**MATRIX DOSAGE FORM****INTRODUCTION**

Historically, the oral route is considered as a most popular route in the administration of the drug. This is because of the fact the gastrointestinal physiology offers more flexibility in designing dosage form than any other route. Approximately 50% of the drug products available in the market are administered orally. Tablets are the most commonly and widely

used dosage form. This type of drug delivery system is called conventional drug delivery system and is known to provide an immediate release of the drug. Such immediate release products result in relatively rapid drug absorption and the onset of accompanying pharmacodynamics effect.

### ADVANTAGES OF ORAL MATRIX SYSTEMS

- Easy to Manufacture
- ‘Dose dumping’ and toxic effects due to high plasma concentration are reduced.
- Improvement in patient compliance.
- . Better control of therapeutic drug concentration.
- Improvement in bioavailability of some drugs.

### Disadvantages of Oral Controlled Release Formulations

- The drug release rate can be altered by food and gastric transit time; as a result, differences may arise in the release rate between doses.
- If the formulations are crushed or chewed, it can lose the ‘slow release’ characteristics and possess toxicity

### POLYMERS USED IN MATRIX TABLETS

Polymers used for matrix tablets may be classified as.

**Table No. 1: Polymers used in matrix tablets.**

| POLYMERS USED IN MATRIX TABLETS | EXAMPLES                                                                               |
|---------------------------------|----------------------------------------------------------------------------------------|
| hydrogels                       | Polyhydroxy ethyl, polyethylene oxide                                                  |
| Soluble polymers                | Polyethylene glycol, hydroxy propyl, methyl cellulose, polyvinyl alcohol               |
| Biodegradable polymers          | Polylactic acid, glycolic acid, polyanhydrides                                         |
| Non-biodegradable polymer       | Polyethylene vinyl acetate, poly vinyl acetate, poly vinyl chloride, cellulose acetate |
| Muco-adhesive polymer           | Polycarbophil, tragacanthin, methyl cellulose pectin                                   |
| Natural gums                    | Xanthan, guar gum, karaya gum, gum Arabic locust bean gum                              |

### METHOD OF PREPARATION

1. Direct Compression Method
2. Wet Granulation Method
3. Melt Granulation (Thermal Fusion Method)

Other Methods (Less Common).

- Hot-Melt Extrusion
- Spray Drying
- Ionotropic Gelation (for polysaccharide matrices like alginate).

### Manufacturing Steps

- ❖ Mixing: Drug + polymer + diluents
- ❖ Granulation: Wet or dry granulation (based on excipients)
- ❖ Drying: If wet granulated
- ❖ Sieving: For uniform granule size
- ❖ Blending: With lubricant and glidant
- ❖ Compression: Using tablet press.

### Evaluation Parameters

1. Weight variation
2. Hardness
3. Friability
4. Drug content
5. In vitro drug release
6. Swelling index (for hydrophilic matrices<sup>1</sup>).

## POLYCYSTIC OVARY SYNDROME (PCOS)

### INTRODUCTION

Polycystic ovary syndrome, or polycystic ovarian syndrome, (PCOS) is the most common endocrine disorder in women of reproductive age. The name is a misnomer as not all women with this condition develop cysts on their ovaries. The name originated from the observation of cysts which form on the ovaries of some women with this condition. However, this is not a universal symptom and is not the underlying cause of the disorder.

**Table No. 2: pcos.**

| <b>POLYCYSTIC OVARY SYNDROME</b> |                                                                   |
|----------------------------------|-------------------------------------------------------------------|
| Other names                      | Hyperandrogenic anovulation (HA) Stein-Leventhal syndrome         |
| Specialty                        | Gynecology, endocrinology                                         |
| Symptoms                         | Irregular menstrual periods, heavy periods, excess hair, acne.    |
| Complications                    | Type 2 diabetics, obesity, obstructive sleep apnea, heart disease |
| Duration                         | Long term                                                         |

|                        |                                                                     |
|------------------------|---------------------------------------------------------------------|
| Causes                 | Genetic and environmental factors                                   |
| Risk factors           | Obesity, not enough exercise, family history                        |
| Diagnostic method      | Based on anovulation, high androgen levels, ovarian cysts           |
| Differential diagnosis | Adrenal hyperplasia, hypothyroidism, high blood levels of prolactin |
| Treatment              | Weight loss, exercise                                               |
| Medication             | Birth control pills, metformin, GLP-1, anti-androgens               |
| Frequency              | 2% to 20% of women of childbearing age                              |

## DRUG AND EXCIPIENTS

### Ethinylestradiol

#### Chemical data

- Molecular formula:**  $C_{20}H_{24}O_2$
- Molecular weight:** 296.403g/mol
- Melting point:** 182-184°C
- P<sup>ka</sup> value:**  $p^{ka}$  (strongest acidic) 10.33  
 $p^{ka}$  (strongest basic) 1.7
- Physical state:** solid
- Water solubility:** 4.8-11.3mg/L

### Levonorgestrel

#### Chemical data

**Molecular formula:**  $C_{21}H_{28}O_2$

**Molecular weight:** 312.446

**Melting point:** 232°C-239°C

**P<sup>ka</sup> value:**  $p^{ka}$  (strongest acidic) 17.91

$p^{ka}$  (strongest basic) -1.5

**Physical state:** crystalline powder

**Solubility:** slightly soluble in ethanol and acetone and sparingly soluble in methylene chloride, insoluble in water.

**Polymer profile:** HPMC K4M, CARBOPOL, SODIUM CARBOXY METHYL CELLULOSE(SCMC)

**DILUENT PROFILE:** Micro crystalline cellulose(mcc)

**LUBRICANTS:** Talc

**SWEETENING AGENT:** Lactose

**BINDING AGENT:** PVP (poly vinyl pyrrolidone)

## Plan of work

### 1. Preformulation Study

- API Characterization
- Physical Appearance
- Solubility studies
- Sieve Analysis
- Drug-Excipient Compatibility Studies
- Physical Compatibility
- IR spectrophotometry
- Analytical Method development.

### 2. Formulation development

### 3. Evaluation parameters of Matrix tablet

- Physical Description
- Sieve Analysis
- Bulk Density and Tap Density
- Compressibility index
- Angle of repose
- Weight variation
- Hardness
- Thickness
- Friability
- Disintegration time
- Assay of HPLC
- Dissolution by UV.

### 4. Comparision of Dissolution profile of trail formulations with innovator

### 5. To perform stability studies of selected formulation

## SUMMARY

Formulation development was undertaken to design matrix tablets of Ethinyl Estradiol and Levonorgestrel using various polymers with the objective of achieving controlled drug release and improving therapeutic efficacy in the management of Polycystic Ovary Syndrome (PCOS). Matrix tablet technology was selected to maintain steady hormone`e levels, reduce

dosing frequency, and improve patient compliance. Based on literature review, suitable hydrophilic and hydrophobic polymers such as HPMC (various grades), ethyl cellulose, sodium carboxymethyl cellulose, and Carbopol were selected. Different formulations were prepared by direct compression method, varying the type and concentration of polymers to optimize the release profile. Preformulation studies were carried out to evaluate drug-excipient compatibility using physical observation and FT-IR studies, which confirmed the absence of any significant interaction between the drugs and selected excipients.

## REFERENCES

1. Nahler, Gerhard (2017). "D". Dictionary of Pharmaceutical Medicine. Springer, Cham. p. 96. doi:10.1007/978-3-319-50669-2\_4. ISBN 978-3-319-50669-2.
2. "route of administration - definition of route of administration in the Medical dictionary - by the Free Online Medical Dictionary, Thesaurus and Encyclopedia". 2011-06-12. Archived from the original on, 2011-06-12; Retrieved 2021-04-20.
3. Ezike, Tobechukwu Christian; Okpala, Ugochukwu Solomon; Onoja, Ufedo Lovet; Nwike, Chinene Princess; Ezeako, Emmanuel Chimeh; Okpara, Osinachi Juliet.
4. Vargas on, Ava M.; Anselmo, Aaron C.; Migratory, Samir (2021-04-01). "The evolution of commercial drug delivery technologies". *Nature Biomedical Engineering*, 5(9): 951–967. doi:10.1038/s41551-021-00698-w. ISSN 2157-846X. PMID 33795852.
5. Jain, Kewalo K. (2020), Jain, Kewalo K. (ed.), "An Overview of Drug Delivery Systems", *Drug Delivery Systems, Methods in Molecular Biology*, vol. 2059, New York, NY: Springer New York, pp. 1–54, doi:10.1007/978-1-4939-9798-5\_1, ISBN 978-1-4939-9797-8, PMID 31435914, S2CID 201275047, retrieved 2021-04-20.
6. "COMMON ROUTES OF DRUG ADMINISTRATION". media.lanecc.edu. Archived from the original on, 2021-10-15; Retrieved 2021-04-20.
7. Park, Kanam (September 2014). "Controlled drug delivery systems: Past forward and future back". *Journal of Controlled Release*, 190: 3–8. doi: 10.1016/j.jconrel, 2014; 03(054): PMC 4142099. PMID 24794901.
8. Scannell, Jack W.; Blankley, Alex; Bolden, Helen; Warrington, Brian (March 2012). "Diagnosing the decline in pharmaceutical R&D efficiency". *Nature Reviews Drug Discovery*, 11(3): 191–200. doi:10.1038/nrd3681. ISSN 1474-1776. PMID 22378269. S2CID 3344476.

9. Ltd, Research and Markets. "Pharmaceutical Drug Delivery Market Forecast to 2027 - COVID-19 Impact and Global Analysis by Route of Administration; Application; End User, and Geography". [www.researchandmarkets.com](http://www.researchandmarkets.com). Retrieved 2021-04-24.
10. He, Ruining; Liang, Quilling; Shin, Moong Cheol; Lee, Kyri; Gong, Jumbo; Ye, Jundiai; Liu, Quan; Wang, Jinjiang; Yang, Victor., 2013-12-01; Vaginal rings.