WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 13, Issue 1, 650-674.

Review Article

ISSN 2277-7105

A REVIEW: QUALITY ASPECTS OF HERBAL DRUGS AND THEIR **FORMULATIONS**

Jyoti B. Salgar¹, Dr. Sanjay K. Bais² and Pratiksha Magade³*

Fabtech College of Pharmacy, Sangola Dist-Solapur 413307.

Article Received on 07 November 2023,

Revised on 27 Nov. 2023. Accepted on 17 Dec. 2023 DOI: 10. 20959/wjpr20241-30783

*Corresponding Author Pratiksha Magade

Fabtech College of Pharmacy, Sangola Dist-Solapur 413307.

ABSTRACT

Herbal formulations and cures have important quality characteristics that must be taken into account when assessing the quality of pharmaceuticals. Herbal medications are made up of all the components that affect the product's acceptability, efficacy, and safety in one way or another. However, one issue with herbal medicines is that there are no formulation guidelines. The main obstacles are the lack of formulation for the final products, processing methods, and raw materials; also, there are no quality control standards and no dosage formulation. Using current, suitable GMP standards, to ensure the safety, quality as well as efficacy of herbal medications.

KEYWORDS: Medicinal plants, GMP GLP standardization, herbal medications, and quality control.

INTRODUCTION

A wide range of human ailments are commonly treated with traditional medicine. Because Li's traditional medical system has become so well-known around the world for treating chronic ailments with minimal to no harm, all plants in this world have great significance. It is not an easy process to use herbal medication because several elements influence biological efficacy and therapeutic impact repeatability. Based on additional in-vitro, in-vivo, and phytochemical criteria as well as the concentration of their active ingredients, standard herbal formulations are required to obtain high-quality drugs. Determining whether herbal compositions are acceptable in the current medical system requires evaluating their quality. In the herbal pharmaceutical sector, among the primary issues is the absence of a strict Q.C.profile for natural components as well as how they are made." Medicinal drug and item "refers to field of research as a whole, covering everything from the production of therapeutic

plants to their application in medical settings. Due to the significant market position that plant products and herbal medications derived from them hold, it is critical to maintaining quality control standards that are recognized globally. The W.H.O. has stressed the need to implement appropriate metrics and standards in addition to current measures to assure quality control of therapeutic plant products.^[1]

GENERAL INTRODUCTION TO QUALITY ASPECTS OF HERBALS

Herbal drug

Herbal medications are prepared from a variety of plants that are known or thought to have therapeutic qualities, including their roots, stems, leaves, bark, fruit, seeds, and flowers. Herbal ingredients consist of plant components like roots, bark, seeds, fruits, leaves, flowers, and stems. The potency From the active elements in Herbal therapies affects the value of the raw materials used.

Herbal materials

The term "herbal materials" refers to the unprocessed forms of whole plants or specific components of medicinal plants, including natural juices, dried herb powders, resins, fixed oils, and essential oils. Occasionally, these ingredients are herbal ingredients that have been prepared locally by roasting, steaming, or Stir-frying them with alcohol, nectar or additional components.

Herbal drug preparations

The E.P. Addendum 2000 defines formulations of medicinal plants. This definition includes a series of treatments that the herbal drug undergoes, such as fermentation extraction, concentration, distillation, expression, purification and fractionation. The resulting products can be comminated or powdered herbal drugs, processed exudates, extracts, fatty oil essential oils, tinctures, and, expressed juice. Herbal medicine extracts have to abide with the Extracts Monograph. Tinctures have to abide with the Tincture Monograph.

Quality of herbal medicine

A drug's quality can be characterized by its identity, pureness, and material, along with other physicochemical, or biological characteristics, as well as by the methods used in its production.

Generally, The three parameters that form the basis of monitoring quality:

- 1. Identity
- 2. Purity
- 3. Content /assay.^[2]

Constraints In Quality Determination of Herbal Drugs

The absence of repeatable impact in over 40% of plant extracts is one of the main obstacles to their use in pharmaceutical development. Reproducibility is the main issue since, in most cases, resampling and re-extraction of plants do not result in the same screen activities. This issue is primarily caused by variances in plant species, extraction and biological activity measurement methods, and flora physicochemical analyses collected across multiple times as well as places. Plant extracts additionally medicines may also have increased activity and efficacy due to additive or synergistic interactions among their constituent elements. There should be a protocol in place to evaluate differences in plants' levels of bioactive compound matter. Understanding the several agroclimatic or stress sites, the climate, and the microenvironments.[3]

Factors affecting the quality of herbals

The effectiveness of alternative medicine can be influenced by various aspects throughout the production and processing stages. Here are some key factors that can affect the quality of herbal drugs.

herbs Selection in addition to Authentication

Proper verification and confirmation of a plant species employed for herbal drugs are crucial. Misidentification or the use of adulterants can lead to variations in therapeutic effects and safety.

Cultivation Practices

The quality of herbal drugs depends on the conditions in which the plants are grown, including soil quality, climate, and cultivation practices. Variations in these factors can affect the concentration of active compounds in the plants.

Harvesting Time

The timing of plant harvesting can significantly impact the concentration of active constituents. various plant sections may have varying levels of bioactive compounds, and harvesting at the wrong time can lead to suboptimal therapeutic effects.

Post Harvest Handling

Proper drying, storage, and processing of herbal materials are essential to prevent contamination, mould growth, and degradation of active compounds. Inadequate post-harvest handling can compromise the general herbal qualities of drugs.

Extraction also Manufacturing Processes

Methods of extraction and manufacturing can affect the concentration and bioavailability of active compounds. Factors such as temperature, pressure, and solvents used in extraction should be carefully controlled to ensure the preservation of medicinal properties.

Adulteration and contamination

Adulteration with other plant materials, contaminants ((including microbial contaminants, herbicides and metals that are heavy), or incorrect processing can compromise the effectiveness as well as security of natural medications.

Q.C and standardizing

Establishing standards for the amount of active ingredients in herbal medications is crucial to guaranteeing consistency in therapeutic effects. Regular quality control measures, including testing for purity and potency, help maintain product quality.

Storage condition

Controlling moisture as well as heat during storing is essential for preserving the stability of herbal drugs. Exposure to unfavourable conditions can lead to degradation of active compounds.

Regulatory compliance

Adherence to regulatory standards and guidelines is essential to ensure that herbal drugs meet safety and quality requirements. Compliance with GAP, Good GMP, and other relevant regulations is crucial.

Traditional knowledge and cultural practice

Respecting and incorporating traditional knowledge and cultural practices in the production of natural medications can add to the overall quality by ensuring that the methods used are in line with historical efficacy and safety standards.

Harmonization of Medicinal Plants

Standardization and Q.C of herbs are crucial processes, as per WHO (1996a ab, 1992). It involves the evaluation of a raw drug, including aspects such as the choice and management of the initial components, security evaluation, the effectiveness of the end item, hazards and secure records according to knowledge, and providing information regarding this item to the consumer and its advertising. During the manufacture, formulation, storage, packaging, transport, and distribution of a medicinal product, changes may occur in its efficacy, safety, and stability. Therefore, standardization of natural remedies is a necessity to ensure excellence and safety.

Modernization of phytochemistry includes every data that might be produced about the substance fractions present in the herbal medicinal product. purpose of standardization of herbal medicine is to preliminarily test for the existence of several chemical groupings, quantify scientific categories (e.g., total alkaloid contents), establish, characteristics of fingerprints and develop various fingerprinting patterns depending on markers. Furthermore, Crucial substances have to be quantified.

Quality analysis of Herbal formulations

Raw material quality evaluation

- Microscopic Evaluation
- **Physical Evaluation**
- Chemicals Evaluation
- **Biological Evaluation**
- **Sensory Evaluation**

The various parameters for identification, evaluation and standardization.

Methods	Evaluation parameters		
1. Authentication	• Components of herbs		
	• The Present Condition Of The Regions		
	Family		
	An Organism-Based Supply		
	• constitution		
	Colour		
2. Morphological and sensory evaluation	• Smell		
	• Tastes		
	• Size		
	• Shape		

	Special feature		
	Palisade ratio		
	Stomatal Number		
2 Microscopical avaluation	Stomatal index		
3. Microscopical evaluation	Vein islet number		
	Veinlet termination number		
	Quantitative microscopy		
	• Test		
4. Chemical evaluation	Assay		
	Analysis of plants		
	Microbial contamination		
5. Biological evaluation	Pesticides contamination		
	Pharmacological activity of drugs		
	Solubility		
	Moisture content		
	Melting point		
	Optical rotation		
6. Physical evaluation	Refractive index		
	Ash value		
	Extractive value		
	Volatile oil content		
	Foreign matters etc.		

1. Morphological evaluation

Morphological evaluation is also called as sensory evaluation or Organoleptic evaluation. The examination of medications through the use of sense organs is known as organoleptic assessment. Analytical techniques such as colour, taste, smell, size, form, and unique characteristics like texture, touch, etc. are all included in this. The plant or extract quickly identifies itself because its first appearance is so distinctive. Should this prove insufficient, the plant or extract might possess a distinct flavour or aroma. The most basic, but also most humane, type of analysis is organoleptic examination.

For example

Talka gum is distinguished from acacia gum by its colour and shape. It is typically fractured, with some tears being colourless and others brown. Acacia gum, on the other hand, is white to yellow.

2. Microscopic evaluation

Drugs can be identified using this method based on their histological features. This technique makes it possible to examine medications in greater depth and to identify a particular drug using its recognized histological properties. Among the variables used to calculate the leaf

constants are measurements of the stomatal NO, stomatal index, vein termination number, vein density, and palisade ratio.

Stomata number

The stomatal number refers to the mean quantity of pores (stomata) present per square mm of skin. For example,

Sr.no	Species	Upper surface	Lower surface
1.	Datura tabula	91-173	155-331
2.	Datura innoxa	82-172	105 -223
3.	Datura stramonium	58-141	144-224

Stomata index

A stomatal index is a percentage of from the amount of stomata in all epidermal cells. Each stoma counts as one cell. The equation below is applicable to determine a S.I:

Stomatal Index (S.I.) =
$$\frac{S}{E + S}$$
 × 100

Where,

S = No of stomata per unit of area.

E = No of epidermal cells in the same unit per area.

For example,

Sr.no	Species	Lower surface
1.	Digitalis purpurea	17.9-19.5
2.	Atropa belladonna	19.5-23.9

Palisade ratio: Under one epidermal cellular layer, it displays the average broad diversity of palisade cells employing the 4 consecutive epidermal cells as the overall number.

for example,

Sr no	Species	Palisade ratio
1.	Digitalis purpurea	3.7-4.2
2.	Atropa belladonna	6-10

Veinlet termination number: Midway between the midrib and the edge, it is described as the amount of veinlet dismissals per square millimetre of the leaf surface.

For example,

Sr.no	Species	Veinlet termination number
1.	Digitalis purpurea	2.6-4.2
2.	Atropa belladonna	6.3 -10.3

Vein-islet number: It is the quantity of islets per square millimetre of leaf surface, calculated by dividing the number in half between the edge and the midrib. For example,

Sr no	Species	Vein-islet number
1.	Digitalis purpurea	2.5-5
2.	Cassia angustifolia	19-23

3. Chemical evaluation

Chemical evaluation is the method of estimating active ingredients through a chemical procedure.

The following tests are part of the chemical evaluation:

Sr.no	Phytoconstituents	Chemical test
1. Alkaloid		Hager's reagent, Mayer's reagent, Murexide test,
1.	Aikaioiu	Dragendroff's reagent, and Van Urk's test.
		• Cardiac glycoside -Baljet test, Legal test, Lieberman's
2.	2. Glycoside	reaction.
		• Saponin glycoside -haemolysis test, foam test.
3.	Carbohydrate	Iodine test, Barford's test, Molisch's test, Fehling's test.
4.	Lipid	Antimony trichloride test, Salkowski test.
5.	Tannin	Match stick test, gold beater's test.

4. Physical Evaluation

Physical constants are occasionally taken into account when evaluating different drugs. These consist of the moisture content, solubility, specific gravity, viscosity, optical characteristics and melting point in different solvents. Plant elements can be identified and located with the aid of all these physical features.

5. Biological evaluation

If chemical or physical methods of examination are unsuccessful in assessing a drug, then biological measures of evaluation must be employed. The technique of testing substances like vitamins and amino acids using microorganisms is known as micro-biological assay.^[5,6]

Who Guideline for GMP

The term "good manufacturing practice" (GMP) refers to a system of rules and regulations designed to guarantee the effectiveness, safety, and calibre of medications, including herbal remedies. The authenticity of the process of manufacturing and the finished product depends

heavily on GMP rules, which offer a structure for the production, evaluation, as well as quality control of pharmaceuticals.

- The European Commission a manual to GMP for Medicinal Products is available to the EU.
- The ICH Q7 guidelines provide a guide for Good Manufacturing Practices for Active Pharmaceutical Ingredients.
- In India, the 1945 Drugs and Cosmetics Act and Rules contain the Good Manufacturing Practices regulations in Schedule M.
- The current GMP for Completed Pharmaceuticals regulations are followed in the United States.[1]

Here are some key considerations for implementing GMP in the production of herbal drugs.

Record-Keeping and Documentation

Keep thorough records of every step of the production process, from acquiring raw materials to processing and quality assurance. Maintain documentation of testing and batch production outcomes. Written instructions covering every stage of production, storage, and heavy lifting must be available, and they must be current on all significant occasions. Each active pharmaceutical element needs to be carefully chosen, with designated production and topnotch manipulation techniques included, along with writing the starting materials and packaging materials (pleasant and quantity). Whenever possible, the grasp formula should be set up for known batch sizes.^[7]

Facility and Equipment

Production equipment must be constructed, designed, maintained and located, in a manner that achieves the following objectives:

- a. It should be suitable for its intended use.
- b. It ought to make thorough cleaning easier.
- c. It ought to lower the possibility of product and container contamination while in production.
- d. It should facilitate efficient, and if necessary, validated and reliable operation.

Ensure that the manufacturing facility is designed, constructed, and maintained to prevent contamination and facilitate proper cleaning. Regularly calibrate and maintain manufacturing equipment. Equipment for manufacturing and checking out must be utilized, maintained, and cleaned in compliance with specific written specifications. It must also be sterilized when needed. The multifunctional equipment must be thoroughly cleaned and inspected for cleanliness before the commencement of manufacturing of any other product.^[8]

Raw Material Control

Implement procedures for the qualification and testing of raw materials. Ensure that raw materials are sourced from reputable suppliers. Ensuring the quality and availability of raw materials through effective monitoring and management.^[7]

Process Validation

It is crucial to validate the manufacturing processes to ensure that the herbal drugs are consistently of high quality and efficacy. It is important to create and adhere to protocols for validating processes. This ensures that the process is reliable and consistent.^[9]

Quality Control

Establishing quality control procedures to ensure the identity, purity, and potency of herbal ingredients is essential. This will help to maintain consistency and integrity in the manufacturing process, resulting in safe and effective herbal products for consumers. Implement testing for raw materials and finished products.^[9]

Personnel Training

Ensure personnel are trained in GMP principles and have the necessary skills. It is important to create guidelines for maintaining personal hygiene and cleanliness. All businesses must hire workers who possess the necessary training and skills to produce and oversee the quality control of active pharmaceutical ingredients. A sufficient number of team members who possess the necessary training, technical expertise, and practical experience related to the task they do are required. A chart illustrating the firm's described organization is required. To avoid any ambiguities or overlaps, specific responsibilities should be outlined in written instructions. The obligations placed on any one person shouldn't be so great as to pose a safety risk. All segments of the workforce should have adequate education to fulfil their assigned duties and responsibilities.^[8]

Packaging and Labelling

Packaging and labelling are important processes in the production of goods. Packaging refers to the way products are protected, contained, and transported. It involves selecting

appropriate packaging materials, designing packaging forms, and ensuring the packaging can withstand various handling conditions. Labeling, on the other hand, involves creating and attaching labels to the packaged products. This is done to provide information about the contents, usage instructions, and any warnings or precautions that need to be taken. Labelling also helps in identifying the product and differentiating it from other products in the market. When choosing packaging materials for active pharmaceutical components, caution must be taken.^[7]

Stability Testing

Stability testing is a process used to determine the shelf life of a product and its ability to maintain its physical and chemical properties over time. It involves subjecting the product to various environmental conditions such as temperature, humidity, light, and vibration to evaluate its stability and identify any changes that may occur. The results of stability testing are used to establish appropriate storage conditions and expiration dates for the product, ensuring its quality and safety for consumption. Establish storage conditions that maintain the stability of the herbal drugs. The substances must not negatively affect the material and must provide adequate safety against external effects and capacity infection. It is necessary to have documented specifications that are adequate.^[7]

Complaints and Recalls

This phrase refers to instances where a customer has reported a problem or issue with a product, and the manufacturer or seller has taken action to address the problem. This can involve a recall of the product, where all affected products are removed from the market, or simply a warning to customers about the issue. It is important for companies to promptly address any complaints or issues raised by customers to maintain trust and ensure safety. Establish protocols to manage consumer grievances and, in case a product recall is required, put a structure in place for that as well. Examine any variations from the established protocols and take appropriate action.^[3]

Inspections and audits

Inspections and audits are processes that are conducted to evaluate the quality, safety, and compliance of an organization's operations, products, or services. These checks are often carried out by independent third parties to ensure that the organization is meeting the required standards and regulations. Make sure that the production facility complies with GMP

regulations by conducting routine audits and inspections. Resolve any issues found during inspections and audits.

It's t's crucial to remember that GMP specifications might differ from nation to nation, and regulatory bodies like the European Medicines Agency and the FDA (Food and Drug Administration) in the US may have unique rules for the production of herbal drugs. To guarantee the efficacy and security of their products, manufacturers of herbal pharmaceuticals should become familiar with the pertinent rules within their territory and make an effort to achieve or surpass these criteria.

Guidelines for Good Laboratory Practice (GLP)

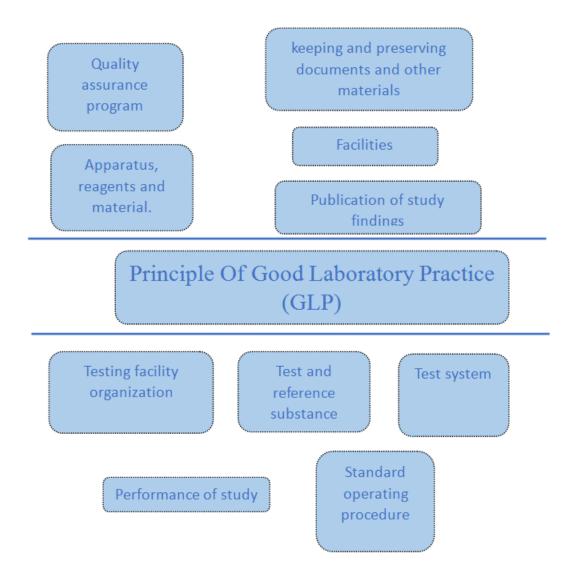
GLP stands for "good laboratory practice," which is a set of rules and regulations aimed at ensuring the quality, non-clinical laboratory researches' dependability and honesty, including those conducted for herbal drugs. GLP helps in the standardization of procedures, data recording, and reporting to facilitate regulatory compliance. Here are some general guidelines for implementing GLP in the context of herbal drug research.

1. Standard Operating Procedures (SOP)

Standard Operating Procedures, or SOPs for short, are a collection of written guidelines designed to specify the actions needed to finish a particular task or operation. SOPs are essential for maintaining efficiency, consistency, and security for employees in the workplace. The term "raw data" refers to any Workbooks, notes, memos, notes, or identical duplicates of these that are the result of a study's first observations and operations as well as are essential to complete rebuilding, and evaluation of the research findings, as per the EPA, or EPA, GLP rules. Verify that the facilities, personnel, and equipment in the lab are suitable for the intended research. One of the purposes of Standard Operating Procedures, also known as SOPs, is to eliminate the requirement for anyone to recall all of this information because it is extremely difficult to do so.

Equipment

The equipment, including verified electronic systems, utilized for data creation, analysis, and retrieval, as well as the control of Environmental aspects pertinent to the research, should be positioned appropriately, be of the suitable type, and possess sufficient capacity The equipment's name, manufacturer, pattern or kind for recognition, The model number and the date of arrival in the lab each one ought to be listed in the equipment logs. Additionally, a


duplicate of the operation manual provided by the maker Instrument validation is a crucial process for any analytical laboratory. Standard Operating Procedures state that all study-related equipment should go through regular inspections, cleanings, upkeep, and calibrations. It's important to keep track of these activities. Calibration should be able to be linked to regional, global, or national standards of measurement.^[3]

2. Test Facility Administration

The word "test facility" refers to the individuals who work there and are in charge of conducting these investigations in addition to the buildings, rooms, and other properties. It may refer to many "test sites," at one or more places, wherein specific phases or segments of one event, or comprehensive studies are conducted (Seiler, 2005). "Test facility" describes the individuals, locations, and equipment needed to conduct the non-clinical environmental and health safety inquiry. [12]

3. Storage and Retention of Records and Materials

For storage and retention, materials and records must be properly prepared. The research design, initial samples of information, samples of things for testing and references, and additional material must be retained in files for the duration specified by the relevant administrators. Every research project ends with a final report that includes master schedules, documentation and summaries of equipment upkeep and adjustment, documentation of staff credentials, training, and job descriptions, and validation documentation for computerized systems. It also includes all of the documentation from the Quality Assurance Program's inspections. The final assemblage of any research materials should be recorded even if an extension of term is not required.^[3]

5. Reporting of Study Results

Clear reporting of study results is crucial for ensuring the transparency and validity of research. It is important to accurately present the outcomes of the study, including any limitations or potential biases, and provide sufficient details to enable other researchers to replicate the study if necessary. Proper reporting can also facilitate the use of study results in clinical practice, policy-making, and further research. [12]

Quality evaluation of the finished product

Phytochemicals are the natural compounds found in plants. Phytochemicals, which are natural compounds found in plants, have gained significant popularity due to their many health benefits. They are effective in fighting a variety of illnesses, including cancer, arthritis, and respiratory disorders. The final product undergoes a phytochemical analysis using chromatography. The process of evaluating phytopharmaceutical products involves several steps:

These chromatographic techniques Paper chromatography, Thin Layer Chromatography, High-Pressure Liquid Chromatography, or a combination of them are used to separate and purify plant elements. The solubility characteristics and volatilities of the compounds to be separated have a major role in the procedure selection.

Thin Layer Chromatography

Before the establishment of instrumental chromatography techniques like GC and HPLC, TLC was the most popular and adaptable method of choice for herbal examination. Herbal medicines are often screened using TLC as a simple first method, alongside other chromatographic techniques, due to less variation in results compared to instrumental chromatography. A semi-quantitative evaluation is also performed. The process of thin-layer chromatography involves separating a solute between a liquid mobile phase and a stationary phase through adsorption. Applying a dry, finely powdered coating of substance to a glass, plastic, metal sheet or plate in a relatively thin, homogeneous layer is known as the adsorbent. The most popular kind of plate is glass. The process of separation can also be accomplished through partitioning or combining partition and adsorption, contingent upon the specific type of support, how it is prepared, and how it is used with various solvents. [13]

High-Performance Liquid Chromatography (HPLC)

The extensively used analytical method known as High-Performance Liquid Chromatography, or HPLC is used to identify, quantify, and separate components in a

mixture. It divides the components according to their chemical and physical characteristics using a stationary solid phase and a liquid mobile phase. In analytical chemistry and biochemistry, HPLC is frequently used to analyze complicated mixtures. These mixtures can come from a variety of sources, including liquid solutions that have been dissolved from food, chemicals, medicines, and biological, environmental, and agricultural sources.^[14]

The components of the sample interact differently with the material that acts as an adsorbent as they flow out of the adsorbent column and into a specific detector. This leads to variations in the migration rates of each component and their final separation. The output of the detector is a graph called a chromatogram. Chromatograms are visual representations of signal strength about volume or time. They exhibit peaks, or sample parts, with an area corresponding to the quantity of each component, at various points in time, referred to as retention periods. Slim layered natural action with high performance is a modified variant of skinny layered natural action.

High-Performance Thin-Layer Natural Action: This is a powerful tool for natural action that completes sample component separation on a high level by utilizing an advanced workstation for detection and acquisition. These high-performing layers have a pre-coated layer thickness of 150–200 microns and a particle size of 5-7 microns. Together with the sort of separation, the layer's thickness and the ensuing reduction in particle size boost the potency of the plate. HPTLC is appropriate for qualitative, quantitative, and micropreparative chromatography.

HPLC is frequently employed in manufacturing, such as in the process of producing biological and pharmaceutical products for legal (e.g., identifying performance-enhancing substances in urine),^[15] scientific (e.g., disentangling the constituents of a complicated biological sample, or comparable synthetic compounds from one another), and for medicinal (e.g., determining the amount of vitamin D in blood serum).^[17] [Comparable assays can be used in research to find concentrations of possible clinical candidates, such as medications for asthma and antifungals. This method helps observe various species in samples that have been gathered, but when attempting to determine the identity of a species, standard solutions must be used. Since purity is crucial for this kind of research, it is employed as a technique to validate the outcomes of synthesis reactions. Mass spectrometry is still the method of species identification that is more trustworthy, nevertheless.

Gas Chromatography

In analytical chemistry, gas chromatography (GC) is a popular chromatographic technique for isolating and examining molecules that evaporate without breaking down. GC is frequently used to separate the various components of a combination or to evaluate the purity of a specific product. GC can be used in preparative chromatography to separate pure chemicals from mixtures. Other names for gas chromatography include gas-liquid partition chromatography (GLPC) and vapor-phase chromatography (VPC). In scientific literature, these variant names and their corresponding acronyms are often used.

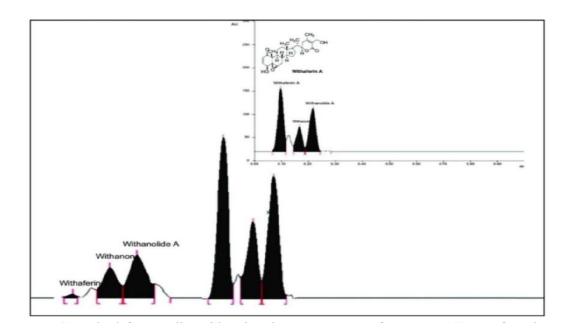
In gas chromatograph, a continuous stream of inert or nonreactive gas moves the vaporized sample along a thin tube known as a column. The sample components flow through the column at different rates depending on their physical and chemical properties and how they interact with the stationary phase, also referred to as the column lining. The column is typically enclosed by a temperature-controlled oven. When the chemicals exit the column's end, they are electronically recognized and detected.^[18]

In forensic science, gas chromatography is a widely utilized technique. GC is used in a wide range of disciplines, including paint chip analysis, toxicological cases, arson investigations, solid drug dose (pre-consumption form) identification and quantification, and more, to identify and quantify different biological specimens and evidence from crime scenes.

With regard to assuring the quality of products in the chemical sector or measuring chemicals within soil, air, or water, including soil gases, professionals who use gas chromatography (GC) analyze a chemical product's composition. Parts-per-billion concentration in gaseous specimens or picomoles of substance in a 1 ml liquid sample can be measured with GC when used properly.

Long-term and short-term stability testing of herbal formulations using ICH guidelines

Stability over the long and short terms by experimenting with herbs Formulations for applying ICH advice Long-term (real-time) testing balances the evaluation of a drug product's and drug substance's physical, chemical, biological, and microbiological characteristics while safeguarding the expected shelf life and recheck duration, which may be claimed in the submission and will be evident at the labelling. protection research, including toxicological data, efficacy studies, and preclinical and clinical documentation. According to safety research, if a product has been used in the past without causing harm, no special,


stringent regulations need to be implemented unless fresh information indicates that a revised risk-benefit analysis must be followed. If a toxicological risk is identified, toxicological examination records have to be filed. Documentation of the dose-unbiased or dose-structured danger assessment is required.

Chromatography is used to evaluate the quality of herbal drugs and their formulations Case studies and HPTLC examination of several significant herbs and formulations

Ashwagandha

Synonyms: Withania somnifera.

Cases study is a herb that has been described by Ayurveda as having "longevity," "reviving," and "Rasayana" (rejuvenator) qualities. Sensoril® is the brand name for the standardized aqueous extract of the roots and leaves of Withania somnifera. Analyse how the adaptations to strength training are affected by the use of Sensoril® supplements.^[1]

Development of an HPTLC technique to estimate ursolic acid: An Ocimum sanctum extract was dissolved in one gramme of aqueous 100 ml of methanol before being filtered via Whatman No. 1 filter paper. Three litres of the standard chromato-gram solution and ten litres of each extract that were gathered from different geographic sources were derivatized using Liebermann Burchard's reagent. A spectrum analysis was carried out using D2 and tungsten light to ascertain the maximal concentration of ursolic acid in the 200-700 nm region. The greatest height and area of the peak were measured at the wavelength referred to as "max." It was found that the maximum wavelength of ursolic acid was 550 nm. The derivatized plate

picture was taken with CAMAG Reprostar 3. Estimating Ursolic Acid Using the HPTLC Method.^[1]

Chrysanthemum paniculatum

Chrysanthemum paniculatum Nees, a member of the Acanthaceae family, is a commonly used medicinal herb. It is sometimes referred to as kalmegh. It is a very significant medication in traditional medicine 1, 2. Numerous methods, such as colourimetric, titrimetric, gravimetric, spectrometric, and chromatographic approaches, can be used to analyze energetic parts. The most recent methods include HPLC and HPTLC assessment. Excellent overall effectiveness thin Layer Chromatography is one of the most advanced methods available today, suitable for a wide range of packages. It's a very simple and effective tool for high-resolution chromatography, and it makes some quantitative analysis possible. It is most frequently utilized for the fast and simple dedication to quality, authenticity, and purity of unrefined capsules and commercial formulas. The chromatographic condition and HPTLC method.^[3]

Glycyrrhiza glabra

Glycyrrhiza glabra Linn, a member of the Fabaceae family, is well-known for its therapeutic qualities. It has anti-allergic, anti-spasmodic, mild laxative, anti-stress, anti-depressive, anti-ulcer, liver-protective, estrogenic, emmenagogue, and anti-diabetic properties according to Indian medicine. Glycyrrhizin is the main bioactive component of Glycyrrhiza glabra. Employing glycyrrhizin as the bioactive marker, a straightforward HPTLC method has been devised to guarantee the quality of both raw and processed glycyrrhiza. The ideal solvent combination was 65 + 36 + 7.5, v/v/v, for chloroform, methanol, and water. The TLC plate was coated before the extracts and standard were added, having been dissolved in 70% methanol. [3]

Formulation and evaluation of herbal formulations Cream

Materials and Method

Gathering of Plant Resources

Tridax procumbens L. leaves were gathered from several locations in Bangalore and its environs, and they were properly cleaned with distilled water. After the plant parts have been thoroughly cleaned, they are allowed to dry completely in the shade, ground into a fine powder using a machine, and then sealed in an airtight container.

Areca catechu L. nuts were bought from several locations in Bangalore and the surrounding areas, and they were thoroughly cleaned with distilled water. After the nuts have been washed, they are allowed to dry completely in the shade, ground into a fine powder using a machine, and then sealed in a receptacle.

Fig no:4 Herbal Cream

Preparation of extracts

Using a Soxhlet system, methanol was successfully extracted from powdered plant components. The extraction was done with light shaking at room temperature for a whole day. A rotary vacuum evaporator was used to filter and concentrate the extracts at 450 degrees Celsius.

Formulation of Ointment	Sr.No	Name of Ingredient	Quantity
Ointment Base	1	White Soft paraffin	Sufficient Quality
Cream Base(O/W)	1	Stearyl alcohol	15%
	2	Beeswax	8%
	3	Sorbitol Monooleate	1.23%
	1	PEG 4000	5%
Gel Base	2	PEG 400	5%
	3	Distilled water	Sufficient Quality

Procedure

Following vacuum drying, the extracted materials were used to create formulations for ointment bases (5% and 10%), cream bases (5% and 10%), and gel bases (5% and 10%). [21]

Evaluation of herbal Cream

The Physical Properties of Cream

We evaluated the colour and scent of the cream.

Homogeneity: The homogeneity of the formulations was assessed tactilely as well as visually.

Appearance: The colour, pearlescence, and roughness of the cream were used to grade its appearance.

After feel: The amount of residue left, the slipperiness, and the emollience of the Cream was evaluated after a certain application amount.

Smear kind: After the cream was applied, the type of smear or film that formed on the skin was assessed.

Ease of Removal: The cream's ease of removal was assessed by running tap water over the applied area.

Thermal Stability Test: The formulation's thermal stability was measured in a humidity chamber that was heated to 37–10°C and 60–70% relative humidity.

Irritancy test: On the left dorsal surface, make a section mark of 1 square centimetre. The necessary area was covered with the cream, and the time was recorded. Checks for erythema, oedema, and irritability were made at regular intervals.

Determination of pH

On the left dorsal surface, mark an area that is one square centimetre. The cream was applied to the required area, and the time was noted. At regular intervals, erythema, oedema, and irritation were assessed.

Examine the produced creams for the growth of microorganisms

The manufactured cream was seeded on the agar media plates using the streak plate method, and a swaying was made by leaving off the cream. The plates were added to the setup and incubated at 370C for a full day. After a set amount of time, the plates were taken out and evaluated by management to see out what kind of microbiological development there was.^[21]

Evaluation methods of herbal crude drug and formulations

Triphala churna

Physico-Chemical Evaluation

Using established protocols, the physical-chemical properties of all three samples were evaluated, including foreign matter, moisture content (Loss on Drying), pH, total ash, acid-insoluble ash, water-soluble extractive, and alcohol-soluble extractive values. A description of each technique is as follows

Determination of Foreign Matter

A 100g sample was weighed and the foreign matter separated before it was thinly spread out on an appropriate platform and examined in the light without the need for glasses or a 6x or 10x magnifier. The percentage of foreign materials was calculated using the medication sample. was then roasted at 105 °C for three hours in an oven. Wet and dry were kept at half-hour intervals until the difference between two successive weigh-ins equalled no more than 0.25 per cent.

To determine the total ash value, follow these steps

Weigh three grams of drug-infused silica crucible powder precisely. Gradually increase the temperature to burn powdered medications until they are cool and carbon-free. Weigh the ash to find the overall Ash value.^[1]

CONCLUSION

A comprehensive understanding of the key herbs present in India and commonly used in Ayurvedic formulas is crucial for research projects aimed at standardizing natural formulations. This will work best if the herbal products are assessed and examined using advanced modern standardized techniques like UV-seen, TLC, HPLC, HPTLC, GC-MS, and other techniques. Ensuring the safety, efficacy, and quality of medicinal plants and herbal products is an important topic that requires attention. The herbal industry can grow considerably in India with the cooperation of industries, scientists, and drug regulatory bodies. However, technique standardization and quality control data on safety and efficacy are required to fully understand the use of herbal drugs. Consequently, developing generally recognized criteria for assessing their quality is essential. It is now evident that a comprehensive approach to healthcare is necessary, and that the unrealized potential of traditional medicines has to be utilized. This will not be easy, though, as it will require a careful search for medicinal plants, precise identification standards, verification of the

scientific processes involved in isolating the active ingredient, preclinical evaluation of the pharmacological and toxicological profiles of those ingredients, and clinical evidence of their effectiveness.

REFERENCES

- Amol Vilas Pore, Sanjay K. Bais, Tejshree Hanumant Kale "Quality Aspects of Herbal Drugs and its Formulation" International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), January 2023; 3(2). ISSN (Online) 2581-9429.
- 2. Jiwan p. Lavande, Sanjay k. Bais, Avinash Siddharam Gurav "Review on Quality aspects of herbal drugs and its formulations" International Journal of Pharmaceutical Research and Applications, Jan-Feb 2023; 8(1): 1193-1205. www.ijprajournal.com ISSN: 2249-7781.
- 3. Sarfaraz Kazi, Sanjay Bais and Rani Kharat "An updated review on quality aspects of herbal drug and its formulations" International Journal of Pharmacognosy and Life Science, 2023; 4(1): 32-36. E-ISSN: 2707-2835 P-ISSN: 2707-2827.
- 4. Harborne JB, Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 3rd edition, Thomson Science, New York, London, 1998; 17: 32.
- 5. Archana Gautam*, Shiv Jee Kashyap, Pramod Kumar Sharma, Vipin Kumar Garg, Sharad Visht, Nitin Kumar "Identification, evaluation and standardization of herbal drugs: A review"
- 6. Md. Sharif Mollah, Mohammad Abu Bin Nyeem "Quality control and evaluation of herbal drugs in the modern era" International Journal of Research in Pharmacy and Pharmaceutical Sciences ISSN: 2455-698X; Impact Factor: RJIF 5.22, 2021; 6(1): 09-13.
- 7. Quality assurance of pharmaceuticals volume 22nd edition Good Manufacturing Practices, 188-194.
- 8. Quality control methods for plants mutual by who guidelines (quality evaluation methods herbal Drugs)
- 9. https://learn about GMP. Com/aseptic- techniques/ the -main-source-of-contamination- inthe pharmaceutical-industry
- 10. World Health Organization. Research guidelines for evaluating the safety and efficacy of the herbal medicine. Regional Office for the Western Pacific, Manila, 1993.

- 11. WHO.WHO guidelines on good agriculture and collection practices (GACP) for medicinal plant. (PDF) General Laboratory Practices for ASU Drugs (researchgate.net), 2003.
- 12. Nasiruddin Ahmad Farooqui* 1, Akalanka Dey2, G.N. Singh3, T.S. Easwari1 and Manoj Kumar Pandey3 "analytical techniques in quality evaluation of herbal drugs" e-ISSN 2231 363X Print ISSN 2231 3621
- 13. Kazakevich, Yuri; LoBrutto, Rosario, eds. HPLC for pharmaceutical scientists. Hoboken, NJ: Wiley-Interscience. ISBN 978-0-471-68162-5, 2007.
- 14. Levin, Shulamit (January). "Reversed Phase Stationary Phases in Pharmaceutical Sciences". Journal of Liquid Chromatography & Related Technologies, 2004; 27 (7–9): 1353–1376. doi:10.1081/JLC-120030606. ISSN 1082-6076. S2CID 97490509.
- 15. Gerber, F.; Krummen, M.; Potgeter, H.; Roth, A.; Siffrin, C.; Spoendlin, C. "Practical aspects of fast reversed-phase high-performance liquid chromatography using 3μm particle packed columns and monolithic columns in pharmaceutical development and production working under current good manufacturing practice". Journal of Chromatography A., 2004; 1036(2): 127133. doi:10.1016/j.chroma.2004.02.056. PMID 15146913.
- 16. Seger, Christoph; Salzmann, Linda (2020-08-01). "After another decade: LC–MS/MS became routine in clinical diagnostics". Clinical Biochemistry. Advancement and Applications of Mass Spectrometry in Laboratory Medicine, 82: 2–11. doi:10.1016/j.clinbiochem.2020.03.004. ISSN 0009-9120. PMID 32188572. S2CID 213186669.
- 17. Harvey, David (2000). Modern analytical chemistry. Boston: McGraw-Hill. ISBN 0-07-237547-7. OCLC 41070677.
- 18. Pavia, L., Gary M. Lampman, George S. Kritz, Randall G. Engel Introduction to Organic Laboratory Techniques (4th Ed.). Thomson Brooks/Cole, 2006; 797–817. ISBN 978-0-495-28069-9.
- Kim, D; Vargas, R; Bond-Lamberty, B; Turetsky, M. "Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research". Biogeosciences, 2012; 9(7): 34593483. Bibcode:2012BGeo....9.2459K. doi:10.5194/bg-9-2459-2012.
- 20. Lokesh Prasad MS*, Kalaskar P Gurunath, SB Chandrasekar, Umashankar C, Pawar AT "Formulation and evaluation of herbal formulations (Ointment, Cream, Gel) containing

Tridax procumbens and Areca catachu." Journal of Scientific and Innovative Research, 2017; 6(3): 97-100. ISSN 2320-4818.