

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 10, Issue 14, 291-297.

Review Article

ISSN 2277-7105

A REVIEW ON ANALYTICAL METHOD FOR DETERMINATION OF NETUPITANT AND PALONOSETRON IN PHARMACEUTICAL FORMULATION

Syeeda Juveria Aijaz* and S. H. Rizwan

Department of Pharmaceutical Analysis, Deccan School of Pharmacy, Hyderabad, Telangana, India.

Article Received on 13 October 2021.

Revised on 03 Nov. 2021, Accepted on 23 Nov. 2021

DOI: 10.20959/wjpr202114-22087

*Corresponding Author Syeeda Juveria Aijaz

Department of
Pharmaceutical Analysis,
Deccan School of
Pharmacy, Hyderabad,
Telangana, India.

ABSTRACT

Nausea and vomiting are the important adverse reaction/effects of Chemotherapy that effect the treatment as well as the health related quality of life. A FIXED combination of Netupitant and Palonosetron is use in the prevention of acute and delayed Chemotherapy-induced nausea and vomiting (CINV). This drug's, clinical and pharmaceutical analysis requires effective analytical procedures and stability studies. Netupitant is a highly selective neurokinin-1 receptor antagonist and Palonosetron is a serotonin 5-HT₃ receptor antagonist with a distinct pharmacological profile. It also exhibits prolonged efficacy to provide significantly better protection from nausea and vomiting (CINV). This review paper presents an overview of analytical and chromatographic

methods reported for the analysis of Netupitant and Palonosetron in pharmaceutical formulations.

KEYWORDS: Netupitant, Palonosetron, CINV, Analytical methods.

INTRODUCTION

Netupitant, chemically known as 2-[3,5-bis(trifluoromethyl)phenyl]-N,2-dimethyl-N-[4-(2-methylphenyl)-6-(4-methylpiperazn-1-yl)pyridin-3-yl]propanamide, having chemical formula $C_{30}H_{32}F_6N_4O$ and molecular weight 578.61 g/mol. It is a selective neurokinin 1 (NK1) receptor antagonist with potential antiemetic activity brought through with the activation of NK11 receptor and substance P. It is an antiemetic agent used in combination with Palonosetron to prevent acute and delayed vomiting and nausea caused by chemotherapy.

Figure 1: Structure of netupitant.

Palonosetron, chemically known as (3aS)-2-[(3S)-1-azabicyclo[2.2.2]octan-3-yl]-3a,4,5,6tetrahydro-3H-benzo[de]isoquinolin-1-one hydrochloride, having chemical formula C₁₉H₂₅ClN₂O and molecular weight 332.87 g/mol. It is a selective and specific serotonin 5-HT3 antagonist with antinauseant and antiemetic activity brought through the inhibition of 5-HT3 receptor present both in central (medullary chemoreceptor zone) and peripherally (GI tract) leads to prevention of nausea and vomiting.

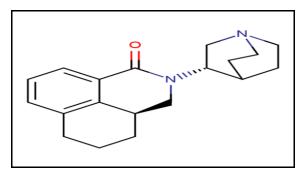


Figure 2: Structure of palonosetron.

Table: Summary of Analytical methods of Netupitant and Palonosetron.

Title	Method	Mobile phase	Stationary	Wavelength	Ref
			phase		
A novel validated	RP-	0.01M Ammonium	Kromasil	265nm	[1]
RP-HPLC-DAD	HPLC-	acetate buffer and	C18 column		
method for	DAD	Acetonitrile	(250mm×4.		
simultaneous		(65:35, v/v)	6mm, 5mm		
estimation of			particle		
Netupitant and			size)		
Palonosetron in					
bulk and					
pharmaceutical					
dosage form with					
forced					
degradation					
studies					

Stability indicating method development and validation for the simultaneous estimation of Palonosetron and Netupitant by RP- HPLC in bulk form.	HPLC	Methanol: water (45:55 v/v)	C-18 Inertsil- ODS 3V column (250 X 4.6 mm, 5 µm)	236nm	[2]
A Validated stability indicating RP-HPLC method for simultaneous determination of Netupitant and Palonosetron in pharmaceutical formulation. ^[3]	RP- HPLC	Phosphate buffer: acetonitrile (40:60% v/v)	Thermo BDS C 18 (150 mm x 4.6 mm 5μ)	210nm	
Development and validation of stability indication RP-HPLC method for the estimation of Netupitant and Palonosetron in combined tablet dosage form.	RP- HPLC	0.1% orthophosphoric acid: Methanol (55:45 v/v)	YMC Pack pro (150 mm x 4.6 mm, 5 µm particle size) C18 column	262nm	[4]
Simultaneous quantitative estimation of Netupitant and Palonosetron HCl by HPTLC method development and validation.	HPTLC	Dichloromethane: Ethyl acetate: Triethyleamine: Methonol (5:3:1.5:0.5)	Aluminium plates precoated with silica gel	241nm	[5]
Development and validation of a rapid LC-MS/MS method in human plasma and its application to a pharmacokinetic study.	LC- MS/MS	Acetonitrile and 10m ammonium acetate buffer (pH 9.0) (89:11, v/v)	Phenomene x C18 column (50mm x 2.0mm, 3 µm)	_	[6]
Development and validation of RP- HPLC method for	RP- HPLC	Acetonitrile:Phosph ate buffer (80:20 % v/v)	Symmetry C18 (4.6 x 150mm, 5	274nm	[7]

_	1	T	1		Г
simultaneous			μm)		
estimation of					
Netupitant and					
Palonosetron in					
pharmaceutical					
dosage form.					
Method	RP-	0.1%	Luna C18	222nm	[8]
development and	HPLC	orthophosphoric	(250 mm x		
validation for		acid:acetonitrile	4.6mm, 5		
simultaneous		(60:40 v/v)	μm)		
quantification of		(001.0 1/1)	p)		
Netupitant and					
Palonosetron in					
bulk and					
pharmaceutical					
dosage form and					
their forced					
degradation study					
by RP-HPLC.	DD	MathanaliAssts	Cymalana	262	[9]
Development and validation of	RP-	Methanol:Acetonitr ile:1% sodium	Synchronies C-18	263 nm	
	HPLC				
stability		perchlorate	(250mm x		
indicating HPLC		(75;20:05 v/v/v)	4.6mm, 5		
method for			μm)		
simultaneous					
estimation of					
Fosnetupitant and					
Palonosetron in					
pharmaceutical					
dosage form. ^[9]					F101
Development and	UPLC	Buffer:acetonitrile	BEH	240nm	[10]
validation of		(65:35)	C18100 mm		
stability			x 2.1 mm,		
indicating UPLC			1.8 µm)		
method for the					
estimation of					
Palonosetron in					
bulk and it					
pharmaceutical					
dosage form.					
Analytical	RP-	potassium	HPLC	235nm	[11]
method	HPLC	dihydrogen	Symmetry		
development and		phosphate(pH2.5):	C18 (4.6x		
validation of		acetonitrile (35:65	150mm,		
Netupitant tablets		v/v	5μm)		
by using RP-		HPLC Symmetry	- F - - 2		
HPLC		C18 (4.6x 150mm,			
Techniques.		5μm)			
Estimation of	UV	- p/		265 nm	[12]
Palonosetron		_	-	200 mm	
1 diolioscuoli					

hydrochloride (a 5-HT ₃ antagonist) on pharmaceutical dosage form by U.V					
spectrophotometri c method.					
A Novel	RP-	0.01M	Luna	222nm	[13]
Validated RP-	HPLC	Triethylamine	Phenyl	2221111	
HPLC Method	III LC	buffer and	Hexyl		
For The		acetonitrile	(250mmx		
Simultaneous		(60:40, v/v)	4.6mm,		
Estimation Of		(50.10, 1, 1)	5mm		
Netupitant And			particle		
Palonosetron In			size)		
Bulk And					
Pharmaceutical					
Dosage Form					
A Photo Stability	RP-	Orthophosphoric	YMC	210nm	[14]
Indicating HPLC	HPLC	and acetate buffer	(4.6×150m		
Technique For		and methanol	m 5μ)		
Validation Of		(70:30)			
Netupitant And					
Palonosetron In					
Bulk And					
Formulations					
Development and	HPLC	potassium	YMC Pack	210nm	[15]
validation of		dihydrogen	pro (150		
HPLC method for		phosphate:	mm x 4.6		
simultaneous		Methanol (70:30	mm, 5 µm		
estimation of		v/v)	particle		
Netupitant and			size) C18		
Palonosetron in			column		
pharmaceutical					
dosage form					

CONCLUSION

Various analytical methods have been reported for the determination of Netupitant and Palonosetron in pharmaceutical formulation. The most commonly used analytical technique is HPLC. A few chromatographic methods are listed in the table above High Sensitivity, good reproducibility, specificity, high resolution and better separation capacity favours HPLC to be used for the Qualitative and Quantitative analysis of Netupitant and Palonosetron.

A simple, rapid and reproducible stability indicating RP-HPLC method was determined for the analysis of Netupitant and Palonosetron in bulk and pharmaceutical dosage forms. The method was validated according to ICH guidelines.

The above mentioned information is beneficial for the future research involving in the quality control of Netupitant and Palonosetron in bulk and pharmaceutical formulation.

REFERENCES

- Uttam Prasad Panigrahy, A. Sunil Kumar Reddy, A Novel Validated RP-HPLC-DAD Method For The Simultaneous Estimation Of Netupitant And Palonosetron In Bulk And Pharmaceutical Dosage Form With Forced Degradation Studies, International Journal Chemtech Research, 2015; 8(10): 317-337.
- P. Sri Haritha, S. Shobha Rani, M. Ajitha, K. Rambabu, Stability Indicating Method Development And Validation For The Simultaneous Estimation Of Palonosetron And Netupitant By RP-HPLC In Bulk Form, Journal Of Pharmaceutical Research, 2016; 7: 192-198.
- Mangesh Harole, R.N. Patil, Deepak Gaware, Govind Suryawanshi and Kalyan Pisea, Validated Stability Indicating RP-HPLC Method For Simultaneous Determination Of Netupitant And Palenoserton In Pharmaceutical Formulations, World Journal Pharmacy and Pharmaceutical Science, 2016; 5(3): 2278 – 4357.
- 4. N.V.M.S. Bhagavanji, P.V.V. Satyanarayana, Karanam Sekhar, D. Naniprasad, Development and Validation of Stability Indicating RP-HPLC Method for the Estimation of Netupitant and Palonosetron in Combined Tablet Dosage Form, International Journal Pharmaceutical Science Review and Research, 2016; 41: 81-87.
- 5. N Vasava Shilpa and C. Mashru Rajashree, Simultaneous Quantitative Estimation of Netupitant and Palonosetron HCl by HPTLC Method Development and Validation, European Journal Biomedical Pharmaceutical Science, 2016; 3(7): 421-426.
- 6. Mingzhen xu, Yang ni, Shihong li, Juan du, Huqun li, Ying zhou, Weiyong li, Hui chen, Development And Validation Of A Rapid LC-MS/MS Method For Simultaneous Determination Of Netupitant And Palonosetron In Human Plasma And Its Application To A Pharmacokinetic Study, Journal of Chromatography B, Analytical Technologies Biomedical and Life Sciences, 2016; 1, 1027: 187-193.
- 7. Dr. Gampa Vijay Kumar, B.Sravanthi, N. Gayathri Aparna, Development And Validation Of RP HPLC Method For Simultaneous Estimation Of Netupitant And Palonosetron In

- Pharmaceutical Dosage Form, Indo American Journal Of Pharmaceutical Sciences, December, 2018; 22, 05 (12): 2349-7750.
- 8. Manoranjani M, Method Development and Validation of RP HPLC Method for Simultaneous Estimation of Netupitant and Palonosetron in Pharmaceutical Dosage, Asian Journal Pharmaceutical and Clinical Research, 2019; 12(2): 119-123.
- 9. Dr. Pallapati Suman, Development And Validation of Stability Indicating HPLC Method For Simultaneous Estimation of Fosnetupitant And Palonosetron In Pharmaceutical Dosage Form, European Journal of Biomedical and Pharmaceutical Sciences, 2020; 7(8): 419-427.
- 10. Kalavati. T, Shyamala, J V C Sharma, Development and Validation of Stability Indicating UPLC method for the estimation of Palonosetron in bulk and pharmaceutical dosage form, International Journal of Pharmacy & Pharmaceutical Research, 2019; 14: 3.
- 11. Ramesh Guguloth, Dr. Madhukar. A, Dr. N. Kannappan, A. Ravinder, K. Sravanthi, Analytical Method Development And Validation of Netupitant Tablets By Using RP-HPLC Techniques, Journal of Scientific Research in Pharmacy, 2016; 5(7): 2277-9469.
- 12. Della Grace Thomas Parambi, SR. Molly Mathew and V. Ganesan, Estimation Of Palonosetron Hydrochloride (A 5-HT₃ Antagonist) On Pharmaceutical Dosage Form By U.V Spectrophotometric Method, International Journal of Chemical Sciences, 2011; 9(4): ISSN: 0972-768X.
- 13. Kusuma Jogi., Mandava Venkata Basaveswara Rao and Rudraraju Rameshraju, A Novel Validated RP-HPLC Method For The Simultaneous Estimation Of Netupitant And Palonosetron In Bulk And Pharmaceutical Dosage Form, International Journal of Current Science and Technology, 2017; 5(1): 317-323, 2320-8090.
- 14. Patta Salomi, B. Sireesha, K. Ravindra Reddy, S. AfreenSultana, A photo stability indicating HPLC technique for validation of Netupitant and Palonosetron in bulk and formulations, international journal of research in pharmaceutical chemistry and analysis, 2020; 1(4): 101-106, ISSN: 2582-1970
- 15. Eali Tejakshi, Yandamuri Narayudu, Tummapala Devi Prasanna, Valluri Aparna Kumari and P. Abhinava Sri, Development and validation of HPLC method for simultaneous estimation of Netupitant and Palonosetron in pharmaceutical dosage form, European Journal of Biomedical and Pharmaceutical Sciences, 2019; 6(2): 463-469.