

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

Volume 1, Issue 1, 120-127.

Research Article

ISSN 2277 - 7105

FORMULATION AND STATISTICAL OPTIMIZATION OF PROPRANOLOL MATRIX TABLET

*Patel Monali D. 1, Gevariya H. B. 2

¹Shree Leuva Patel Trust Pharmacy Mahila College, Amreli, Gujarat, India ²Faculty of Pharmacy, D.D. University, Nadiad, Gujarat, India

Article Received on 28 December 2011, Revised on 01 February 2012, Accepted on 23 February 2012

*Correspondence for Author:

* Patel Monali D.

Shree Leuva Patel Trust

Pharmacy Mahila College,

Amreli, Gujarat, India

hitu.phd@gmail.com

ABSTRACT

Matrix system are favored because of their simplicity, patient compliance etc, than traditional drug delivery(TDS) which have many drawbacks like repeated administration, fluctuation in blood concentration level etc. Developing oral sustained release matrix tablets for highly water-soluble drugs with constant release rate has always been a challenge to the pharmaceutical technologist. Most of highly water-soluble drugs, if not formulated properly, may readily release the drug at a faster rate, and are likely to produce toxic concentration of the drug on oral administration. The steady state half lives of propranolol and its derivative are 5 and 11 hours, respectively, necessitating the administration, two or three times daily so as to maintain adequate plasma level of drug. The objective of this study was to investigate extended release formulation of a highly water-soluble drug, propranolol using a wax matrix. Natural waxes such as bees wax and carnauba wax can offer economy. The combination was used to get desired release and physical strength for tablets. Primary studies included the use of various waxes in the

formulation development of sustained release formulation out of which beeswax and carnauba wax showed good results and selected for further optimization. A 3^2 full factorial design was employed for development of sustained release formulation of propranolol tablets in which the amount of beeswax and carnauba wax were taken as formulation variables (factors) for optimizing $T_{50\%}$ and release after 12 hours. A mathematical model was generated for each response parameter. Both waxes retarded $T_{50}\%$ and release after 12 h. but bees wax

showed significant influence. The optimum formulas were selected by intensive grid search method and their predicted results were found to be in close agreement with experimental findings.

Key Words: Propranolol, Matrix tablets, Factorial Design, Sustained release

Introduction

Propranolol HCL is used as an antihypertensive drug. The compound is highly water soluble which poses processing and formulation challenges to the formulation scientists¹. The present research endeavor was directed towards the development of a sustained release dosage form of propranolol HCL in the form of tablet to be taken once daily². Different waxes viz carnauba wax and bees wax tried. Waxes have properties to retard drug release from the formulation³. Most of the waxes are naturally available, economical and easy to obtain⁴. Matrix system are favored because of their simplicity, patient compliance etc, than traditional drug delivery(TDS) which have many drawbacks like repeated administration⁵, fluctuation in blood concentration level etc. Developing oral sustained release matrix tablets for highly water-soluble drugs with constant release rate has always been a challenge to the pharmaceutical technologist⁶. Most of highly water-soluble drugs, if not formulated properly, may readily release the drug at a faster rate, and are likely to produce toxic concentration of the drug on oral administration^{7,8}.

Purpose of present work is to use waxes as granulating agent for propranolol and formulating once daily tablet using a computer-aided optimization process. 32 FD was employed to investigate the effect of two independent variables (factors) i.e., amount of two waxes :carnauba wax and bees waxes. Release till 12 hr. (rel12h) and time taken to release 50% of the drug (t50%) were taken as the response variables.

Material and Methods

Materials

Propranolol HCL was a gift sample from torrent Pharmaceuticals Pvt. Ltd. (Ahmedabad, India), talc powder, sodium starch and glycol were from Cosmo chem. (Pune, India), and Lactose from M/s Loba Chemie Ltd. (Mumbai, India). All other chemicals used in the study were of analytical grade.

Methods

Preparation of wax matrix tablet

The preliminary study was done by using various waxes such as compritol, precirol, carnauba wax, bees wax and Stearic acid and result was obtained. Out of which the bees wax and carnauba wax was showed satisfactory results. Wax matrix tablet was prepared by combination of the bees wax and carnauba wax. Both waxes were melted in a porcelain dish on a water bath maintained at 85°C. The drug (propranolol) was gradually added to the molten mass with continuous stirring. After cooling, the mass was subjected to granulation by passing through a #20 sieve screen. Then granules are lubricated with lactose and talc.

Table-1 Formulation of propranolol sustained release wax matrix tablet

Ingredients	Quantity (mg)				
Propranolol HCL	30				
Carnauba wax	18.75-56.25				
Bees wax	18.75-56.25				
Talc powder	5				
Lactose	q.s.				

Factorial design

A 3² full FD was constructed where the amounts of carnauba wax (X1) and bees wax (X2) were selected as the factors. The levels of the two factors were selected on the basis of the preliminary studies carried out before implementing the experimental design. All other formulation and processing variable were kept invariant through the study.

Factors	Levels				
X1= Carnauba wax	Coded Level	Actua	l Level		
X2 = Beeswax	-	X1	X2		
	-1	0.50	0.50		
	0	1.00	1.00		
	1	1.50	1.50		

	•	4
HX	oerim	ent
	<i>,</i>	CIIL

Trials		1	2	3	4	5	6	7	8	9
	X1	-1	-1	-1	0	0	0	1	1	1
Variables	X2	-1	0	1	-1	0	1	-1	0	1

Coded Level	-1	0	1
X1 = Carnauba wax (mg)	18.75	37.5	56.25
X2 = Beeswax (mg)	18.75	37.5	56.25

Tablet Evaluation

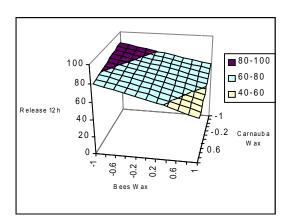
All the prepared tablet formulations are evaluated for hardness, friability, weight variation and assay. Drug release studies (n=3) were conducted for all the formulation combinations using dissolution test apparatus (DA-6D USP Standard). Distilled water (900 ml) was taken as the release medium at 100rpm and 37±1°C employing USP II paddle method (Apparatus 2).

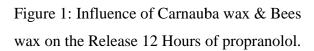
Data analysis

Various computations for the current optimization study using RSM were carried out, employing software Design Expert Version 7 ^{and} MS EXCEL. The general form of the model is represented as in equation given below.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \beta_4 X_1^2 + \beta_5 X_2^2 + \beta_6 X_1^2 X_2 + \beta_7 X_1 X_2^2 + \beta_8 X_1^2 X_2^2$$

Where $_0$ the intercept, is the arithmetic average of all quantitative outcomes of nine runs, $_1$ to $_8$ are the coefficient computed from the observed experimental values of Y, and X_1 and X_2 are the coded levels of the independent variable(s). The terms X_1X_2 and X_i^2 (i = 1, 2) are the interaction and polynomial terms, respectively. The statistical validity of the polynomials was established on the basis of Yate's ANOVA.


Validation of optimization model


Six optimum formulations were selected by intensive search, performed over entire experimental domain, to validate the chosen experimental design and polynomial equations.

RESULTS AND DISCUSSION

Physical Evaluation

Physical evaluation of compressed matrices shows that, all the physical parameters of the compressed matrices tablets were practically within control. Tablet weights varied between 98.5 and 102.5mg and hardness between 5.1 and 5.7 kg/cm². The assay content of propranolol varied between 98.0 and 99.8%, and the friability ranged between 0.3 and 0.6%. Response surface plot (Figure-1 and 2) showing the influence of Carnauba wax & Bees wax on the Release 12 Hours and $T_{50\%}$ values of sustained release tablet of propranolol. Figure 3 and 4 shows the in vitro dissolution profile of sustained release formulations.

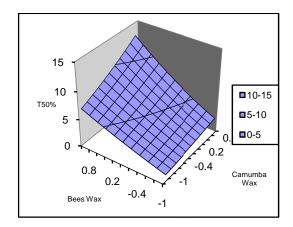


Figure 2: Influence of Carnauba wax & Bees wax on $T_{50\%}$ values of sustained release tablet of propranolol.

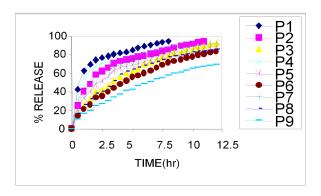


Figure 3: Dissolution profile of sustained release formulation of propranolol.

Validation of optimization model:

The mathematical relationships constructed for the studied response variables are expressed as Equation. All the polynomial equations were found to be highly statistically significant (<0.001), as determined by ANOVA. Experimentally observed response parameter of six optimum formulation and comparison with predicted values for validation of response surface methodology were shown in Table 2.

Table 2: Experimentally observed response parameter of six optimized formulation and comparison with predicted values for validation of response surface methodology.

Formula-	Formulation	Response	Experime	Predicted	Percentage
tion code	composition	property	ntal value	value	error
	Carnauba/Bees				
	wax				
P1	18.75/41.71	Release 12 Hr	77.16	76.29	1.127
		T _{50%}	4.40	4.31	0.681
P2	21.56/44.53	Release 12 Hr	73.47	73.64	-0.231
		T _{50%}	5.003	4.99	0.259
Р3	31.87/34.68	Release 12 Hr	75.88	75.20	0.896
		T _{50%}	4.21	4.26	-1.187
P4	34.68/37.03	Release 12 Hr	72.18	72.78	-0.831
		T _{50%}	4.76	4.83	-1.470

P5	47.81/27.65	Release 12 Hr	74.29	74.31	-0.026
		T _{50%}	4.19	4.13	1.431
P6	52.50/29.53	Release 12 Hr	70.42	71.64	-1.732
		T _{50%}	4.80	4.87	-1.458

Conclusion

From above study it was concluded that both waxes retarded $T_{50\%}$ and release after 12 h, but bees wax showed significant influence. It can be promisingly used to formulate sustained release tablet.

Reference

- Gothoskar A.V, Oza K.P & Rajabi A.R. "Study of slow release matrix formulation of highly soluble drug (Venlafaxine HCl)". Colorcon Asia Pvt. Ltd. Goa, India. Control release society. 2005.
- 2. Mukhija S.N & Vavia P.R." Once daily sustained release tablet of Venlafaxine, a novel antidepressant". Eur.J. Pharm. Biopharm.54 (2002) 9-15.
- 3. Singh B & Ahuja N, Book review on Pharmaceutical Experimental Design, Int J Pharm., (2000), 248:195:247
- 4. Tiwari SB, Krishna Murthy T, Raveendra Pai M, Mehta PR, Chowdary PB. Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS Pharm Sci Tech 2003; 4 (3) article 31.
- 5. María-Jesús Vázquez, Marta Casalderrey, Roberto Duro, José-Luis Gómez-Amoza, Ramón Martínez-Pacheco, Consuelo Souto, and Angel Concheiro. Atenolol release from hydrophilic matrix tablets with hydroxy propyl methylcellulose (HPMC) mixtures as gelling agent: effects of the viscosity of the HPMC mixture. Euro J Pharm Sci 1996:4; 39-48.
- 6. Sujja-areenath J, Munday DL, Cox PJ, and Khan KA. Relationship between swelling, erosion and drug release in hydrophilic natural gum mini-matrix formulations. European journal of pharm. sciences 6 (1998) 207-217.
- 7. Fassihi R, Yang L. Examination of drug solubility, polymer types, hydrodynamics and loading dose on drug release behavior from a triple-layer asymmetric configuration delivery system. Int J Pharm 1997; 155: 219-229.

- 8. Basak SC, Jayakumarreddy BM, Lucasmani KP. Formulation and release behavior of sustained release ambroxol hydrochloride HPMC matrix tablet. Indian J Pharm Sci 2006; 68(5): 594-598.
- 9. Al-saidan SM, Krishnaiah YSR, Patro SS, Satyanarayana V. In vitro evaluation of guar gum matrix tablets for oral controlled release of water-soluble Diltiazem hydrochloride. AAPS Pharm Sci Tech 2005; 6(1) article 5: E14-E21.
- Sujja-areevath J, Munday DL, Cox PJ, Khan KA. Release characteristics of diclofenac sodium from encapsulated natural gum mini-matrix formulations. Int J Pharm 1996; 139: 53-62.