

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

Volume 3, Issue 2, 3055-3065.

Research Article

ISSN 2277 - 7105

HEPATOTOXIC VS NEPHROTOXIC POTENTIAL OF CHLORPYRIFOS ON SWISS ALBINO MICE

Ranjit Kumari², Surbhi Kumari², Anamika Kumari², Md Ali¹, Arun Kumar¹, A. Nath¹ and J.K. Singh¹

¹Mahavir Cancer Institute & Research Centre, Phulwarisharif, Patna (Bihar), India ²A. N. College, Magadh University, Bodh Gaya, Bihar

Article Received on 05 January 2014, Revised on 25 January 2014, Accepted on 27 February 2014

*Correspondence for Author Dr. Ranjit Kumar

Mahavir Cancer Institute & Research Centre,

Phulwarisharif, Patna (Bihar), India.

ABSTRACT

Pesticides have numerous beneficial effects. These include crop protection, preservation of food and materials and prevention of vector-borne diseases. Chlorpyrifos is still widely used pesticide for crops and farm animals. It induces toxicity through inhibition of acetyl cholinesterase. Thus the present study is designed to evaluate hepatotoxic Vs nephrotoxic potential of Chlorpyrifos on Swiss albino mice. chlorpyrifos was administered at 6 mg/kg b.wt dose for 4 weeks by Gavage method. Sacrifice was done on1st week, 2nd week and 4th week of chlorpyrifos administration in each group. Urea and Uric acid were increases with increased duration of chlorpyrifos exposure. Degeneration was observed in hepatic cells and hepatic veins.

Glomerulus and bowmens capsule were also degenerated. Thus it is concluded from study that chlorpyrifos causes degenerative changes in both liver and kidney, but it causes more degeneration of glomerulus and bowmens capsule. Degeneration of cytoplasm of PCT and DCT are frequent than cytoplasm of hepatic cells. It is evident from study that chlorpyrifos is more neprotoxic than hepatotoxic.

Key Word: Hepatotoxicity, nephrotoxicity, glomerulus, bowmens capsule.

INTRODUCTION

Pesticides have numerous beneficial effects. These include crop protection, preservation of food and materials and prevention of vector-borne diseases. Pesticides are used extensively throughout the world. Pesticide chemicals can induce oxidative stress by generating free radical and alternating antioxidant levels of the free radical scaving enzyme activity ¹.

Chlorpyrifos is still widely used pesticide for crops and farm animals. It induces toxicity through inhibition of acetyl cholinesterase (AChE) but also involves multiple mechanisms besides the inhibition of AChE ². Like the other organophosphate, Chlorpyrfos toxicity has been largely associated with irreversible inhibition of acetylcholinesterase (AChE) resulting in accumulation of acetylcholine in the cholinergic receptors ³. However, other putative mechanisms have been implicated in molecular mechanisms of CPF toxicity. Among these, the induction of oxidative stress has received tremendous attention ^{4,5}. Chlorpyrifos intoxication causes a significant decrease in the reduced glutathione (GSH), catalase (CAT) and glutathione-S-transferase (GST) activitie Several antioxidant dietary compound classes have been suggested to have health benefits. Evidence shows consumption of these products leads to a decrease in various pro-inflammatory and / or oxidative stress biomarkers ⁶.

CP absorbed through the GI tract, enters the blood stream and reaches the liver, the major site of pesticide metabolism, resultingin liver toxicity. Moreover, CP can also be accumulated in the body tissues, proteins, fats and bones for longer period of time causing additional health hazards ⁷.

Thus the present study is designed to evaluate Hepatotoxic Vs nephrotoxic potential of Chlorpyrifos on Swiss albino mice.

2. MATERIALS AND METHODS

2.1 Pesticide

Chlorpyrifos (T_N –Dursban) were used at an effective concentration, EC = 20% (w/v).

2.2 Experimental model

Swiss albino mice (*Mus musculus*) weighing 30±5gm were selected as an experimental model in the present study. The animals were housed at controlled environmental conditions 22±2°C, relative humidity 50±10%, and 12h dark-light cycle. All experimental procedures were conducted as per the guidelines of CPCSEA (Committee for the Purpose of Control and Supervision of Experiments on Animals).

2.3 Methodology

2.3.1 Chronic Toxicity Studies: Selected pathogen-free mice were sorted and chlorpyrifos was administered at 6 mg/kg b.wt dose level for 4 weeks by Gavage method. Sacrifice was done on1st week, 2nd week and 4th week of chlorpyrifos administration in each group.

2.3.2 Sub-cellular Studies: Mice were sacrificed from each group for histological analysis. The selected organ is dissected out and washed three times in isotonic saline (0.85 w/v %) and then fixed in 10% neutral formalin solution and the tissue was processed. Slides were stained with Haematoxylin-Eosin (H & E) and examined morphometrical under Light Microscope.

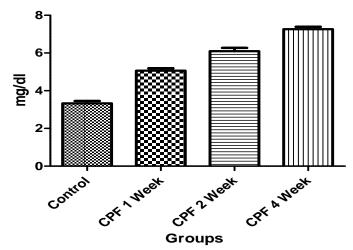
2.4.4 Biochemical Assessment: Blood was collected by orbital puncture and centrifuged to separate the serum to carry out further biochemical analysis. With the separated serum biochemical analysis was performed to establish the effects of chlorpyrifos induced toxicity on urea and uric acid level through standard kit process (Hi Media) by spectrophotometer.

3. RESULT

Urea level in control group of mice was 18.00 ± 1.155 mg/dl. In chlorpyrifos administered group of mice urea level was 33.33 ± 2.404 mg/dl, 44.00 ± 1.155 mg/dl and 52.00 ± 1.528 mg/dl after 1week, 2weeks and 4 weeks (Graph:1).

Uric acid level in control group of mice was 3.333 ± 0.1202 mg/dl. In chlorpyrifos administered group of mice uric acid level was 5.067 ± 0.1202 mg/dl, 6.100 ± 0.1732 mg/dl and 7.267 ± 0.1202 mg/dl after 1week, 2weeks and 4 weeks (Graph:2).

Show liver of control mice with normal hepatic cells. Cytoplasm and nuclear material was normal. Central vein was also normal in structure (Figure: 1). Show liver of chlorpyrifos two week administration mice with frequent vacuolization in hepatic cells. Central veins are degenerated in structure. Haemorrhages was observed in hepatic vein (Figure: 2). Show degenerated hepatic cells with degenerated cytoplasm. Haemorrhages were observed in central vein. Clustered nuclei of hepatic cells were observed (Figure: 3). Show liver of four weeks chlorpyrifos administrated mice with degenerate cytoplasmic material of hepatic cell. Frequent vacuolization were observed. Degenerated nuclei were observed on periphery of central vein (Figure: 4). Binucleated hepatic cells were observed. Heterochromatisation was also observed. Degenerated cytoplasm of hepatic cells was also observed (Figure: 5).


Show kidney of control mice with normal glomerulus and bowmens capsule. PCT and DCT are also normal in structure (Figure: 6). Show section of kidney of two weeks chlorpyrifos administrated mice. Frequent vacuolization were observed in cortex region. Degenerated glomerulus was observed. Dilated Bowmen's capsules were also observed (Figure: 7).

Degenerated podocytes were observed in Bowmen's capsule. Cytoplasm of PCT & DCT was also degenerated. Clustered nuclei were observed (Figure: 8). Show kidney of four weeks chlorpyrifos administered mice with dilated Bowmen's capsule degenerated glomerulus were also observed. Vacuolated space was observed in glomerulus. Dilated PCT & DCT were also observed (Figure: 9). Show kidney of four weeks chlorpyrifos administered mice with dilated Bowmen's capsule .Degenerated glomerulus were observed with vacuolization. Degenerated cytoplasm was observed in PCT & DCT. Clustered nuclei were also observed on PCT. Degenerated nuclei were observed on DCT (Figure: 10).

40 mg/dl 20 CPF Week CPF AMEEX CPF 2 Week Control **Groups**

Graph - 1: Urea Level in Serum of mice

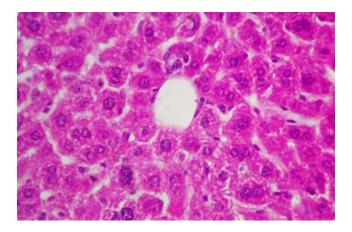


Figure- 1 Show liver of control mice with normal hepatic cells. Cytoplasm and nuclear material was normal. Central vein was also normal in structure.

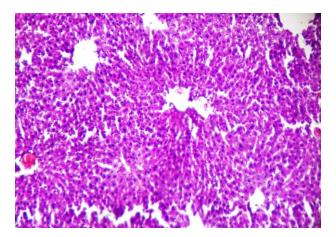


Figure -2 Show liver of chlorpyrifos two week administered mice with frequent vacuolisation in hepatic cells. Central veins are degenerated in structure. Haemorrhage was observed in hepatic vein.

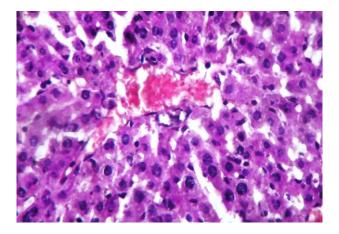


Figure -3 Show degenerated hepatic cells with degenerated cytoplasm. Haemorrhage was observed in central vein. Clustered nuclei were observed.

Figure -4 Show four weeks chlorpyrifos administred liver of mice with degenerated cytoplasmic material of hepatic cell. Frequent vacuolization were observed. Degenerated nuclei were observed on central vein.

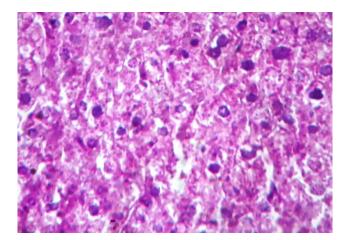


Figure -5 Show four weeks chlorpyrifos administered mice with degenerated nuclear material of hepatic cells. Binucleated hepatic cells were also observed. Degenerated cytoplasm was observed.

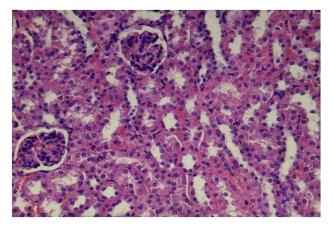


Figure -6 Show kidney of control mice with normal glomerulus and bowmens capsule. PCT and DCT are also normal in structure.

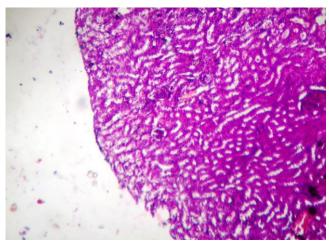


Figure -7 Show kidney of two weeks chlorpyrifos administred mice. Frequent vacuolization were observed in cortex region. Degenerated glomerulus was observed. Dilated Bowmen's capsules were also observed.

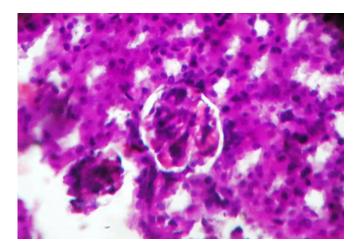


Figure -8 Show kidney of two weeks chlorpyrifos administered mice with degenerated glomerulus. Degenerated podocytes were observed in Bowmen's capsule. Cytoplasm of PCT & DCT were also degenerated. Clustered nuclei were observed

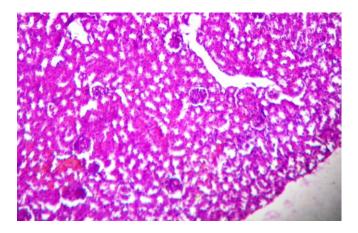


Figure -9 Show kidney of four weeks chlorpyrifos administered mice with dilated Bowmen's capsule degenerated glomerulus were also observed. Vacuolated space observed in glomerulus. Dilated PCT & DCT were also observed.

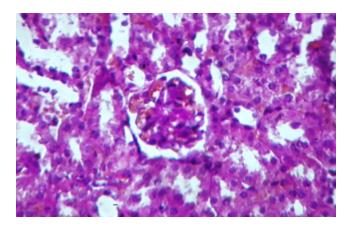


Figure -10 Show kidney of four weeks chlorpyrifos administered mice with dilated Boomen's capsule .Degenerated glomerulus were observed with vacuolization. Degenerated cytoplasm were observed in PCT & DCT. Clustered nuclei were also observed on PCT. Degenerated nuclei were observed on DCT.

4. DISCUSSION

Liver suffered from severe lesions after administration of pesticides. Moreover, haemorrhage was evident inter tubular or sub capsular. This happened as a squeal of liver lesions which leading to lack of clotting factors. Also, observed severs toxicity led to necrosis of renal tubules which were replaced with inflammatory cells. These findings were confirmed with results of Gupta⁸, Kherer ⁹. There is little evidence concerning the effects of organophosphates in the liver of healthy individuals, and the existing researches come to contradictive results ^{10, 11}. In present study we also observed degeneration of hepatic cells in chlorpyrifos administered group of mice. Degenerative changes were increased with increased duration of chlorpyrifos exposure.

CPF is thought to be primarily metabolized in the liver by multiple, specific cytochrome P450 enzymes through several reaction pathways CPF elicits a number of additional effects, including hepatic dysfunction, haematological and immunological abnormalities, embryotoxicity, genotoxicity and neurobehavioral changes ^{12, 13}. Urea and Uric acid were increases with increased duration of chlorpyrifos in present study.

The toxic effect of profenofos and chlorpyrifos on hepatic lession leading to congestion and haemorrhages of spleen. Also lymphocytes occurred, which many be affected on the immunity. This findings were confirmed with results of ¹⁴. Inhibition of cholinesterase by organophosphoric pesticides or their metabolites plays a key role in toxicity. However, inhibition of other enzymes, such as neuropathy target esterase or other beta esterases and

the direct effects of organophosphates on tissues are also important ¹⁵. Chronic exposure to chlorpyrifos can alter the structural and functional integrity of the kidney, induce oxidative stress, and cause nephrotoxicity, which may lead to renal failure ¹⁶. The glomerular tubules of the kidney were vacuolated due to edema, with excessive toxicity concentration and destruction of the glomerular tubules occurred which may be due degenerative changes. Degeneration of renal tubules resulted from collection of albuminous material lining during its excretion in the urine ^{17,18}. In present study degenerated glomerulus and bowmens capsule were observed in chlorpyrifos administered group of mice. Proximal Convoluted Tubule (PCT) and Distal Convoluted Tubules (DCT) were also show degenerated and heterochromatised nucleus. Many vacuolated spaces were observed with degenerated cytoplasm. Necrosis of tubular epithelium, cloudy swelling of epithelial cells of renal tubules, narrowing of the tubular lumen, contraction of the glomerulus and expansion of space inside the Bowman's capsule were observed in the kidney tissues of fish after exposure ¹⁹.

Thus it is concluded from study that chlorpyrifos causes degenerative changes in both liver and kidney, but it causes more degeneration of glomerulus and bowmens capsule. Degeneration of cytoplasm of PCT and DCT are frequent than cytoplasm of hepatic cells. It is evident from study that chlorpyrifos is more neprotoxic than hepatotoxic.

5. ACKNOWLEDGEMENT

The authors are thankful to Mahavir Cancer Institute and Research Centre, Patna for providing infrastructural facility and also to all research laboratory staff and animal house staff for their proper support during this study.

6. REFERENCES

- 1. Verma RS, Mehta A, Srivastava N In vivo chlorpyrifos oxidative stress: attenuation by antioxidant vitamins. Pest Biochem Physiol2007; 88: 191–19.
- 2. Slotkin TA, Olivier CA, Seidler FJ. Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Brain Res Dev Brain Res 2005; 157:172-80.
- Eaton, D.L., R.B. Daroff, H. Autrup, J. Bridge, P. Buffler, L.G. Costa, J. Coyle, G. McKhann, W.C. Mobley, L. Nadel, D. Neubert, R. Schutte-Herman and P.S. Spencer. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Crit Rev Toxicol 2008; S2: 1-125

- 4. Gultekin, F., Delibas, N., Yasar, S. and Kilinc, I. In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos ethyl in rats. Arch Toxicol 2001; 75: 88–96.
- 5. Ambali SF. Ameliorative effects of vitamins C and E on neurotoxicological, haematological and biochemical changes induced by chronic chlorpyrifos in Wistar rats. PhD Dissertation, 2009; Ahmadu Bello University, Zaria, Nigeria.
- 6. Goel A, Danni V, Dhawan DK. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem Biol Interact 2005;156:131-40.
- 7. Environmental Risk assessment (2002) Review of chlorpyrifos poisoning data. US ERA1-46
- 8. Gupta RC, Singh N, Paul BS, Kwatra MS. Role of residual estimation and clinic biochemical and pathological changes in diagnosis of toxicity in bubals caused by malathion. Indian. J. Anim. Sci. 1981;51(6):616-622.
- Kehrer JP, Klenin-Szanto AP, Thurston DE, Lindenschmidt RC, Wotschi HR. O, S, S,trim ethyl phosphorodithioate induced lung damage in rats and mice. J. Toxicol. Appl.Pharmacol. 1986;84:480-492.
- 10. Dilshad A Khan, Mahwish M Bhatti, Farooq A Khan, Syed T Naqvi, Karam A. Adverse Effects of Pesticides Residues on Biochemical Markers in Pakistani Tobacco Farmers. Int J Clin Exp Med. 2008;1:274-282.
- 11. Mojiminiyi OA, Abdella NA, Al Mohammedi H. Higher Levels of Alanine Aminotransferase Within the Reference Range Predict Unhealthy Metabolic Phenotypes of Obesity in Normoglycemic First-Degree Relatives of Patients With Type 2 Diabetes Mellitus. The Journal of Clinical Hypertension. 2010;12(4):301-308.
- 12. Heikal TM, Mossa AH, Marei GIK, Abdel Rasoul MA Cyromazine and Chlorpyrifos Induced Renal Toxicity in Rats: The Ameliorated Effects of Green Tea Extract. J Environ Ana Toxicol 2012a; http://dx.doi.org/10.4172/2161-0525.1000146
- 13. Levin ED, et al. Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol 2002;24(6):733.
- 14. Chaudhary S, S. Lambda-cyhalothrin-induced oxidative Sahal changes in stressbiomarkers in rabbit erythrocytes alleviation effect of and some antioxidants. Toxicology in Vitro. 1994;21:392-397

- 15. Kamanyire R and Karalliedde L. Organophosphate toxicity and occupational exposure. Occupational Medicine. 2004;54:69–75.
- 16. Wang H-P, Liang Y-J, Zhang Q, Long D-X, Li W, Li L, Yang L, Yan X-Z, Wu Y-J. 2011. Changes in metabolic profiles of urine from rats following chronic exposure to anticholinesterase pesticides. Pestic Biochem Physiol101(3):232-9.
- 17. Chu ID, Villeneeuve C, Sun W, Secours V, Procter B, Arnold E, Clegg D, Reynolds L, and Valli VE. Toxicity of toxaphene in the rat and beagle dog. Fund. Appl. Toxicol.1986;7(3):406-418.
- 18. Nebbia CG, Fogliato TG. Diagnosis of paraquat poisoning in the dog objective. Document Veterinary. 1987;8(6):49-52.
- 19. Babu V, Mariadoss S, Elif IC. Histopathology of lambda-cyhalothrin on tissues (gill,kidney, liver and intestine) of Cirrhinus mrigala. Environmental Toxicology andPharmacology. 2007;24 (3):286–291.