

World Journal of Pharmaceutical Research

Volume 3, Issue 2, 3295-3314.

Review Article

ISSN 2277 - 7105

PROGNOSIS OF BIOFILM FORMATION OF *VIBRIO* BACTERIA ON SHRIMPS AND DIAGNOSIS OF VIBRIOSIS

Maivannan Thiruvarangan¹, Thirumal Kumar D¹, *Anand Prem Rajan²

¹M. Sc. Biotechnology (Integrated), Division of Medical Biotechnology, SBST, VIT University, Vellore

²Associate Professor, Division of Environmental Biotechnology, School of Bio Sciences & Technology

Research Officer - Renewable Energy in CO2 & Green Technology, VIT University, Vellore -632014

Article Received on 07 January 2014,

Revised on 30 January2014, Accepted on 27 February 2014

*Correspondence for Author

Anand Prem Rajan

Associate Professor, Division of Environmental
Biotechnology, School of Bio Sciences & Technology
Research Officer - Renewable
Energy in CO2 & Green
Technology VIT University,
Vellore

Abstract

Vibriosis, is a bacterial infection responsible for death of shrimps across the world, caused by different species and strains of the genus *Vibrio*. A large number of shrimp hatcheries involved in shrimp seed production often suffer setbacks due to luminescent bacterial disease and suffer enormous economic losses.

Keywords: Vibriosis, shrimp, Vibrio harveyi, P. monodon, luminescent bacterial disease.

INTRODUCTION

Vibriosis is ubiquitous and almost all marine shelled organisms, including shrimps, are susceptible. The disease has been reported prevalent in *P. monodon*, *P. japonicus* and *P. vannamei*, and is caused by a number of Vibrio species, *V. harveyi*, *V. vulnificus*, *V. parahaemolyticus*, *V. alginolyticus*, *V. penaeicida*. There have been

rare reports of vibriosis caused by *V. damsela*, *V. fluvialis too*. The exoskeleton of the shrimps tends to be an effective physical barrier to pathogens trying to penetrate their external surfaces. The *Vibrio* spp. are among the chitinoclastic bacteria and are capable to enter through wounds in the exoskeleton or pores. The gills are covered by a thin exoskeleton and appear susceptible to bacterial penetration. The mid-gut is not covered by an exoskeleton and thus seems to be a site for penetration of pathogens.

The initial step in the infection involves the adsorption of *Vibrio* to the Chitin or the cells. The Biofilm formation of this *Vibrio* is not studied so far. In this paper we have tried to study the mechanism of Biofilm formation i.e. adsorption of bacteria on the Shrimp and find out the possible mechanism to avoid the infection. Moreover this paper highlights the pathology, clinical signs, transmission and diagnostic methods to study Vibrosis.

Biofilms as already described, are well structured microbial communities with embedded within a mainly polysaccharide extracellular matrix. Biofilms can be defined as communities of microorganisms attached to a surface. The vast majority of biofilms cells are irreversibly attached to a substrate and its sessile cell components. These microorganisms in biofilms display phenotypes that are markedly different from that of planktonic or free floating cells⁷⁹⁻⁸¹. Both gram-positive and gram-negative microorganisms have been isolated from the indwelling medical devices. Some of the commonly found species of gram-negative and

gram-positive faecalis, are Enterococcus Staphylococcus Staphylococcus aureus. epidermis, Streptococcus viridance and Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa respectively.

It is not only difficult but also impossible to treat microorganism forming biofilms with antimicrobial agents in the body as detachment

Courtesy: KAU Agri-Infotech portal

from the device may result in infection. Despite the broad knowledge about functional characteristics of adhesins promoting foreign-body colonization only little is known about the relative importance of the distinct molecules in different clinical settings.

Shrimps- Indian Market

India's seafood exports, including frozen shrimps, stood at \$3.5 billion in the 2012-13 fiscal. About a fifth of the exports were to the U.S. The Vannamei variety of shrimps played a major role in boosting India's marine products export during the 2012-13 fiscal. The export of this shrimp variety, cultivated in the East Coast, fetched \$730 million against \$385 million last year. India exported 91,000 tons of Vannamei shrimps in last fiscal against 40,787 tons the previous year, the Marine Products Export Development Authority sources said adding that the total shrimp exports comprising tiger, scampi and Vannamei during the period was 2.2

lakh tons (1.8 lakh tons). Marine product exports data for 2012-13 are yet to be released by the MPEDA. Last year, the country had garnered export revenue of Rs 19,000 crore (\$3.5 billion). This year, MPEDA is expecting a five per cent increase in quantity and 12 per cent in value terms. Official sources at the Seafood Exporters Association of India said that Vanammei exports registered a considerable increase in the last three years, thanks to production by aqua farms in Andhra Pradesh. Exports were 12,407 tons in 2010-11 and 40,787 tons in 2011-12. Farmers in the East Coast region earned Rs 300 a kg in the last fiscal. The productivity of this variety is about 10 tons a hectare in the region. There has been a considerable increase in acreage under Vannamei farming and the total area under cultivation was 22,715 hectares. SEAI officials expressed the hope that shrimp exports from the East Coast will do better in the current year also on account of a good yield in aquaculture farms in Andhra Pradesh. This coupled with the detection of Early Mortality Syndrome for shrimps in Thailand, Vietnam, Malaysia and China will benefit India considerably.

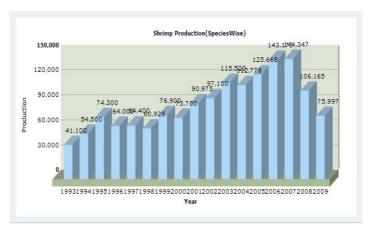


Fig. 2 Shrimp Production (Yearly) in India

Courtesy: Central Institute of Brackishwater Aquaculture (CIBA)

Present status of vibriosis

Vibriosis is a common problem world-wide, particularly in India. *V. harveyi* continues to cause chronic mortalities of up to 30% among *P. monodon* larvae, postlarvae and adult under stressful conditions. Highly pathogenic strains of Vibrio sp. are also emerging and continue to cause mortalities among cultured shrimp ⁽²⁸⁾. Problems caused by secondary vibriosis are common, but are considered minor compared to viral epidemics.

Pathogen Information

Vibriosis is caused by gram-negative bacteria in the family Vibrionaceae. Vibrio species are part of the natural marine flora and become opportunistic pathogens when the defence

mechanisms are suppressed. Some strains of certain Vibrio species have been identified as primary pathogens. Pathogenic strains of V. harveyi, V. vulnificus and V. parahaemolyticus have caused massive epidemics in Thailand, the Philippines, India and Japan. V. anguillarum, V. campbelli, V. nereis and V. splendidus have also been associated with disease outbreaks in shrimps.

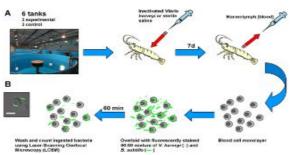


Fig. 3: Phagocytosis Experimental Design Courtesy: Enhanced Cellular Immunity in Shrimp (*Litopenaeus vannamei*) after vaccination, Edward C. Pope, et al.

Vibrio harveyi, a gram-negative, luminous bacterium, is one of the important etiologic agents of release exotoxins and causes 80% mortality in *P. monodon* larval rearing systems. Among the *Vibrio harveyi* isolates, few are virulent, suggesting a great deal of molecular and genetic variation in this group of bacteria.

Clinical signs

High mortalities usually occur in young juvenile shrimps, and have been reported in market sized *P. monodon* ⁽⁴⁾. Mortalities due to vibriosis occur in shrimps when they are affected by factors like, poor water quality, crowding, high water temperature, low DO and low water exchange ^(29; 30; 7). *P. monodon* larvae showed mortalities within 48 hr of immersion with *V. harveyi* and *V. splendidus* ⁽²⁴⁾. Adult infected shrimps may appear hypoxic, with red to brown gills, reduce feeding and may be observed swimming lethargically at the edges and surface of ponds ^(4; 40). Vibrio spp. also cause red-leg disease, characterized by red coloration of the pleopods, periopods and gills, in juvenile and adult shrimps. Also, mortality rate increase up to 95% during the warm temperatures of the water ⁽⁹⁾. *V. cholerae* has been reported to cause eyeball necrosis disease ⁽⁹⁾.

Fig. 4 Red-Leg Disease, Necrosis in gills & eyes of shrimps

Courtesy: www.inaturalist.org

The luminescence caused by *V. harveyi* and *V. splendidus* in infected postlarvae, juveniles and adults is readily visible at night ^(47; 31). Infected postlarvae may also exhibit reduced motility, lowered phototaxis and empty guts ⁽⁹⁾.

Pathology

The symptoms of vibriosis include oral and enteric vibriosis, shell disease, appendage and cuticular vibriosis, localized vibriosis of wounds, systemic vibriosis and septic hepatopancreatitis.

Vibriosis infected shrimps may display localized lesions on the cuticle and gills, loss of limbs, cloudy muscles, localized infections in the gut, hepatopancreatic infections and septicemia ^(49; 32). Infected post-larvae show misty hepatopancreatitis and gills appear brown ^(51; 4). Septic hepatopancreatitis is characterized by multifocal necrosis and haemocytic inflammation.

Vibrio sp. cause high mortality in shrimps by eliminating the epithelium and the peritrophic membrane, the two layers that protect the shrimp from infections. Also, loss of the epithelium may affect the regulation of water and ion uptake into the body ^(38; 41).

Transmission

Vibrio species exist in the water used in shrimp culture facilities ⁽²⁴⁾ and the biofilm, which is formed on different water contact structures of hatcheries and farms. Bacteria enter shrimps via wounds or cracks in the cuticle and are ingested with food ^(45; 24). The primary source of *V. harveyi* in hatcheries appears to be the midgut contents of female brood-stock, which are shed during spawning ⁽²⁵⁾.

Viability

Many studies have been conducted regarding the effect of freezing on vibrio which might contaminate harvested shellfish. *V. vulnificus* in harvested oysters (*Crassostrea virginica*) survived storage at -20 °C for 70 days ⁽⁴⁴⁾. *V. parahaemolyticus*, isolated from homogenates of the oyster was found to be in inactivated state within 16 days at -15 °C when the bacterial load was high ^(10; 37). There is recent evidence to suggest that *V. harveyi* can survive in sediments present in the ponds even after chlorination or treatment with lime ⁽²³⁾.

Histopathology

Systemic vibriosis typically results in the formation of septic nodules in the lymphoid organ, heart and connective tissues of the gills, hepatopancreas, antennal gland, nerve cord, tendon and muscle ^(4; 36; 21). Infected hepatopancreatic cells may have very low number of vacuoles, indicating low lipid and glycogen concentrations ⁽⁴⁾. Vibriosis in *P. monodon* is related with the formation of spheroids in the lymphoid organ ⁽⁴⁰⁾.

Diagnosis

Diagnosis of vibrio infection is based on clinical signs and the identification of rod-shaped Vibrio bacteria in lesions or nodules. Excised organs and nodules may be streaked on TCBS or general marine agar plates. When investigating post-larvae, the whole animal may be crushed and then streaked. Luminescent colonies may be observed after 12 to 18 hr if incubated at 25 to 30°C. Vibrio isolates may be identified by: Gram staining, motility test, an oxidase test, mode of glucose utilisation, growth in the presence of NaCl, nitrate reduction and luminescence. Antimicrobial sensitivity tests may be used to identify vibriosis and can be run using the Minimum Inhibitory Concentration (MIC) method ⁽³³⁾ or the Kirby-Bauer disk method (1986).

		Growth in broth:		Tests				
		With no NaCl added	1% NaCl	Oxidase	Nitrate Nitrite	Arginine dihydrolase	Lysine decarboxylase	Ornithine decarboxylase
(Group & Species							
1	V. cholerae	+	+	+	+	-	+	+
	V. mimicus	+	+	+	+	-	+	+
2	V. metschnikovii	21	+	12	2	V	V	12
3	V. cincinn- atiensis	<u>.</u>	+	+	+	9	V	1=
4	V. hollisae	=	+	+	+	=	19	(- 1
5	V. damsela		+	+	+	+	V	1.5
	V. fluvialis	91	+	+	+	+	12	12
	V. furnissi		+	+	+	+	19	(4)
6	V. alginolyticus		+	+	+	=	+	V
	V. para- haemolyticus	5.1	+	+	+	5	+	+
	V. vulnificus	-	+	+	+	2	+	V
	V. carchariae	2	+	+	+	22	+	120

Table 1. Adapted from Koneman's Color Atlas and Textbook of Diagnostic Microbiology, 6th Ed.

Mechanism of biofilm formation

A biofilm consists of bacterial cells immobilized in a substratum which is frequently embedded in an organic polymer matrix of microbial origin. Biofilms appear in many different forms, including layer, clump ridges, and even more complex micro colonies that are arranged into stakes or mushroom like formation^{55,56}. Understanding the mechanism of biofilm formation has been fundamental importance in design of new biomaterials able to prevent biofilm growth on their surface^{54-57,59,60}.

The basic formation of biofilm can be described as a three stage process:

a. Initial microbial adhesion

The process starts with the attachment of bacteria to the substratum. Bacterial growth and division then lead to the colonization of the surrounding area and formation of biofilm⁸⁹⁻⁹⁰. The force to which bacteria are subjected to any separation distance is the sum of the Van der Waals forces, electrostatic forces, acid-base interactions and Brownian motion forces. In particular Van der Waals forces are generally attractive and result from induced dipole interaction between molecules in the colloidal particle and molecules in the surface^{56,57}. A common approach to interpret initial microbial adhesion to non-conducting surface such as polymers and glass is understood by Derjaguin, Landau, Verway and Ocebeek (DLVO) theory. The cells attach to the surface by various mechanisms as given in Table 2. This step is a reversible phenomenon.

b. Irreversible microbial attachment and biofilm maturation

The former organisms, primary colonizers shift from reversible to irreversible attachment by the involvement of specific and selective binding between bacterial adhesions and substratum receptor. Once colonization has begun, the biofilm grows through a combination of cell division and recruitment⁶⁵⁻⁶⁷. It is the phase in which biofilm matures and there may be a change in its size and shape, depending on the organism and type of antimicrobial and experimental system, biofilm bacteria can be up to a thousand times more resistant to antimicrobial stress than free-swimming bacteria of the same species.

The generation of complex architecture characterizing mature biofilm has been shown to be under genetic control. Quorum sensing (QS), which is a cell density dependent bacterial intracellular signaling mechanism, enables bacteria to coordinate the expression of certain genes^{57, 58}. The role of QS system in related strains is studied by interrupting cell to cell communication by the use of quorum sensing inhibitors such as furanose compounds ⁵⁹⁻⁶¹. These studies reveal interesting strategies to inhibit biofilm formation. DNA microarray results (Whitley et al, 2001) showed that over 70 unexpressed immature biofilms were genes encoding protein involved in translation, metabolism membrane transport and gene regulation^{56-59, 70}.

c. Cell aggregate detachment from mature biofilms

Cell aggregate detachment has recently been considered as a biofilm development process

detachment is supposed to have some benefits for biofilm development ⁽⁵⁷⁾. Dispersal of cells from the biofilm colony is also an essential stage of the biofilm life cycle. Dispersal of cells enables biofilms to spread and to colonize new surfaces ^(70,71).

Several enzymes such as dispersin B and deoxyribonuclease are found to play a major role in biofilm dispersal process. Biofilm matrix degrading enzymes are very important as they can be used as anti-biofilm agents. Recent studies have shown that cis-2-decenoic acid (a fatty acid messenger), is capable of inducing dispersion and inhibiting growth of biofilm colonies. This compound is secreted by *Pseudomonas aeruginosa* and induces cyclo heteromorphic cells in several species of bacteria and the yeast *Candida albicans*. Nitric oxide has also been shown to trigger the dispersal of biofilms of several bacteria species at sub-toxic concentrations. Nitric oxide has the potential for the treatment of patients that suffer from chronic infections caused by biofilms (72, 73).

Treatment

Vibriosis is controlled by rigorous water management and sanitation to prevent the entry of vibrio in the culture water ⁽⁵⁾ and to reduce stress on the shrimps ⁽³²⁾. Good site selection, pond design and pond preparation are also important ⁽⁴⁰⁾. An increase in daily water exchanges and a reduction in pond biomass by partial harvesting are recommended to reduce mortalities caused by vibriosis. Draining, drying and administering lime to ponds following harvest is also recommended ⁽⁴⁾.

Luminescent vibriosis may be controlled in the hatchery by washing eggs with iodine and formaldehyde. *V. harveyi* in the water column can be inactivated by chlorine dioxide. Probiotics (BioRemid-Aqua) are administered directly into the water or via feeds. Immunostimulants have had success in reducing shrimp mortalities associated with vibriosis.

Nakayama. T. et al (2007) investigated the effect of copper concentration on the expression of both luminescence and toxin of V. harvey. They found, V. harveyi cultured with 40 ppm copper concentration showed decreased luminescence, while, copper concentration of less than 40 ppm had no effect on the growth of shrimps. Therefore, the combination of prebiotics, probiotics, immuno-stimulants and non-antibiotic substances has superior specificity against vibriosis and luminescent bacteria coupled with Best Aquaculture Practices (BAP), which makes it an effective management tool for the control of luminescence bacterial toxicity in aquaculture.

CONCLUSIONS

From this review, it should be evident that some V. harveyi and V. penaeicida strains isolated from moribund shrimp may be true pathogens and be the primary cause of disease. Results of immersion challenges with these isolates indicate that the Vibrio densities used for the calculation of the lethal dose 50 may be naturally encountered in the shrimp rearing water. This hypothesis is reinforced by the finding of Sung et al., 1999, who observed in seawater from P. monodon cultured pond a decrease in the diversity of the Vibrio community associated with a dominance of few potentially virulent Vibrio species prior to outbreaks of vibriosis. Similar results were obtained by Lavilla-Pitogo et al., 1998, monitoring the bacterial population in the rearing water of several ponds cultured *P. monodon*. A dominance of luminescent Vibrio in rearing water of infected ponds was observed prior to outbreaks due to luminescent Vibrio. The virulence studies using the IM way of infection are more difficult to analyze in terms of epidemiological significance. There is a need for reproducible and standardized experimental models in order to evaluate the virulence of Vibrio isolates associated with mortalities, to test prophylactic and curative treatments and study the hostfactors influencing the expression of bacterial virulence. As pointed out in this review, standardization of each step of pathogenicity tests is crucial because many environmental parameters, bacteria and shrimp factors may influence the results of a pathogenicity experiment.

ACKNOWLEDGMENTS

This study is supported financially by Science & Engineering Research Board (SERB), Department of Science and Technology, New Delhi India, by funding the Project "Differential membrane lipid profile and fluidity of *Acidithiobacillus ferrooxidans* during the process of adhesion to minerals" (D.O No. SR/S3/ME/0025/2010). This funded project has enabled the corresponding author to study the mystery of Biofilm formed in various environmental conditions.

REFERENCES

- 1. Cook, DW., Lofton, SR. 1973. Chitinoclastic bacteria associated with shell disease in Penaeus shrimp and the blue crab. J Wild Dis 9:154-159.
- 2. Adams, A. 1991. Response of penaeid shrimp to exposure to Vibrio species. Fish Shellfish Immunol 1:59-70.

- 3. Alday-Sanz. V., Roque, A., Turnbull, JF. 2002. Clearing mechanisms of Vibrio vulnificus biotype I in the black tiger shrimp Penaeus monodon. Dis Aquat Org 48:91-99.
- 4. Anderson, I.G., Shamsudin, M.N. and Shariff, M. 1988. Bacterial septicemia in juvenile tiger shrimp, Penaeus monodon, cultured in Malaysian brackishwater ponds. Asian Fis.Sci. 2: 93-108.
- Baticados, M.C.L., Lavilla-Pitogo, C.R., Cruz-Lacierda, E.R., de la Pena, L.D. and Sunaz, N.A. 1990. Studies on the chemical control of luminous bacteria Vibrio harveyi and V splendidus isolated from diseased Penaeus monodon larvae and rearing water. Dis. Aquat. Org. 9: 133-139.
- 6. Bauer, RT. 1998 Gill-cleaning mechanisms of the crayfish Procambarus clarkii (Astacidea: Cambaridae): experimental testing of setobranch function. Invertebr Biol 117: 129-143.
- 7. Brock, J.A. and Lightner, D.V. 1990. Chapter 3: Diseases of Crustacea. In: O. Kinne (ed.) Diseases of Marine Animals Vol. 3, Biologische Anstalt Helgoland, Hamburg. pp. 245-424.
- 8. Chen, D. 1992. An overview of the disease situation, diagnostic techniques, treatments and preventatives used on shrimp farms in China. In: W. Fuls and K.L.Main (eds.) Diseases of Cultured Penaeid Shrimp in Asia and the Unites States. The Oceanic Institute, Hawaii. pp. 47-55.
- 9. Chen, FR., Liu, PC., Lee, KK. 2000. Lethal attribute of serine protease secreted by Vibrio alginolyticus strains in Kurama Prawn Penaeus japonicus. Zool Naturforsch 55:94-99.
- 10. Cook, DW., Lofton, SR. 1973. Chitinoclastic bacteria associated with shell disease in Penaeus shrimp and the blue crab. J Wild Dis 9:154-159.
- 11. de la Peña, L.D., Kakai, T., Muroga, K. 1995. Dynamics of Vibrio sp PJ in organs of orally infected kuruma shrimp, Penaeus japonicus. Fish. Pathol. 30: 39-45.
- 12. Esteve, M. and Quijada, R. 1993. Evaluation of three experimental infection techniques with Vibrio anguillarum in Penaeus brasiliensis in Carillo et al., (ed.).,"From discovery to commercialization" ""93 World Aquaculture, European Aquaculture Society Special publication #19 Torremolinos, Spain p 129.
- 13. Gary G. Martin, Nicole Rubin, Erica Swanson 2004. Vibrio parahaemolyticus and V. harveyi cause detachment of the epithelium from the midgut trunk of the penaeid shrimp Sicyonia ingenti. Diseases of Aquatic Organisms. Vol. 60: 21-29.
- 14. Harris, L. 1995. The involvement of toxins in the virulence of Vibrio harveyi strains pathogenic to the black tiger shrimp Penaeus monodon and the use of commercial

- probiotics to reduce shrimp hatchery disease outbreaks caused by V. harveyi strains. CRC for Aquaculture, Scientific Conference abstract, Bribie Island, Australia.
- 15. Itami, T., Takahashi, Y. and Nakamura, Y. 1989. Efficiency of vaccination against vibriosis in cultured kuruma shrimps Penaeus japonicus. J. Aquatic Anim. Health 1: 238-242.
- 16. Ishimaru, K., Akarawa-Matsushita, M., Muroga, K. 1995. Vibrio penaeicida sp., nov., a pathogen of kuruma shrimps (Penaeus japonicus). Int. J. Syst. Bacteriol. 43: 8-19.
- 17. Itami, T. 1996. Vaccination and immunostimulation in shrimps. SICCPPS book of abstracts, SEAFDEC, Iloilo City, Philippines. p. 50.
- 18. Jawahar Abraham. T and R. Palaniappan (2004). Distribution of luminous bacteria in semi-intensive penaeid shrimp hatcheries of Tamil Nadu, India. Aquaculture, Vol. 232, Issues 1-4, Pages 81-90.
- 19. Jayabalan, N., Chandran, R., Sivakumar, V., Ramamoorthi, K. 1982. Occurrence of luminescent bacteria in sediment. Curr Sci 51:710-711.
- 20. Jayasree, L., Janakiram, P and Madhavi, R. 2006. Characterization of Vibrio spp. Associated with Diseased Shrimp from Culture Ponds of Andhra Pradesh (India). Journal of the World Aquaculture Society, Volume 37 Issue 4 Page 523.
- 21. Jiravanichpaisal, P and Miyazaki, T. 1994. Histopathology, biochemistry and pathogenicity of Vibrio harveyi infecting black tiger shrimp Penaeus monodon. J. Aquat. An. Health 6: 27-35.
- 22. Jiravanichpaisal and Chuaychuwong et al.1997. The use of Lactobacillus p. as treatment of vibriosis in Penaeus monodon (giant tiger shrimp). J. Aq., 151
- 23. Karunasagar, I., Otta, S.K. and Karunasagar, I. 1996. Effect of chlorination on shrimp pathogenic Vibrio harveyi. World Aquaculture ""96, book of abstracts. The World Aquaculture Society, Baton Rouge, LA. p. 193.
- 24. Lavilla-Pitogo, C.R., Baticados, C.L., Cruz-Lacierda, E.R. and de la Pena, L. 1990. Occurrence of luminous bacteria disease of Penaeus monodon larvae in the Philippines. Aquaculture 91: 1-13.
- 25. Lavilla-Pitogo, C.R., Albright, L.J., Paner, M.G. and Sunaz, N.A. 1992. Studies on the sources of luminescent Vibrio harveyi in Penaeus monodon hatcheries. In: M. Shariff,R.P. Subasinghe and J.R. Authur (eds.) Diseases in Asian Aquaculture 1. Fish Health Section, Asian Fisheries Society, Manila, Philippines. pp. 157-164.
- 26. Lavilla-Pitogo, C.R., Leano, E.M. and Paner, M.G. 1996. Mortalities of pond-cultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent bacteria,

- Vibrio harveyi in the rearing environment. SICCPPS book of abstracts, SEAFDEC, Iloilo City, Philippines. p. 40.
- 27. Lavilla-Pitogo, CR., Leano, EM., Paner, MG. 1998. Mortalities of pond-cultured juvenile shrimp Penaeus monodon associated with dominance of luminescent vibrios in the rearing environment. Aquaculture 164:337-349.
- 28. Le Groumellec, M., Goarant, C., Haffner, P., Berthe, F., Costa, R. and Mermoud, I. 1996. Syndrome 93 in New Caledonia: Investigation of the bacterial hypothesis by experimental infections, with reference to stress-induced mortality. SICCPPS book of abstracts, SEAFDEC, Iloilo City, Philippines. p. 46.
- 29. Lewis, D.H. 1973. Response of brown shrimp to infection with Vibrio sp. Proc. Wld. Maricult. Soc. 4: 333-338.
- 30. Lightner, D.V. and Lewis, D.H. 1975. A septicemic bacterial disease syndrome of penaeid shrimp. Mar. Fish. Rev. 37(5-6): 25-28.
- 31. Lightner, D.V., Bell, T.A., Redman, R.M., Mohney, L.L., Natividad, J.M., Rukyani, A. and Poernomo, A. 1992. A review of some major diseases of economic significance in penaeid shrimps/shrimps of the Americas and Indo-Pacific. In: M. Shariff, R. Subasinghe and J.R. Arthur (eds.) Proceedings 1st Symposium on Diseases in Asian Aquaculture. Fish Health Section, Asian Fisheries Society, Manila, Philippines. pp. 57-80.
- 32. Lightner, D.V. 1993. Diseases of cultured penaeid shrimp. In: J.P. McVey (ed.) CRC Handbook of Mariculture, Second edition, Volume 1, Crustacean Aquaculture. CRC Press Inc., Boca Raton, FL. p. 393-486.
- 33. Lightner, D.V. 1996. A Handbook of Shrimp Pathology and Diagnostic Procedures for Diseases of Cultured Penaeid Shrimp. World Aquaculture Society, Baton Rouge, LA, USA.
- 34. Liu, P.C., Lee, K.K. and Chen, S.N. 1996. Pathogenicity of different isolates of Vibrio harveyi in tiger shrimp, Penaeus monodon. Letters in Applied Microbiology 22: 413-416.
- 35. Lovett, DL., Felder, DL. 1990. Ontogenetic changes in enzyme distribution and midgut function in developmental stages of Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biol Bull (Woods Hole) 178:164-174.
- 36. Mohney, L.L. and Lightner, D.V. 1990. Bioencapsulation of therapeutic quantities of the antibacterial Pomet 30 in the nematode Panagrellas redivivus and in nauplii of Artemia salina. J. World. Aquacult. Soc. 21(3): 186-191.

- 37. Muntada-Garriga, J.M., Rodriguez-Jerez, J.J., Lopez-Sabater, E.I. and Mora-Ventura, M.T. 1995. Effect of chill and freezing temperatures on survival of V. parahaemolyticus inoculated in homogenates of oyster meat. Letters in Applied Microbiology 20: 225-227.
- 38. Mykles DL (1977) The ultrastructure of the posterior midgut caecum of Pachygrapsus crassipies (Decapoda, Brachyura) adapted to low salinity. Tissue Cell 9:681-691
- 39. Nakayama T, N. Nomura, M. Matsumura. 2007. The effect of copper concentration on the virulence of pathogenic Vibrio harveyi, Journal of Applied Microbiology 102 (5), 1300-1306.
- 40. Nash, G. Nithimathachoke, C., Tungmandi, C., Arkarjamorn, A., Prathanpipat, P. and Ruamthaveesub, P. 1992. Vibriosis and its control in pond-reared Penaeus monodon in Thailand. In: M. Shariff, R.P. Subasinghe and J.R. Authur (eds.) Diseases in Asian Aquaculture 1. Fish Health Section, Asian Fisheries Society, Manila, Philippines. pp. 143-155.
- 41. Neufeld DS, Cameron JN (1994) Mechanism of the net uptake of water in moulting blue crags (Callinectes sapidus) acclimated to high and low salinities. J Exp Biol 188:11-23
- 42. Owens, L. and Hall-Mendelin, 1989. Recent Advances in Australian shrimps (sic) diseases and pathology. Advances in Tropical Aquaculture, Tahiti, AQUACOP, IFREMER, Actes de Colloque 9: 103-112.
- 43. Owens, L., Muir, P., Sutton, D. and Wingfield, M. 1992. The pathology of microbial diseases in tropical Australian Crustacea. In: M. Shariff, R.P. Subasinghe and J.R. Authur (eds.) Diseases in Asian Aquaculture 1. Fish Health Section, Asian Fisheries Society, Manila, Philippines. pp. 165-172.
- 44. Parker, R.W., Maurer, E.M., Childers, A.B. and Lewis, D.H. 1994. Effect of frozen storage and vacuum packing on survival of V. vulnificus in Gulf Coast Oysters (C.virginica). J. Food Protection 57(7): 604-606.
- 45. Paynter, J.L. 1989. Invertebrates in Aquaculture. Refresher Course for Veterinarians, Proceedings 117. The University of Queensland.
- 46. Pizzutto, M and Hirst, R.G. 1995. Classification of isolates of Vibrio harveyi virulent to Penaeus monodon larvae by protein profile analysis and M13 DNA fingerprinting. Dis. Aquat. Org. 21: 61-68.
- 47. Ruby, E.G., Greenberg, E.P. and Hastings, J.W. 1980. Planktonic marine luminous bacteria: species distribution in the water column. Applied and Environmental Microbiology 39: 302-306.

- 48. Sahul Hameed, A.S., Rao, P.V., Farmer, J.J., Hickman-Brenner, W. and Fanning, G.R. 1996. Characteristics and pathogenicity of a Vibrio cambelli-like bacterium affecting hatchery-reared Penaeus indicus (Milne Edwards, 1837) larvae. Aquacult. Res. 27, 853-863.
- 49. Sindermann, C.J. 1990. Principal Diseases of Marine Fish and Shellfish, Vol. 2, 2nd edition. Academic Press, New York.
- 50. Sizemore RK, Davis JW (1985) Source of Vibrio spp. found in the hemolymph of the blue crab Callinectes sapidus. J Invertebr Pathol 46:109-110.
- 51. Takahashi, Y. Shimoyama, Y and Monoyama, K. 1985. Pathogenicity and characteristics of Vibrio sp. isolated from diseased postlarvae of kuruma shrimp, Penaeus japonicus Bate. Bull. Jpn. Soc. Sci. Fish. 51: 721-730.
- 52. Tatsuya Nakayama Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan, Nakao Nomura and Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan Masatoshi Matsumura, 2005. Analysis of the relationship between luminescence and toxicity of Vibrio carchariae pathogenic to shrimp. Fisheries Science, Volume 71 Issue 6 Page 1236.
- 53. Taylor HH, Taylor EW (1992) Gills and lungs: the exchange of gases and ions. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates 10. Wiley-Liss, New York, p 203-293.
- 54. Kristi L. Frank, Robin Patel (2008). Intravenously administered pharmaceuticals impact biofilm formation and detachment of Staphylococcus lugdunensis and other staphylococci, Diagnostic Microbiology and Infectious Disease, 60(1): 9-16.
- 55. Paolo Landini (2009). Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli, Research in Microbiology, 160(4):259-266.
- 56. Daniele P. Castro, Sergio H. Seabra, Eloi S. Garcia, Wanderley de Souza, Patrícia Azambuja (2007). Trypanosoma cruzi: Ultrastructural studies of adhesion, lysis and biofilm formation by Serratia marcescens, Experimental Parasitology,117(2):201-207.
- 57. Viktoria Hancock, Ingun Lund Witsø, Per Klemm (2011). Biofilm formation as a function of adhesin, growth medium, substratum and strain type, International Journal of Medical Microbiology, 301(7):570-576.

- 58. Spyridon P. Galanakos, Stamatios A. Papadakis, Konstantinos Kateros, Ioannis Papakostas, George Macheras, (2009).Biofilm and orthopaedic practice: the world of microbes in a world of implants, Orthopaedics and Trauma, 23(3):175-179.
- 59. Ming-Yang Chen, Ming-Jen Chen, Pei-Fang Lee, Li-Hsin Cheng, Li-Jen Huang, Chin-Hsing Lai, Kuei-Hsiang Huang, (2010). Towards real-time observation of conditioning film and early biofilm formation under laminar flow conditions using a quartz crystal microbalance, Biochemical Engineering Journal,53(1):121-130.
- 60. Holger Rohde, Stephanie Frankenberger, Ulrich Zähringer, Dietrich Mack (2010). Structure, function and cntribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections, European Journal of Cell Biology, 89(1):103-111.
- 61. Kai Zhang, Meizhen Ou, Weilu Wang, Junqi Ling, Effects of quorum sensing on cell viability in Streptococcus mutans biofilm formation, Biochemical and Biophysical Research Communications, 379(4):933-938.
- 62. A. Rochex, J.-M. Lebeault, (2007). Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine, Water Research, 41(13):2885-2892.
- 63. Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003). Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. Journal of Bacteriology 185 (16): 4693–8.
- 64. Izano EA, Amarante MA, Kher WB, Kaplan JB (2008). Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Applied and Environmental Microbiology 74 (2): 470–6.
- 65. Allison C, Lai H-C, Hughes C (1992) Co-ordinate expression of virulence genes during swarm-cell differentiation and population migration of Proteus mirabilis. Mol Microbiol 6: 1583±1591
- 66. D. Estivill, A. Arias, A. Torres-Lana, A.J. Carrillo-Muñoz, M.P. Arévalo, (2011). Biofilm formation by five species of Candida on three clinical materials, Journal of Microbiological Methods, 86(2):238-242.
- 67. Peter Tenke, Claus R Riedl, Gwennan Ll Jones, Gareth J Williams, David Stickler, Elisabeth Nagy,(2004). Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy, International Journal of Antimicrobial Agents, 23:67-74.

- 68. Ali Chokr, Denis Watier, Heïdy Eleaume, Béatrice Pangon, Jean-Claude Ghnassia, Dietrich Mack, Saïd Jabbouri, (2006). Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci, International Journal of Medical Microbiology, 296(6):381-388.
- 69. McLean RJC, Downey JA, Lablans AL, Clark JM, Dumanski AJ, Nickel JC (1992) Modelling biofilm-associated urinary tract infections. Int Biodeterior Biodegrad 30: 201-216
- 70. Nickel JC, McLean RJC (1997). Urologic perspectives on bacterial biofilms. Infect Urol November/December: 169-175.
- 71. O'Toole GA, Kolter (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis.). R.Mol Microbiol, 28(3):449-61.
- 72. M.L. Kalmokoff, J.W. Austin, X.-D. Wan, G. Sanders, S. Banerjee, J.M. Farber (2008). Adsorption, attachment and biofilm formation among isolates of Listeria monocytogenes using model conditions. DOI: 10.1046/j.1365-2672.2001.01419.x
- 73. Matsukawa M et al. (2005). Bacterial colonization on intraluminal surface of urethral catheter. Urology 65:440–444.
- 74. Holger Rohde, Christoph Burdelski, Katrin Bartscht, Christine Heilmann, et al. (2005). Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Molecular Microbiology 55(6):1883–1895.
- 75. Leslie A. Pratt, Roberto Kolter (1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology 30(2):285–293.
- 76. Paula Watnick and Roberto Kolter (2000), Biofilm, City of Microbes. doi: 10.1128/ JB.182.10.2675-2679.
- 77. Rogers, J., D. I. Norkett, P. Bracegirdle, A. B. Dowsett, J. T. Walker, T. Brooks, and C. W. Keevil (1996). Examination of biofilm formation and risk of infection associated with the use of urinary catheters with leg bags. J. Hosp. Infect. 32:105–115.
- 78. Bibby JM et al. (1995). Easibility of preventing encrustation of urinary catheters. Cells Mater 2: 183–195.
- 79. Udo Lorenz, Christian Hüttinger, Tina Schäfer, Wilma Ziebuhr, Arnulf Thiede, Jörg Hacker, Susanne Engelmann, Michael Hecker, Knut Ohlsen, (2008). The alternative

- sigma factor sigma B of Staphylococcus aureus modulates virulence in experimental central venous catheter-related infections, Microbes and Infection 10(3):217-223,
- 80. Karim A. Adal, Barry M. Farr, (1996). Central venous catheter-related infections: A p, Nutrition, Volume 12(3):208-213
- 81. Pen-Yi Lin, Hsiu-Ling Chen, Chung-Tsui Huang, Lin-Hui Su, Cheng-Hsun Chiu, (2010). Biofilm production, use of intravascular indwelling catheters and inappropriate antimicrobial therapy as predictors of fatality in Chryseobacterium meningosepticum bacteraemia, International Journal of Antimicrobial Agents, Volume 36(5):436-440,
- 82. Laura Selan, Stefano Palma, Gian Luca Scoarughi, Rosanna Papa, Richard Veeh, Daniele Di Clemente, Marco Artini,(2009). Phosphorylcholine Impairs Susceptibility to Biofilm Formation of Hydrogel Contact Lenses, American Journal of Ophthalmology,147:1
- 83. John Dart, (1997). The inside story: why contact lens cases become contaminated, Contact Lens and Anterior Eye, 20(4):113-118
- 84. Noel A. Brennan, M.-L.Chantal Coles, (2000). Deposits and symptomatology with soft contact lens wear, International Contact Lens Clinic, 27(3):75-100.
- 85. Stéphanie Baillif, René Ecochard, Emmanuelle Casoli, Jean Freney, Carole Burillon, Laurent Kodjikian, (2008). Adherence and kinetics of biofilm formation of Staphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions, Journal of Cataract & Egraphylococcus epidermidis to Staphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions, Journal of Cataract & Egraphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions, Journal of Cataract & Egraphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions, Journal of Cataract & Egraphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions, Journal of Cataract & Egraphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions, Journal of Cataract & Egraphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions, Journal of Cataract & Egraphylococcus epidermidis to different types of intraocular lenses under dynamic flow conditions, Journal of Cataract & Egraphylococcus epidermidis epidermidis epidermidis epidemidis epi
- 86. Norihiko Yokoi, Kazumasa Okada, Jiro Sugita, Shigeru Kinoshita, (2000). Acute Conjunctivitis Associated with Biofilm Formation on a Punctal Plug, Japanese Journal of Ophthalmology, 44(5):559-560.
- 87. Antonio Guerrieri, Luigia Sabbatini, Pier G. Zambonin, Federico Ricci, Augusto Pocobelli, Luciano Cerulli, (1995). Effect of antidenaturant drugs on lysozyme deposit formation on soft contact lenses by liquid chromatography-electrochemical detection, Biomaterials, 16(13):1025-1030.
- 88. Yu Yan, Anne Neville, Duncan Dowson, (2007). Biotribocorrosion of CoCrMo orthopaedicimplant materials—Assessing the formation and effect of the biofilm, Tribology International, 40(10–12):1492-1499.
- 89. Carla Renata Arciola, Lucilla Baldassarri, Davide Campoccia, Roberta Creti, Valter Pirini, Johannes Huebner, Lucio Montanaro, (2008). Strong biofilm production, antibiotic multi-resistance and high gelE expression in epidemic clones of Enterococcus faecalis from orthopaedic implant infections, Biomaterials, 29(5):580-586.

- 90. Miller, M. J., L. A. Wilson, and D. J. Ahearn. 1988. Effects of protein, mucin, and human tears on adherence of Pseudomonas aeruginosa to hydrophilic contact lenses. J. Clin. Microbiol. 26:513–517.
- 91. McLaughlin-Borlace, L., F. Stapleton, M. Matheson, and J. K. G. Dart. (1998). Bacterial biofilm on contact lenses and lens storage cases in wearers with microbial keratitis. J. Appl. Microbiol. 84:827–838.
- 92. Stapleton, F., J. K. Dart, M. Matheson, and E. G. Woodward. (1993). Bacterial adherence and glycocalyx formation on unworn hydrogel lenses. J. Br. Contact Lens Assoc. 16:113–117.
- 93. Pruthi V, Al-Janabi A, Pereira BJ. Characterization of biofilm formed on intrauterine devices. (2003). Indian J Med Microbiol, 21:161-5
- 94. Bhagavan, B. S. & Gupta, P. K. (1978). Genital actinomycosis and intrauterine contraceptive devices. Cytopathologic diagnosis and clinical significance. Hum Pathol 9, 567–568.
- 95. Farley, T. M., Rosenberg, M. J., Rowe, P. J., Chen, J. H. & Meirik, O. (1992). Intrauterine devices and pelvic inflammatory disease: an international perspective. Lancet 339:85–788.
- 96. Ferraz do Lago, R., Simoes, J. A., Bahamondes, L., Camargo, R. P. S., Perrotti, M. & Monteiro, I. (2003). Follow-up of users of intrauterine device with and without bacterial vaginosis and other cervicovaginal infections. Contraception 68:105–109.
- 97. Tunney MM, Dunne N, Einarsson G, McDowell A, Kerr A, Patrick S. (2007). Biofilm formation by bacteria isolated from retrieved failed prosthetic hip implants in an in vitro model of hip arthroplasty antibiotic prophylaxis. J Orthop Res.25 (1):2-10.
- 98. Geipel U. Pathogenic organisms in hip joint infections. Int J Med Sci 2009; 6(5):234-240. Available from http://www.medsci.org/v06p0234.htm
- 99. Holger Rohde, Eike C. Burandt et al., (2007). Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials, 28(9): 1711-1720, ISSN 0142-9612, 10.1016/j.biomaterials.2006.11.046.
- 100. Gordon Ramage, Michael M. Tunney et al, (2003). Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials 24: 3221–3227
- 101. Biofilms and Device-Associated Infections. Emerg Infect Dis [serial on the Internet]. 2001 Mar-Apr [date] http://wwwnc.cdc.gov/eid/article/7/2/70-0277.htm

- 102. Gristina A, Naylor P, Myrvik Q. Infections from biomaterials and implants: a race for the surface. Med Prog Technol 1988; 14:205-24.
- 103. Awele N. Maduka-Ezeh, Kerryl E. Greenwood-Quaintance, Melissa J. Karau, Elie F. Berbari, Douglas R. Osmon, Arlen D. Hanssen, James M. Steckelberg, Robin Patel, (2012). Antimicrobial susceptibility and biofilm formation of Staphylococcus epidermidis small colony variants associated with prosthetic joint infection, Diagnostic Microbiology and Infectious Disease. 74(3):2224-229.
- 104. Pawlowski, Karen S; Wawro, Debra; Roland, Peter S (2005). Bacterial Biofilm Formation on a Human Cochlear Implant. Otology & Neurotology. 26(5): 972-975
- 105. Jennita Reefhuis, et al. (2003). Risk of Bacterial Meningitis in Children with Cochlear Implants. N Engl J Med 2003; 349:435-445.
- 106. Loeffler KA, Johnson TA (2009). Biofilm formation in an in vitro model of cochlear implants with removable magnets. Otolaryngol Head Neck Surg. 2009 Nov; 141(5):665.
- 107. Pawlowski KS, Wawro D, Roland PS, (2004). Bacterial biofilm formation on a human cochlear implant. Otol Neurotol 25(6):953-7.
- 108. Ruellan K, Frijns JH, Bloemberg GV, Hautefort C, ..., Lamers GE, Herman P, Huy PT, Kania RE. Detection of bacterial biofilm on cochlear implants removed because of device failure, without evidence of infection. Otol Neurotol. 2010 Oct; 31(8):1320-4.
- 109. Trey Allen Johnson, Patrick J. Antonelli, Robert Burne, Claude N. Jolly, Kimberly Loeffler, R059: Biofilm Formation in Cochlear Implants with Drug Delivery, Otolaryngology Head and Neck Surgery, Volume 135, Issue 2, Supplement, August 2006, P124.
- 110. Zdenek Kabelka, Daniel Groh, Rami Katra, Michal Jurovcik, Bacterial infection complications in children with cochlear implants in the Czech Republic, International Journal of Pediatric Otorhinolaryngology, 74(5):499-502.
- 111. Ryosei Minoda, Haruo Takahashi, Satoru Miyamaru, Masako Masuda, Toru Miwa, Tetsuji Sanuki, Toshinori Hirai, Eiji Yumoto, (2012). A postmeningitic cochlear implant patient who was postoperatively diagnosed as having X-linked agammaglobulinemia, Auris Nasus Larynx, 39(6):638-640.
- 112. Andrew K. Patel, Greg Barkdul, Joni K. Doherty, (2010). Cochlear implantation in chronic suppurative otitis media, Operative Techniques in Otolaryngology-Head and Neck Surgery, Volume 21(4):254-260.
- 113. Evan M. Schwechter, David Folk, Avanish K. Varshney, Bettina C. Fries, Sun Jin Kim, David M. Hirsh, (2011). Optimal Irrigation and Debridement of Infected Joint Implants:

- An in Vitro Methicillin-Resistant Staphylococcus aureus Biofilm Model, The Journal of Arthroplasty, (26)6:109-113.
- 114. Eric M. Jaryszak, Edith M. Sampson, Patrick J. Antonelli, (2009). Biofilm formation by Pseudomonas aeruginosa on ossicular reconstruction prostheses, American Journal of Otolaryngology, 30(6): 367-370.
- 115. N. Vaid, M. Manikoth, (2011). A005 Biofilms and cochlear implants the dilemma, International Journal of Pediatric Otorhinolaryngology, 75(2).
- 116. Kimberly Loeffler, Patrick J. Antonelli, Robert Burne, Claude N. Jolly, Trey Allen Johnson, R101: Biofilms in Cochlear Implants with Removable Magnets, Otolaryngology- Head and Neck Surgery, Volume 135, Issue 2, Supplement, August 2006, P139.
- 117. Carola Korenblit, Maritza Rahal, Mauricio A. Moreno, R196: Bacterial Biofilm in Middle Ear Mucosa in Children with OME, Otolaryngology Head and Neck Surgery, Volume 135, Issue 2, Supplement, August 2006, PP174.