

# WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 5.045

Volume 3, Issue 5, 369-381.

Research Article

ISSN 2277 - 7105

# METHOD DEVELOPMENT AND VALIDATION FOR SIMULTANEOUS ESTIMATION OF OFLOXACIN AND DEXAMETHASONE SODIUM PHOSPHATE BY RP-HPLC

G.N.Renukadevi\*, M.Sri lakshmi, V.Prathyusha, SK.Sharmila, K.Shantha Kumari

Department of Pharmaceutical Analysis, Nirmala College of pharmaceutical sciences, Atmakuru (village), Mangalagiri (Mandal), 522503 Andhra Pradesh, India

Article Received on 29 April 2014,

Revised on 07 June 2014, Accepted on 01 July 2014

# \*Correspondence for Author

#### G.N.Renukadevi

Department of Pharmaceutical Analysis, Nirmala College of pharmaceutical sciences, Atmakuru (village),

Mangalagiri (Mandal), 522503 Andhra Pradesh, India

•

## **ABSTRACT**

A new simple isocratic analytical method has been developed and validated for estimation of Ofloxacin and Dexamethasone sodium phosphate was carried out on Agilent CN, 250mm x 4.6mm, 5μm column in isocratic mode using mobile phase composition of Acetic acid Buffer : Acetonitrile (70 : 30% v/v) with flow rate of 1.0 ml /min at 241 nm. The linearity of the method was demonstrated over the concentration range of 6-180 μg/ml for ofloxacin and 2-60 μg/ml for Dexamethasone sodium phosphate with correlation coefficient of 0.999 & 0.999 respectively. The developed method was validated as per ICH guidelines. The amounts of both the drugs were found to be in good agreement with label claim. The developed method was validated for precision, accuracy, sensitivity, robustness and ruggedness. Hence, this

method is used for routine analysis of titled drugs in combination of tablet formulation.

**KEYWORDS:** Ofloxacin and Dexamethasone sodium phosphate, RP-HPLC, Validation.

#### INTRODUCTION

# **Dexamethasone Sodium Phosphate**

Dexamethasone is a potent synthetic member of the glucocorticoid class of steroid drugs that has anti-inflammatory and immunosuppressant effects. It is 25 times more potent than cortisol in its glucocorticoid effect, while having minimal mineralocorticoid effect. It is also given in small amounts before and/or after some forms of dental surgery, such as the extraction of the wisdom teeth, an operation which often leaves the patient with puffy,

swollen cheeks. Dexamethasone is used in transvenous screw-in cardiac pacing leads to minimize the inflammatory response of the myocardium. The steroid is released into the myocardium as soon as the screw is extended and can play a significant role in minimizing the acute pacing threshold due to the reduction of inflammatory response. Dexamethasone is often administered before antibiotics in cases of bacterial meningitis. It then acts to reduce the inflammatory response of the body to the bacteria killed by the antibiotics (bacterial death releases proinflammatory mediators that can cause a response which is harmful to the patient), thus improving prognosis <sup>[1-2]</sup>

#### **Ofloxacin**

**Ofloxacin** is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class considered to be a second-generation fluoroquinolone The original brand, **Floxin**. Ofloxacin is a quinolone/fluoroquinolone antibiotic. Ofloxacin is bactericidal and its mode of action depends on blocking of bacterial DNA replication by binding itself to an enzyme called DNA gyrase, which allows the untwisting required to replicate one DNA double helix into two. Notably the drug has 100 times higher affinity for bacterial DNA gyrase than for mammalian. Ofloxacin is a broad-spectrum antibiotic that is active against both Gram-positive and Gram-negative bacteria [3-4]

Literature review of simultaneous estimation of ofloxacin and dexamethasone reveals HPLC methods <sup>[5-9]</sup>, Individual UV methods <sup>[10]</sup>, HPTLC methods <sup>[11]</sup>. The aim of the present work is to develop and validate a new, simple, better and economical method for the simultaneous estimation of OFLOXACIN and DEXAMETHASONE in Eye Drops Formulation by RP-HPLC with improved conditions and parameters for routine use in the laboratories.

#### **Materials**

| Instrument                   | Specifications                 |
|------------------------------|--------------------------------|
| HPLC                         | Waters, 2695 separation module |
| Software                     | Empower,                       |
| Detector                     | UV-Visible detector            |
| Analytical balance           | Sartorius                      |
| UV-Visible spectrophotometer | Shimadzu (UV-2450)             |
| Sonicator                    | Biotechnics                    |
| pH meter                     | Cyberscan                      |

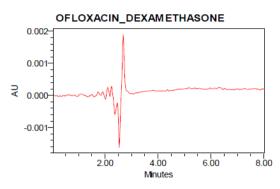
# **Chemicals and Reagents**

HPLC grade Acetonitrile, HPLC grade Water, are used as solvents. Acetic acid of analytical grade was used in the buffer preparation.

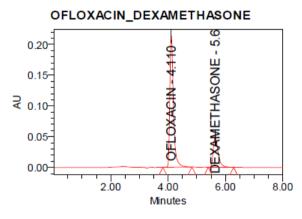
# Formulation used

Commercial Pharmaceutical preparations which were claimed to contain 0.3% of Ofloxacin and 0.1% of Dexamethasone were obtained from local market

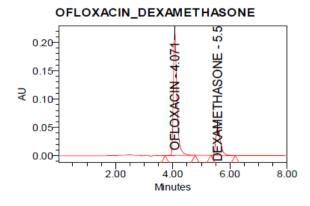
# **Liquid Chromatographic Conditions**


The developed RP-HPLC method for the simultaneous estimation of Ofloxacin and dexamethasone was carried out on Agilent CN, 250mm x 4.6mm,  $5\mu$ m column in isocratic mode using mobile phase composition of Acetic acid Buffer : Acetonitrile (70 : 30% v/v) with flow rate of 1.0 ml/min at 241 nm.

# Preparation of standard stock solution


Weigh accurately about 120 mg of Ofloxacin working standard and 40 mg of Dexamethasone working standard into a 100 ml volumetric flask and Add 70 ml of diluent, sonicated to dissolve and dilute to volume diluent. Further dilute 5 ml to 50 ml with the diluent.

# **Preparation of Sample solution**


Pipette 4ml of solution into a 100 ml volumetric flask. Add 70 ml of diluent, sonicate to dissolve and dilute to volume with diluent.



Chromatogram of Ofloxacin and dexamethasone (Blank)



**Chromatogram of Ofloxacin and dexamethasone (Standard)** 



 $Chromatogram\ of\ Of loxacin\ and\ dexame thas one\ (Sample)$ 

Calculation: Calculate the % assay of each drug by using the following formula

Table1: Assay results of ofloxacin and dexamethasone sodium phosphate

| Drug                           | Labeled amount(mg) | Amount present (mg) | % Assay |
|--------------------------------|--------------------|---------------------|---------|
| Ofloxacin                      | 0.3                | 0.298               | 99.9    |
| Dexamethasone sodium phosphate | 0.1                | 0.101               | 100.1   |

# METHOD VALIDATION

The developed analytical method was validated as per ICH guidelines with respect to parameters such as specificity, linearity, precision, accuracy, robustness, limit of detection, limit of quantification, system suitability and solution stability.

# Linearity

The linearity of the method was demonstrated over the concentration range of 6-180 µg/ml for ofloxacin and 2-60 µg/ml for Dexamethasone. Aliquots of the above solutions were prepared from stock solution and labelled as solution 1, 2, 3, 4, 5 and 6 respectively and the solutions were injected into the HPLC system as per test procedure. Calibration curve for Ofloxacin and Dexamethasone was plotted accordingly by taking concentration vs peak area. The chromatograms and results were shown below.

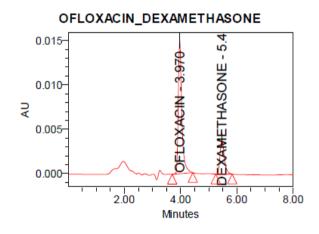
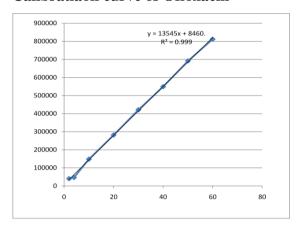
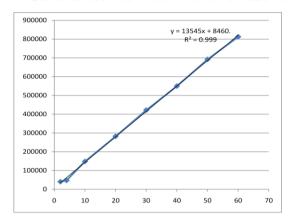




Table 2: Linearity data of ofloxacin and Dexamethasone


| S.n | Concentration of ofloxacin µg/ml | Peak    | Concentration of dexamethasone | Peak area |
|-----|----------------------------------|---------|--------------------------------|-----------|
| 0   |                                  | area    | μg/ml                          |           |
| 1   | 6                                | 129751  | 2                              | 40467     |
| 2   | 12                               | 154697  | 4                              | 47172     |
| 3   | 30                               | 487982  | 10                             | 148187    |
| 4   | 60                               | 932126  | 20                             | 282103    |
| 5   | 90                               | 1388293 | 30                             | 421694    |
| 6   | 120                              | 1834868 | 40                             | 549660    |

| 7 | 150      | 2302178 | 50      | 692022 |
|---|----------|---------|---------|--------|
| 8 | 180      | 2690055 | 60      | 812105 |
|   | R2=0.999 |         | R2=0.99 | 9      |

#### Calibratiaon curve of Ofloxacin



#### Calibratiaon curve of Dexamethasone



Calibration curve of Ofloxacin

Calibration curve of Dexamethasone

# **PRECISION**

a) System precision: System precision was carried out using six replicate injections of the standard concentration. The chromatograms were recorded and mean, standard deviation and %RSD was calculated. The results and chromatograms were shown below.

# Acceptance criteria

The % Relative standard deviation of Peak areas of Ofloxacin and dexamethasone from the six replicate injections should be not more than 2.0.

Table 3: System precision of Ofloxacin and Dexamethasone

| S.no | Concentration | Peak    | Concentrationof | Peak    |
|------|---------------|---------|-----------------|---------|
|      | of ofloxacin  | area    | dexamethasone   | area    |
|      | μg/ml         |         | μg/ml           |         |
| 1    | 3.545         | 1859262 | 5.826           | 550348  |
| 2    | 3.546         | 1851449 | 5.831           | 551025  |
| 3    | 3.546         | 1858539 | 5.839           | 550658  |
| 4    | 3.546         | 1866024 | 5.840           | 552962  |
| 5    | 3.544         | 1867938 | 5.840           | 553025  |
| 6    | 3.547         | 1846238 | 5.913           | 552710  |
| Mean | 3.547         | 1858242 | 5.848           | 551788  |
| S.D  | 0.004816      | 8317.95 | 0.0322          | 1240.26 |
| %RSD | 0.1357%       | 0.448%  | 0.550%          | 0.225   |

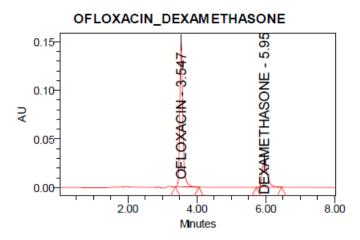
# **Method precision**

Method precision was carried out using six different sample preparations from same homogenous blend of marketed sample. The chromatograms were recorded and mean, standard deviation and %RSD was calculated. The results and chromatograms were shown below.

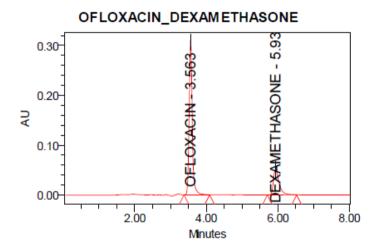
# Acceptance criteria

The % Relative standard deviation of Peak areas of Ofloxacin and dexamethasone from the six replicate injections should be not more than 2.0 %.

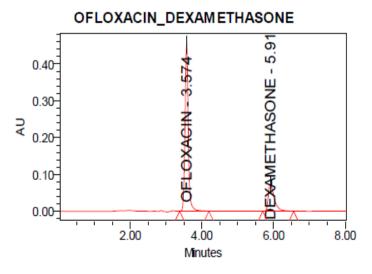
**Table 4: Method precision of Ofloxacin and Dexamethasone** 


| S.no | Concentration | Peak    | Concentrationof | Peak    |
|------|---------------|---------|-----------------|---------|
|      | of ofloxacin  | area    | dexamethasone   | area    |
|      | μg/ml         |         | μg/ml           |         |
| 1    | 3.545         | 1859262 | 5.826           | 550348  |
| 2    | 3.546         | 1851449 | 5.831           | 551025  |
| 3    | 3.546         | 1858539 | 5.839           | 550658  |
| 4    | 3.546         | 1866024 | 5.840           | 552962  |
| 5    | 3.544         | 1867938 | 5.840           | 553025  |
| 6    | 3.547         | 1846238 | 5.913           | 552710  |
| Mean | 3.547         | 1858242 | 5.848           | 551788  |
| S.D  | 0.004816      | 8317.95 | 0.0322          | 1240.26 |
| %RSD | 0.1357%       | 0.448%  | 0.550%          | 0.225   |

#### **ACCURACY**


A study of accuracy was conducted by means of recovery studies. Recovery studies were carried out at three different levels. The preanalysed sample was spiked with 50%, 100%, and 150% of mixed standard solution. The mixtures were analysed by the proposed method. The study was carried out in triplicate. The average % recoveries of both the drugs were calculated and the results and chromatograms were shown below.

# Acceptance criteria


The mean % recovery of the Ofloxacin and dexamethasone at each level should be not less than 98.0% and not more than 102.0%



**Chromatogram for Accuracy (50%spike)** 



**Chromatogram for Accuracy (100%spike)** 



**Chromatogram for Accuracy (150%spike)** 

**Table 5: Accuracy of Ofloxacin** 

| Sample<br>No. | Spike<br>Level | Amount<br>(µg / ml)<br>Added | Amount (µg / ml) Recovered | %<br>Recovery | Statis<br>anal |       |
|---------------|----------------|------------------------------|----------------------------|---------------|----------------|-------|
|               | 50 %           | 6                            | 5.99                       | 99.8          | Mean           | 100.4 |
| 1             | 50 %           | 6                            | 6.04                       | 100.7         | SD             | 0.48  |
|               | 50 %           | 6                            | 5.94                       | 100.7         | %RSD           | 0.480 |
|               | 100 %          | 12                           | 12.04                      | 10.3          | Mean           | 100.1 |
| 2             | 100%           | 12                           | 12.18                      | 100.7         | SD             | 0.73  |
|               | 100%           | 12                           | 12.11                      | 99.3          | %RSD           | 0.730 |
|               | 150 %          | 18                           | 18.41                      | 100.1         | Mean           | 99.9  |
| 3             | 150 %          | 18                           | 18.41                      | 99.5          | SD             | 0.33  |
|               | 150 %          | 18                           | 18.10                      | 100.1         | %RSD           | 0.330 |

Table 6: Accuracy of Dexamethasone

| Sample<br>No. | Spike<br>Level | Amount<br>(µg / ml)<br>Added | Amount (µg / ml) Recovered | %<br>Recovery | Statis<br>anal |       |
|---------------|----------------|------------------------------|----------------------------|---------------|----------------|-------|
|               | 50 %           | 2                            | 2.09                       | 99.5          | Mean           | 99.4  |
| 1             | 50 %           | 2                            | 2.09                       | 99.5          | SD             | 0.28  |
|               | 50 %           | 2                            | 2.08                       | 99            | %RSD           | 0.280 |
|               | 100 %          | 4                            | 4.08                       | 99.5          | Mean           | 99.9  |
| 2             | 100%           | 4                            | 4.1                        | 100           | SD             | 0.37  |
|               | 100%           | 4                            | 4.1                        | 100.2         | %RSD           | 0.370 |
|               | 150 %          | 6                            | 6.27                       | 99.5          | Mean           | 99.4  |
| 3             | 150 %          | 6                            | 6.25                       | 99.52         | SD             | 0.18  |
|               | 150 %          | 6                            | 6.27                       | 99.5          | %RSD           | 0.180 |

# **Observation**

The recovery results indicated that the test method has an acceptance level of accuracy. The results were found to be within the limits.

# **ROBUSTNESS**

For demonstrating the robustness of the developed method, experimental conditions were purposely altered and evaluated. The method must be robust enough to withstand such slight changes and allow routine analysis of the sample.

Following optimized conditions were slightly varied.

# a. Effect of variation of flow rate

A study was conducted to determine the effect of variation in flow rate. Standard solution was prepared and injected into the HPLC system by keeping flow rates ( $\pm$  0.2 ml/min) i.e.,

0.8 ml/min and 1.2 ml/min. The effect of variation of flow rate was evaluated.

Table no: 7 Effect of variation of flowrate plus

| S.no | Concentration of ofloxacin | Peak area | Concentrationof dexamethasone | Peak area |
|------|----------------------------|-----------|-------------------------------|-----------|
|      | μg/ml                      |           | μg/ml                         |           |
| 1    | 2.975                      | 1486306   | 4.965                         | 462561    |
| 2    | 2.980                      | 1478282   | 4.968                         | 463589    |
| 3    | 2.979                      | 1485742   | 4.969                         | 463114    |
| 4    | 2,979                      | 1478127   | 4.968                         | 461381    |
| 5    | 2.979                      | 1479216   | 4.969                         | 462278    |
| 6    | 2.979                      | 1484319   | 4.971                         | 464902    |
| Mean | 2.978                      | 1482007   | 4.968                         | 462971    |
| S.D  | 0.001843                   | 3868.03   | 0.002                         | 1208.35   |
| %RSD | 0.061%                     | 0.261%    | 0.0402%                       | 0.261%    |

Table no: 8 Effect of variation of flowrate minus

| S.no | Concentration | Peak area | Concentrationof | Peak area |
|------|---------------|-----------|-----------------|-----------|
|      | of ofloxacin  |           | dexamethasone   |           |
|      | μg/ml         |           | μg/ml           |           |
| 1    | 4.445         | 2243643   | 7.434           | 693918    |
| 2    | 4.446         | 2254657   | 7.434           | 692940    |
| 3    | 4.445         | 2247758   | 7.434           | 696059    |
| 4    | 4.445         | 2250483   | 7.433           | 693708    |
| 5    | 4.446         | 2246739   | 7.435           | 694692    |
| 6    | 4.446         | 2260062   | 7.437           | 698869    |
| Mean | 4.445         | 2250557   | 7.434           | 695031    |
| S.D  | 0.0007745     | 14065.98  | 0.001483        | 2154.59   |
| %RSD | 0.0174%       | 0.625%    | 0.0199%         | 0.310%    |

LOD and LOQ were calculated by the method based on the standard deviation ( $\sigma$ ) and slope of the calibration curve, using the formula

$$LOD = 3.3 \sigma / S$$

$$LOQ = 10 \sigma / S$$

Where,

 $\sigma$  = the standard deviation of the response

S =the slope of the calibration curve

The LOD and LOQ were calculated as per formula and was shown in the table 9

**Table 9: Limit of Detection and Limit of Quantification** 

| Sample        | LOD (µg/ml) | LOQ (µg/ml) |
|---------------|-------------|-------------|
| Ofloxacin     | 3.215 μg/ml | 9.74 μg/ml  |
| Dexamethasone | 0.782 μg/ml | 2.371 μg/ml |

## RESULTS AND DISCUSSION

The developed RP-HPLC method for the simultaneous estimation of Ofloxacin and dexamethasone was carried out on Agilent CN, (250mm x 4.6mm, 5 $\mu$ m) column in isocratic mode using mobile phase composition of 1ml of acetic acid in water: Acetonitrile (70: 30% v/v) with flow rate of 1.0 ml/min at 241 nm. The average retention times for Ofloxacin and dexamethasone was found to be 3-4 and 5-6min respectively. From the results % assay value of Ofloxacin and dexamethasone were found to be 99.9% and 100.1% respectively.

The Linearity of Ofloxacin and dexamethasone was carried out at different concentrations ranging from 6-180  $\mu$ g/ml and 2-60  $\mu$ g/ml. Correlation coefficient was found to be 0.999, 0.999, which indicates that the concentration had given good linearity. The %RSD values of Ofloxacin and dexamethasone for System Precision was found to be 0.448and 0.225% respectively as shown in the table. As these results are within the acceptance limit of less than 2%, indicates that the proposed method has good reproducibility. The results are good for both method precision and system precision.

From the results shown in accuracy table it was found that the mean percentage recovery values of pure drug were found to be 100.1 % for Ofloxacin and 99.6% for Dexamethasone, and as these results are within the acceptance limit of 98%-102% which indicates that the method was accurate. The robustness of the developed method was evaluated by changing the flow rate and mobile phase composition. All the parameters were within the limits at all variable conditions as shown in table which indicates that the method was robust.

Table 10: Validation Parameters of Ofloxacin and Dexamethasone by RP-HPLC

| S.no | Parameters              | Ofloxacin | Dexamethasone |
|------|-------------------------|-----------|---------------|
| 1    | Linearity (µg/ml)       | 6-180     | 2-60          |
| 2    | Correlation Coefficient | 0.999     | 0.999         |
|      | Precision(%RSD)         |           |               |
| 3    | (i)Method Precision     | 0.448%    | 0.225%        |
|      | (ii)System Precision    | 0.448%    | 0.225%        |
| 4    | LOD                     | 3.215     | 0.782         |

| 5 | LOQ                         | 9.74   | 2.371  |
|---|-----------------------------|--------|--------|
| 6 | Accuracy ( mean % recovery) | 100.1% | 99.6%  |
| 7 | Assay (%)                   | 99.9%  | 100.1% |

#### **CONCLUSION**

The proposed method was validated as per ICH guidelines. The standard deviation and % RSD calculated for the proposed method is low, indicating high degree of precision of the method. The results of the recovery studies performed show the high degree of accuracy of the proposed method. Hence, it can be concluded that the developed RP-HPLC method is accurate, precise and selective and can be employed successfully for the simultaneous estimation of Ofloxacin and Dexamethasone sodium phosphate in bulk and marketed formulations.

#### **ACKNOWLEDGEMENT**

The authors are thankful to Nirmala College of Pharmacy for providing gift samples of Ofloxacin and Dexamethasone sodium phosphate. The authors would like to thank, regular counsel and guidance of Prof. K.Shanta Kumari, Prof. S.A.Rahaman Department of Pharmaceutical analysis, Nirmala College of Pharmacy, Nagarjuna University, Mangalagiri, Guntur (Dist.), Andhra Pradesh for providing necessary facilities to carry out the Research work.

#### REFERENCES

- 1. en.wikipedia.org/wiki/Dexamethasone
- 2. www.drugbank.ca/drugs/DB01234
- 3. en.wikipedia.org/wiki/Ofloxacin
- 4. www.drugbank.ca/drugs/DB01165
- Karanam R. Sireesha \*, Katakam Prakash, Hplc-Uv Method For Simultaneous Determination Of Ofloxacin And Dexamethasone Sodium Phosphate Vol 4, Issue 1, 2012
- 6. Garcia CV, Breier AR, Steppe M, Schapoval EE, Oppe TP. Determination of dexamethasone acetate in cream by HPLC.J Pharm Biomed Anal. 2003 Mar 10;31(3):597-600.
- Huetos O, Ramos M, Martín de Pozuelo M, San Andrés M, Reuvers TB. Determination of dexamethasone in feed by TLC and HPLC. [PubMed - indexed for MEDLINE] 10746317

- 8. Kumar V, Mostafa S, Kayo MW, Goldberg EP, Derendorf H. HPLC determination of dexamethasone in human plasma and its application to an in vitro release study from endovascular stents. [PubMed indexed for MEDLINE] 17152981
- 9. Tan Ruiwei Mo Mingxiu Li Genghao Simultaneous Determination Of Ofloxacin And Dexamethasone Sodium Phosphate In Compound Ofloxacin Nasal Drops By Rp Hplc 《West China Journal Of Pharmaceutcal Sciences》 1999-01.
- 10. Rossana Barcellos Friedrich; Aline Ravanello; Luiz Carlos Cichota; Clarice Madalena Bueno Rolim; Ruy Carlos Ruver Beck Validation of a simple and rapid UV spectrophotometric method for dexamethasone assay in tablets Quím. Nova vol.32 no.4 São Paulo 2009
- 11. Jaydeepkumar K. Maradiya, Validated Hptlc Method For Simultaneous determination Of Ofloxacin And Dexamethasone Sodium Phosphate In Eye Drops Volume 2, Issue 2, 593-600.
- 12. International Conference on Harmonization, Validation of Analytical Procedures, Methodology, Federal Register, Nov. 1996.
- 13. International Conference on Harmonization, Draft Guideline on Validation of Analytical Procedures, Definitions and Terminology, Federal Register (26), 1995.