

SJIF Impact Factor 5.045

Volume 3, Issue 8, 275-326.

Review Article

ISSN 2277 - 7105

ASTHMA MANAGEMENT: A REVIEW

Dr.S.P.Chaudhari*¹ Prajakta Talele²

¹Padm.Dr.D.Y.Patil College of Pharmacy, Akurdi, Pune-44.

²Marathwada Mitra Mandal's College of Pharmacy, Kalewadi (Thergaon), Pune-33.

Article Received on 10 August 2014,

Revised on 05 Sept 2014, Accepted on 28 Sept 2014

*Correspondence for

Author

Dr.S.P.Chaudhari

Padm.Dr.D.Y.Patil College of Pharmacy,Akurdi, Pune-44...

ABSTRACT

Asthma is a chronic inflammatory disease of the airways that causes a high burden on the global health care system. Despite advances in therapy, asthma remains a disease that, in many patients, is not optimally controlled. Efforts has been made to make a document that discusses the medications for asthma management, the long-term management of asthma; the management of asthma exacerbations; the management of asthma in special populations; findings of research literatures, and Herbal therapy for asthma management. Various herbs are used as antiasthmatic with efficient therapeutic response. An

attempt has been made to review antiasthmatic drugs and medicinal plants, in the present article.

KEY WORDS: Antiasthmatic, global health care, asthma.

1.0 INTRODUCTION^[1,2]

Asthma is a chronic inflammatory disease of the airways, characterized by recurrent attacks of airflow obstruction, bronchial hyperresponsiveness, and an underlying inflammation which vary in severity and frequency from person to person. The interaction of these features determines the clinical manifestations and severity of asthma^[1]. During an asthma attack, the lining of the bronchial tubes swells, causing the airways to narrow and reducing air flow into and out of the lungs. The term "asthma" comes from the Greek meaning, "to breathe hard". Based on functional consequences of airway inflammation, an operational description of asthma (GINA report 2012) is: asthma is a chronic inflammatory disorder of the airways in which many cells and cellular elements play a role. The chronic inflammation is associated with airway hyper responsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness and coughing, particularly at night or in the early morning.

These episodes are usually associated with widespread, but variable, airflow obstruction within the lung that is often reversible either spontaneously or with treatment.

1.1 Prevalence

According to WHO estimates (GINA report 2012)^[2], 300 million people suffer from asthma. Asthma is the most common chronic disease among children and is a public health problem for all countries, as it is for high income countries. Over 80% of asthma deaths occur in low and lower middle income countries. WHO has estimated that disability adjusted life years (DALYs), lost annually due to asthma are 15 million, representing burden of 1% of the total global disease. Annual worldwide deaths from asthma have been estimated at 250,000 and mortality does not appear to correlate well with prevalence^[3]. Two large multinational studies have assessed the prevalence of asthma around the world: the European Community Respiratory Health Survey (ECRHS) in adults and the International Study of Asthma and Allergies in Childhood (ISAAC) in children. It is estimated that there may be an additional 100 million people with asthma by 2025^[3].

2.0 Pathophysiology of Asthma^[1, 13]

Interaction between airway inflammation and the clinical symptoms and pathophysiology of asthma (figure-1).

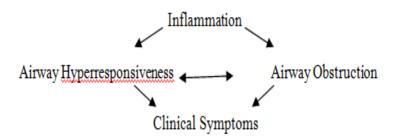


Figure 1: Interaction between airway inflammation and the clinical symptoms and pathophysiology of asthma.

The mechanisms involved in persistence of inflammation in asthma are still not completely understood. Many different inflammatory cells are involved in asthma like mast cells macrophages, dendritic cells, eosinophils, neutrophils, T-lymphocytes, B-lymphocytes, basophils, platelets and structural cells of airways including epithelial cells. Not a single cell accounts for the complex pathophysiology of asthma, but some cells predominate.

Also many inflammatory mediators have been implicated in asthma like lipid mediators, cytokines, chemokines, oxidative stress, endothelines, nitric oxide generated in airway cells by NO syntheses. Recurrent Airflow limitation in asthma is caused by variety of changes in the airway^[1]. These include.

Bronchoconstriction

In asthma, airway narrowing and interference of airflow are the dominant physiological events, leading to clinical symptoms. In acute exacerbations of asthma, bronchial smooth muscle contraction occurs in response to exposure to a variety of stimuli including allergens or irritants leading to narrow airways. Allergen-induced acute bronchoconstriction results from an IgE-dependent release of mediators from mast cells that includes histamine, tryptase, leukotrienes, and prostaglandins that directly contract airway smooth muscle.

Airway edema

Airway edema, inflammation, mucus hypersecretion and the formation of inspissated mucus plugs, as well as structural changes including hypertrophy and hyperplasia of the airway smooth muscle are the other factors limiting airflow.

Airway hyperresponsiveness

Airway hyperresponsiveness is an exaggerated bronchoconstrictor response to a wide variety of stimuli. The mechanisms influencing airway hyperresponsiveness include inflammation, dysfunctional neuroregulation, and structural changes; inflammation appears to be a major factor in determining the degree of airway hyperresponsiveness. Reducing inflammation can reduce airway hyperresponsiveness and improve asthma control.

Airway remodelling

Airflow limitation may be only partially reversible in some asthma patients. Permanent structural changes can occur in the airway (figure 2); which are associated with a progressive loss of lung function. Airway remodelling involves activation of many structural cells, with consequent permanent changes in the airway that increase airflow obstruction and airway rendering patients less responsive to therapy.

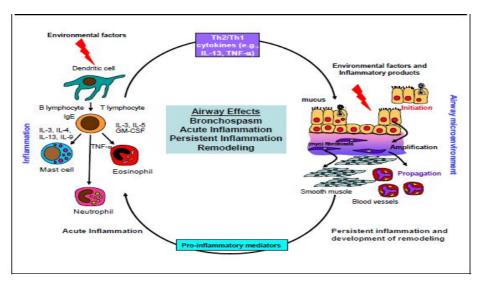


Figure 2: Factors limiting airflow in acute and persistent asthma^[1] (reference EPR 3)

3.0 Severity of Asthma^[1,8]

Severity of asthma is classified as intermittent mild persistent, moderate persistent and severe persistent (fidure 3) and the asthma severity is characterised by its components, at impairment or at risk.

				Intermitten						Persistent				
	Components of Severity			intermitten		Mild			Moderate			Severe		
			Ages 0-4 years	Ages 5-11 years	Ages ≥12 years	Ages 0-4 years	Ages 5-11 years	Ages ≥12 years	Ages 0-4 years	Ages 5-11 years	Ages ≥12 years	Ages 0-4 years	Ages 5-11 years	Ages ≥12 years
		Symptoms		≤2 days/week		>2 days/week but not daily			Daily		Tł	nroughout the c	lay	
		Nighttime awakenings	0	≤2x/I	nonth	1-2x/month	3-4x/r	month	3-4x/month	>1x/week b	ut not nightly	>1x/week	Often 7	7x/week
	ent	SABA* use for symptom control (not to prevent EIB*)	≤2 days/week		>2 days/week but not daily	>2 days/ not daily an than once	d not more	Daily		Several times per day		day		
	Impairme	Interference with normal activity	None		Minor limitation		Some limitation		Extremely limited		d			
	Ē	Lung function		Normal FEV ₁ between exacerbations	Normal FEV, between exacerbations									
		→ FEV,*(% predicted)	Not applicable	Not applicable >80%	>80%	Not applicable	>80%	>80%	Not applicable 60-	60-80%		Not applicable	<60%	<60%
		→ FEV,/FVC*		>85%	Normal†		>80%	Normal [†]		75-80%	Reduced 5% [†]		<75%	Reduced>5% [†]
						≥2 exacerb. in 6 months, or wheezing	in 6 months, Generally, more frequent as		nd intense events indicate greater severity.		ter severity.			
		Asthma exacerbations requiring oral systemic				≥4x per year lasting								
	꾶	corticosteroids‡		0-1/year		>1 day	≥2/ <u>\</u>	/ear	Generally, more	Generally, more frequent and intense events in		licate greater se	everity.	
	Risk					AND risk factors for persistent asthma							,	
				Consider s	everity and inter			, -	and severity ma ations may be re	-		ts in any severi	ty category.	

Figure 3: Level of severity of asthma.¹ (reference EPR 3: Guidelines for the Diagnosis and Management of Asthma)

4.0 Causes/Risk Factors^[1, 2]

The risk factors for developing asthma are a combination of genetic predisposition with environmental exposure to inhaled substances and particles that may provoke allergic reactions or irritate the airways. Asthma symptoms may be due to liberation of endogenous and intrinsic mediators like histamine, leukotrienes, bradykinin, prostaglandins, nitric oxide, platelet activating factors, chemokines and endothelin from mast cells during the allergic reactions and inflammation of the air passages in the lungs. It is also known that asthma can be triggered by various infections, dust, cold or warm air, exercise, emotion, perfumes, chemicals, various foods, tobacco smoke, genetics and histamine. Other triggers can include cold air, extreme emotional arousal such as anger, fear, and physical exercise. Even certain medications can trigger asthma: aspirin and other non-steroid anti-inflammatory drugs, and beta-blockers. It is reported that urbanization has been associated with an increase in asthma^[3], But the exact relationship is unclear.

Genetics

The role of genetics involved in the eventual development of asthma is complex. The complexity of genes involvement in clinical asthma is noted by linkages to certain phenotypic characteristics, but not necessarily the pathophysiologic disease process.

Obesity

Asthma is more frequently observed in obese subjects.

(BMI>30kg/m²) and is more difficult to control. Obese people with asthma have lower lung function and more co-morbidity compared with normal weight people with asthma.

Sex

In early life, the prevalence of asthma is nearly twice as great in boys as in girls. At puberty, however, the sex ratio shifts, and asthma appears predominantly in women. The exact relationship is not clear.

Environmental Factors

Two major environmental factors are most important in the development, persistence, and possibly severity of asthma: airborne allergens and viral respiratory infections. Both have a major influence on asthma development and its persistence. Allergen exposure, allergic sensitization, and respiratory infections function interactively in the eventual development of asthma.

Allergens

Allergens are classified as Indoor allergens like Domestic mites, furred animals (dogs, cats, mice), cockroach, fungi, molds, yeasts. Children under age 5 and women are more vulnerable

population and Outdoor allergens like Pollens, fungi, molds, and yeasts. Sensitization and exposure to house-dust mite and *Alternaria* are important factors in the development of asthma in children. Animal dander, particularly dog and cat, were associated with the development of asthma. Recent data suggest dog and cat exposure in early life may actually protect against the development of asthma. The determinant of these outcomes has not been well-known. House-dust mite and cockroach exposure study have revealed that prevalence of sensitization and subsequent development of asthma are linked. Allergen exposure can promote the persistence of airway inflammation and likelihood of an exacerbation.

Respiratory infections

Numeral respiratory viruses have been associated with the inception or development of the asthma during childhood. Respiratory syncytial virus (RSV) and parainfluenza virus in particular, cause bronchitis in early life. This wheezing or asthma is observed in later childhood in around 40 percent children. Symptomatic rhinovirus infections in early life also are emerging as risk factors for recurrent wheezing.

The exposure to infections early in life influences the development of a child's immune system along a "nonallergic" pathway, leading to a reduced risk of asthma and other allergic diseases. The influence of viral respiratory infections on the development of asthma may depend on an interaction with atopy. The atopic state can influence the lower airway response to viral infections and viral infections may then influence the development of allergic sensitization. The airway interactions may occur when individuals are exposed simultaneously to both allergens and viruses.

Occupational sensitizers

More than 300 substances have been associated with occupational asthma. These substances include highly reactive small molecules like isocyanates, irritants, and known immunogens like metal salts, and animal biological products that stimulate the production of IgE. High risk occupations include farming and agricultural work, cleaning work, painting (including spray painting), and plastic manufacturing.

Tobacco smoke

Tobacco smoking is associated with accelerated decline of lung function, increases asthma severity, may render patients less responsive to treatment with glucocorticoids, and reduces the likelihood of asthma being controlled.

Outdoor/indoor air pollution

Asthma exacerbations have been shown to occur in relationship to increased levels of air pollution, which in turn related to general increase in the level of pollutants or to specific allergens to which individuals are sensitized. Similar association have been observed in relation to indoor pollutants e.g. smoke and fumes from gas and biomass fuels used for heating and cooling, molds, and cockroach infestations.

Diet

The role breast feeding in relation to the development of asthma has been studied in detail and the data reveal that infants fed with intact cow's milk or soy protein have a higher incidence of wheezing illness in early childhood, compared with those fed breast milk.

5.0 Asthma Management^[1]

5.1 The four components of asthma management suggested in EPR 3

- 1. Measures of assessment and monitoring, to diagnose and assess, characteristics and severity of asthma and to monitor whether asthma control is achieved and maintained.
- 2. Education for patients corporation in asthma care.
- 3. Control of environmental factors and comorbid conditions that affect asthma.
- 4. Pharmacologic therapy.

5.2 Asthma Therapy^[2]

Medications for asthma are categorized into two general classes: quick-relief medications (relievers) and long-term control medications (controllers). Relivers are the quick-acting bronchodilators used only on demand to relieve acute intercurrent asthma symptoms and exacerbations, at the minimum required dose and frequency. Relievers are best represented by the inhaled short-acting b2-agonists. Controllers are used to achieve and maintain control of persistent asthma includes anti-inflammatory medications, such as glucocorticosteroids, mast cell stabilisers like nedocromil, cromoglycate and leukotriene modifiers. These agents are generally taken regularly to control asthma and prevent exacerbations. Inhaled glucocorticosteroids are the most effective agents in this category. The controller group also includes combination therapy containing bronchodilators that are taken regularly in addition to inhaled glucocorticosteroids to help attain and maintain asthma control.

5.3 Medications for asthma management with their key benefits and therapeutic issues. (Table 1)

Table 1: Medications for asthma management with their key benefits and therapeutic issues^{1, 11, 102, 103}

Category Mechanism		Key benefits	Adverse effects	Therapeutic issues
A. Long-term control me	dications			
1. Corticosteroids- a) Glucocorticosteroids (for inhalation) Triamcinolone acetonide, Budesonide, flunisolide, Beclomethasone dipropionate, and Fluticasone propionate, New ICS products Ciclesonide and Mometasone furoate	Glucocorticosteroids downregulates the production of many inflammatory cytokines, chemokines, enzymes, and cell-adhesion molecules as well as inhibiting the activity of inflammatory mediators.	Evidence from bronchial biopsies and bronchoalveolar lavage has confirmed that correct use of corticosteroids can reduce cellular infiltrates and inflammatory proteins. Proper use of ICS results in better lung function with fewer disease exacerbations and hospitalizations that are associated with a better quality of life. Inhaled corticosteroids (ICS) are considered	Incidence of systemic side effects. Currently available ICS products have limitations for long-term use that include both local and systemic side effects. Local effects include oral candidiasis and hoarseness, whereas systemic effects include cortisol suppression, steroid-induced osteoporosis, slower growth in children, and adverse ocular and dermal effects.	Spacer/holding chamber devices with non breathactivated MDIs and mouth washing after inhalation decrease local side effects. Preparations are not absolutely interchangeable on mcg or per puff basis. New delivery devices may provide greater delivery to airways; this change may affect dose. The risk of uncontrolled asthma should be weighed against the limited risks of ICS therapy. The potential but small risk of adverse events is well balanced by their efficacy. "Adjustable dose" approach to treatment may enable reduction in cumulative dose of ICS treatment over
Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
		the first-line therapy in treating asthma and are approved for chronic use in children as young as 12 months of age.		time without sacrificing maintenance of asthma control.
b) Systemic glucocorticosteroids Prednisolone, Methyl prednisolone	Block late reaction to allergen and reduce airway hyperresponsiveness.	Cough, dysphonia, oral thrush (candidiasis). In high doses, systemic effects may occur,	Long-term use: adrenal axis suppression, growth suppression, dermal thinning,	Use at lowest effective dose. For long- term use, alternate-day a.m. dosing produces the least toxicity. If daily doses are required, one study shows improve

	Inhibit cytokine production, adhesion protein activation, and inflammatory cell migration and activation. Reverse beta2-receptor downregulation. Inhibit microvascular leakage.	although studies are not conclusive, and clinical significance of these effects has not been established (e.g., adrenal suppression, osteoporosis). In low-to-medium doses, suppression of growth velocity has been observed in children,	Cushing's syndrome, cataracts, muscle weakness, and—in rare instances impaired immune function. -Consideration should be given to coexisting condition that could be	efficacy with no increase in adrenal suppression when administered at 3 p.m. rather than in the morning.
Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
		but this effect may be transient, and the clinical significance has not been established.	herpes virus infections, tuberculosis, peptic ulcer, hypertension, diabetes mellitus etc.	
2. Mast cell stabilisers	The precise mode of	Prevent airways from	Cough and irritation.	Therapeutic response to cromolyn and
Cromolyn sodium and	action of has not been	swelling when they	*	nedocromil often occurs within 2 weeks,
nedocromil sodium	completely elucidated. Because the drugs do not pass the cell membrane and enter the cell, they are virtually not metabolized, do not exert a systemic action. Mast cell stabilizers act on mast cells and prevent them from releasing substances that cause allergic reactions. They block a calcium channel that is important for	come in contact with an asthma trigger. These nonsteroids can also be used to prevent asthma caused by exercise.	patients complain of an unpleasant taste from nedocromil.	but a 4- to 6-week trial may be needed to determine maximum benefit. Dose of cromolyn by MDI (1 mg/puff) may be inadequate to affect airway hyperresponsiveness. Nebulizer delivery (20 mg/ampule) may be preferred for some patients. Safety is the primary advantage of these agents. May take upto 6 weeks to achieve therapeutic effects. Frequent daily dosing is required.

Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
	degranulation (which occurs after exposure to specific antigens) of sensitized mast cells, and inhibits the release of histamine and slow-reacting substances of anaphylaxis. Inhibits acute response to exercise, cold dry air, and SO2.			
3. Immunomodulator Monoclonal anti IgE antibody Omalizumab	Binds to circulating IgE, preventing it from binding to high-affinity IgE receptor, (also known as FceRIs), on basophils and mast cells. Decreases mast cell mediator release from allergen exposure,	Approved for treating moderate to severe persistent asthma related to allergies in patients whose symptoms are not controlled with ICS	Anaphylaxis, an allergic reaction that may include trouble breathing, chest tightness, dizziness, fainting, itching and hives, and swelling of the mouth and throat.	Monitor patients following injection. Be prepared and equipped to identify and treat anaphylaxis that may occur. The dose is administered either every 2 or 4 weeks and is dependent on the patient's body weight and IgE level before therapy. A maximum of 150 mg can be administered in one injection.
Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
	decreases the number of FceRIs in basophils and submucosal cells.			Needs to be stored under refrigeration at 2–8 °C. Whether patients will develop significant antibody titers to drug, with long-term administration is unknown.
4. Leukotriene modifiers: a) Leukotriene biosynthesis inhibitor/ 5-Lipoxygenase	Inhibits the production of leukotrienes from arachidonic acid, both LTB4 and the cysteinyl leukotrienes.	Approved for allergies or allergic rhinitis, EIB	Elevation of liver enzymes has been reported. Limited case reports of reversible hepatitis and	Zileuton is microsomal P450 enzyme inhibitor that can inhibit the metabolism of warfarin and theophylline. Doses of these drugs should be monitored accordingly.

inhibitor -Zileutine			hyperbilirubinemia.	Monitor hepatic enzymes (ALT).
b) Leukotriene receptor antagonist Monteleukast, Zafirlukast (Pranlukast)	Selective competitive inhibitor of CysLT1 receptor.	Approved for allergies or allergic rhinitis, EIB	No specific adverse effects have been identified. Rare cases of Churgstrauss have occurred, but the association is unclear.	May attenuate EIB in some patients, but less effective than ICS therapy. Montelukast granules- A flat doseresponse curve without further benefit, if dose is increased above those recommended. Zafirlukast- Administration with meals decreases bioavailability; take at least 1 hour before or 2 hours after meals.
Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
				Zafirlukast is a microsomal P450 enzyme inhibitor that can inhibit the metabolism of warfarin. INRs should be monitored during coadministration. Patients should be warned to discontinue use if they experience signs and symptoms of liver dysfunction (right upper quadrant pain, pruritis, lethargy, jaundice), and patients' ALTs should be monitored.
5. Bronchodilators Long acting b agonists (LABAs): a) Inhaled: Salmeterol, formoterol, Carmoterol Indacaterol	Bronchodilation. Smooth muscle relaxation following adenylate cyclase activation and increase in cyclic AMP, producing functional antagonism of bronchoconstriction. Compared to SABA, salmeterol (but not	To reduce the dose frequency to the minimum necessary to maintain asthma control	A diminished bronchoprotective effect may occur within 1 week of chronic therapy. Clinical significance has not been established. Potential risk of uncommon, severe, life threatening	Not to be used to treat acute symptoms or exacerbations. Should not be used as monotherapy for long-term control of asthma or as anti-inflammatory therapy. May provide more effective symptom control when added to standard doses of ICS compared to increasing the ICS dosage

Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
	formoterol) has slower		or fatal exacerbation;	Clinical significance of potentially
	onset of action (15–30		see text for additional	developing tolerance is uncertain,
	minutes). Both		discussion regarding	because studies show symptom control
	salmeterol and		safety of	and bronchodilation are maintained.
	formoterol have longer		LABAs.	Decreased duration of protection against
	duration (>12 hours)			EIB may occur with regular use.
	compared to SABA.			
	Tachycardia, skeletal			
	muscle tremor,			
	hypokalemia,			
	prolongation of QTc			
	interval in overdose.			
Tiotropium bromide	Tiotropium is a	\mathcal{E}	severe sudden	May cause paradoxical bronchospasm.
	muscarinic receptor	obstructive pulmonary	worsening of breathing	Used with caution in patients with
	antagonist, often referred	disease (COPD).	problems	severe hypersensitivity to milk proteins.
	to as an antimuscarinic or			Bronchodilation following inhalation of
	anticholinergic agent.			tiotropium is predominantly a site-
	Although it does not			specific effect
	display selectivity for			
	specific muscarinic.			
Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
	receptors, on topical			
	application it acts mainly			
	on M3 muscarinic			
	receptors located in the			
	airways to produce			
	smooth muscle			
	relaxation, thus			
	producing a			
	bronchodilatory effect			
b) Oral:	Salbutamol is a \(\beta 2 \)	Prevention and relief of	Tremor, Tachycardia,	Inhaled route is preferred because

www.wjpr.net Vol 3, Issue 8, 2014.

286

Salbutamol	adrenergic agonist and	bronchospasm in	nausea in children	LABAs are longer acting and have fewer
	thus it stimulates	patients 4 years of age		side effects than oral sustained release
	ß2adrenergic receptors.	and older with		agents. Oral agents have not been
	Binding of Salbutamol to	reversible obstructive		adequately studied as adjunctive therapy
	ß2 receptors in the lungs	airway disease, and for		with ICS.
	results in relaxation of	the prevention of		
	bronchial smooth	exercise induced		
	muscles.	bronchospasm in		
		patients 4 years of age		
		and older.		

Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
Methylxanthines-	Bronchodilation. Smooth	Treatment of nocturnal	Dose-related acute	Maintain steady-state serum
oral-Theophylline,	muscle relaxation from	bronchospasm and	toxicities include	concentrations between 5 and 15
Dyphylline	phosphodiesterase	airways	tachycardia, nausea	mcg/mL. Routine serum concentration
	inhibition and possibly	hyperresponsiveness.	and vomiting,	monitoring is essential due to significant
	adenosine antagonism.	Addition of	3 3	toxicities, narrow therapeutic range, and
	May affect eosinophilic	* *	(SVT), central nervous	individual differences in metabolic
	infiltration into bronchial	effective doses of beta-	system stimulation,	clearance. Absorption and metabolism
	mucosa as well as	agonists and	headache, seizures,	may be affected by numerous factors
	decreases T-lymphocyte		hematemesis,	which
	numbers in epithelium.	<u>-</u>	• • • •	can produce significant changes in
	Increases diaphragm	symptom control	hypokalemia.	steady-state serum theophylline
	contractility and			concentrations.
	mucociliary clearance.			Patients should be told to discontinue if
				they experience toxicity.
				Not generally recommended for
				exacerbations.
				There is minimal evidence for added
				benefit to optimal doses of SABA.
				Serum concentration monitoring is
				mandatory.

B Quick-relief medication	Quick-relief medications							
Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues				
1. Anticholinergics Ipratropium bromide	Bronchodilation. Competitive inhibition of muscarinic cholinergic receptors. Reduces intrinsic vagal tone of the airways. May block reflex bronchoconstriction secondary to irritants or to reflux esophagitis. May decrease mucous gland secretion.	Indicated for maintenance treatment of bronchospasm associated with chronic obstructive pulmonary disease, including chronic bronchitis and emphysema.	Drying of mouth and respiratory secretions, increased wheezing in some individuals, blurred vision if sprayed in eyes. If used in the ED, produces less cardiac stimulation than SABAs.	Reverses only cholinergically mediated bronchospasm; does not modify reaction to antigen. Does not block EIB. Multiple doses of ipratropium in the ED provide additive effects to SABA. May be alternative for patients who do not tolerate SABA. Treatment of choice for bronchospasm due to beta-blocker medication. Has not proven to be efficacious as long-term control therapy for asthma.				
2. Short acting b agonist (SABAs) Salbutamol(Albuterol),le valbuterol, pirbuterol, metaproterenol, Terbutaline, Bitolterol Fenoterol	Bronchodilation. Binds to beta2-adrenergic receptor, producing smooth muscle relaxation following adenylate cyclase activation and increase in cyclic AMP	Approved for symptomatic relief and prevention of bronchospasm due to bronchial asthma, chronic bronchitis, and other chronic	Tachycardia, skeletal muscle tremor, hypokalemia, increased lactic acid, headache, hyperglycemia. Inhaled route, in	For acute bronchospasm these are the drugs of choice. Inhaled route has faster onset, fewer adverse effects, and is more effective than systemic routes. The less beta2-selective agents (isoproterenol, metaproterenol, isoetharine, and epinephrine) are not				
Category	Mechanism producing functional antagonism of bronchoconstriction.	key benefits bronchopulmonary disorders such as COPD.	general, causes few systemic adverse effects. Patients with pre-existing cardiovascular disease, especially the elderly, may have adverse cardiovascular reactions with inhaled therapy.	recommended due to their potential for excessive cardiac stimulation, especially in high doses.Oral systemic beta2-agonists are not recommended. Regular use >2 days/week for symptom control (not prevention of EIB), increasing use, or lack of expected effect indicates inadequate asthma control. For patients frequently using SABA, anti-inflammatory medication should be				

				initiated or intensified. Levalbuterol at one-half the mcg dose produces clinically comparable bronchodilation and systemic side effects as racemic albuterol.
3. Systemic Glucocorticosteroids: Prednisolone, Methyl prednisolone,	Refer long term controllers	Used as short-term treatment for severe asthma episodes or as long-term therapy for	Short-term use: reversible abnormalities in glucosemetabolism,	Short-term therapy should continue until patient's symptoms resolve. This usually requires 3–10 days but may require longer. Action may begin
Category	Mechanism	Key benefits	Adverse effects	Therapeutic issues
Hydrocortisone		some people with severe asthma.	increased appetite, fluid retention, weight gain, facial flushing, etc. Consideration should be given to coexisting conditions that could be worsened by systemic corticosteroids, such as herpes virus infections, tuberculosis etc.	within an hour. There is no evidence that tapering the dose following improvement is useful in preventing a relapse in asthma exacerbations. Other systemic corticosteroids such as hydrocortisone and dexamethasone given in equipotent daily doses are likely to be as effective as prednisolone.

5.4 Long term Asthma management^[1,2]

Long-term, regular follow-up care to maintain asthma control focuses on two domains (Figure 4).

Achieving and maintaining asthma control requires providing appropriate medication, helping patients learn self-management skills, and long term monitoring to assess control and adjust therapy accordingly.

Reduce Impairment	Reduce Risk				
Prevent chronic symptoms.	Control the likelihood of future asthma attacks				
Require infrequent use of short-acting	Prevent exacerbations.				
beta2-agonist (SABA).	Minimize need for emergency care,				
Maintain (near) normal lung function	hospitalization.				
and normal activity levels.	Prevent loss of lung function (or, for children,				
	prevent reduced lung growth).				
	Minimize adverse effects of therapy.				

Stepwise approach for managing asthma long term^[1]

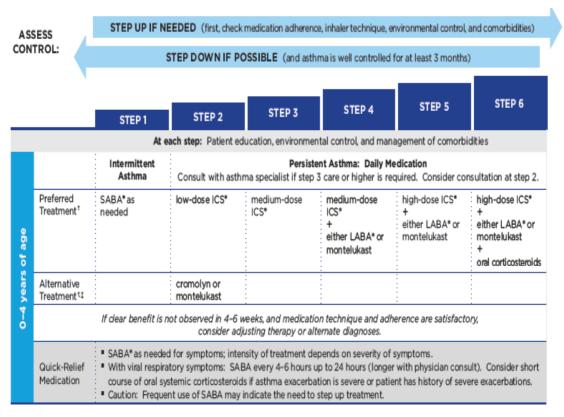


Figure: 4 Components for maintenance of asthma control.

		Intermittent Asthma	dication quired. Consider co	ider consultation at step 3.						
age	Preferred Treatment†	SABA* as needed	SABA* as needed low-dose ICS*		medium-dose ICS* + LABA*	high-dose ICS* + LABA*	high-dose ICS* + LABA* + oral corticosteroids			
11 years of	Alternative Treatment ^{†‡}		cromolyn, LTRA,* or theophylline ⁹	OR medium-dose ICS	medium-dose ICS* + either LTRA* or theophyllines	high-dose ICS* + either LTRA* or the ophyllines	high-dose ICS* + either LTRA* or theophyllines			
5-11			Consider subcu patients who		+ oral corticosteroids					
	Quick-Relief Medication	 SABA* as needed for symptoms. The intensity of treatment depends on severity of symptoms: up to 3 treatments every 20 minutes as needed. Short course of oral systemic corticosteroids may be needed. Caution: Increasing use of SABA or use >2 days/week for symptom relief (not to prevent EIB*) generally indicates inadequate control and the need to step up treatment. 								

Figure 5 Stepwise approach for managing asthma long term^[1] (reference EPR3)

		Intermittent Asthma	Consult with asthr		nt Asthma: Daily Me care or higher is req		nsultation at step 3.					
age	Preferred Treatment [†]	SABA* as needed	low-dose ICS*	low-dose ICS* H LABA* OR medium-dose ICS*	high-dose ICS* + LABA* AND consider	high-dose ICS* + LABA* + oral corticosteroid**						
12 years of	Alternative Treatment ^{†‡}		cromolyn, LTRA,* or theophylline ^s	low-dose ICS* + either LTRA,* theophylline,6 or zileuton#	medium-dose ICS* + either LTRA,* theophylline,* or zileuton ^{‡‡}	omalizumab for patients who have allergies [‡]	AND consider omalizumab for patients who have allergies*					
N				cutaneous allergen ir no have persistent, al								
	Quick-Relief Medication	every 20 minutes Caution: Use of 5	deded for symptoms. The intensity of treatment depends on severity of symptoms: up to 3 treatments nutes as needed. Short course of oral systemic corticosteroids may be needed. e of SABA >2 days/week for symptom relief (not to prevent EIB*) generally indicates inadequate control d to step up treatment.									

Figure 6: Inhalation devices for children (reference EPR 3)

- § Theophylline is a less desirable alternative as associated with serum concentration level monitoring.
- †† Immunotherapy or omalizumab therapy is associated with anaphylaxis.
- ‡‡ Zileuton is less desirable because of the need to monitor liver function.
- §§ Before oral corticosteroids are introduced, an assessment of high-dose ICS + LABA + either LTRA, theophylline, or zileuton, may possibly be considered.

5.4 Management of Asthma Excerbations^[1, 2]

Acute or subacute episodes of progressively worsening shortness of breath, cough, wheezing, and chest tightness or a few combination of these symptoms leads to asthma exacerbations. Exacerbations are characterized by decrease in expiratory airflow that can be quantified by measurement of lung function (spirometry or PEF).

- 1 Management of asthma exacerbations requiring urgent medical care (e.g., in the urgent care setting or emergency department (ED) includes:
- 2. Oxygen supplement to relieve hypoxemia.
- 3. SABA to relieve airflow obstruction, with addition of inhaled ipratropium bromide in severe exacerbations.
- 4. Systemic corticosteroids to decrease airway inflammation in moderate or severe exacerbations or for patients who fail to respond promptly and completely to a SABA. Consideration of adjunct treatments, such as intravenous magnesium sulfate or heliox, in severe exacerbations unresponsive to the initial treatments listed above.
- 5. Monitoring response to therapy with serial measurements of lung function.
- 6. Preventing relapse of the exacerbation or recurrence of another exacerbation by providing: referral to followup asthma care within 1–4 weeks; an ED asthma discharge plan with instructions for medications prescribed at discharge and for increasing medications or seeking medical care if asthma worsens; review of inhaler techniques whenever possible; and consideration of initiating inhaled corticosteroids (ICSs).

For the treatment of exacerbations, the current update (EPR 3)

- 1. Adds levalbuterol as a SABA treatment for asthma exacerbations.
- 2. For home management of exacerbations, no longer recommends doubling the dose of ICSs.
- 3. For prehospital management (e.g., emergency transport), encourages standing orders for albuterol and—for prolonged transport—repeated treatments and protocols to allow consideration of ipratropium and oral corticosteroids.
- 4. For ED management, reduces dose and frequency of administration of oral corticosteroids in severe exacerbations, adds consideration of magnesium sulfate or heliox for severe exacerbations, and adds consideration of initiating an ICS upon discharge.
- **5.** For hospital management, no longer recommends ipratropium bromide.

The Cochrane database review on Corticosteroids for acute severe asthma in hospitalised patients found that, lower doses of corticosteroids work as well, as higher doses, to start with, when a person is hospitalised with an asthma attack.

5.5 Asthma management in special considerations

Asthma patients require special consideration in some situations, to manage their asthma and to keep it under control. These special situations include.

5.5.1 Excercise induced bronchospasm^[1, 11]

Exercise-induced bronchoconstriction (EIB) describes acute airway narrowing that occurs as a result of exercise. Exercise indicates asthma symptoms for some patients. EIB is a bronchospastic event that is caused by a loss of heat, water, or both from the lung during exercise because of hyperventilation of air that is cooler and dryer than that of the respiratory tree. These patients should be monitored regularly to ensure that they have no symptoms of asthma or to ensure that there is reduction in Peak Expiratory Flow (PEF) in the absence of exercise, because EIB is often a marker of inadequate asthma management and responds well to regular anti-inflammatory therapy.

Management strategies

> Long-term control therapy

Appropriate long-term control of asthma with anti-inflammatory medication reduces airway responsiveness, and this is associated with a reduction in the rate and severity of EIB.

> Pretreatment before exercise with inhaled beta2-agonists

- 1. **SABA** administration, 15 min before exercise may be helpful for 2–3 hours.
- 2. A controller agent is generally added whenever SABA therapy is used frequently.
- 3. For patients who have symptoms despite using an inhaled SABA before exercise, or who require frequent SABA administration inhaled long acting b2-agonist as single therapy is strictly prohibited.
- 4. Monitor treatment with Inhaled corticosteroid (ICS).
- 5. LABAs can be effective up to 12 hours

LTRAs can attenuate EIB in up to 50 percent of patients

Cromolyn or nedocromil taken shortly before exercise is an alternative treatment to prevent EIB, but it is not as effective as SABAs

A warmup period before exercise may reduce the degree of EIB

A mask or scarf over the mouth may attenuate cold-induced EIB

5.5.2 Pregnancy^[1, 12]

Maternal asthma increases the risk of perinatal mortality, preeclampsia, preterm birth, and low-birth-weight. Monitoring asthma management Long-Term during pregnancy may be required to maintain lung function and, hence, blood oxygenation that ensures oxygen supply to the fetus and prevents asthma exacerbations.

Management strategies

- 1. Monitoring of asthma status during prenatal visits is encouraged. Albuterol is the preferred SABA because it has an excellent safety profile.
- 2. ICSs are the preferred treatment for long-term control medication. Budesonide is the preferred ICS than other available ICSs.
- 3. For the treatment of comorbid conditions, intranasal corticosteroids are recommended for treatment of allergic rhinitis because of their low risk of systemic effect.
- 4. Alternative daily medications are leukotriene receptor antagonists, cromolyn, or theophylline.

5.5.3 Surgery^[1]

Patients who have asthma are at risk for specific complications during surgery.

Management strategies

- 1. Patients who have asthma should have an assessment before surgery for review of symptoms, medication use (particularly for Long Term use of oral systemic corticosteroids), and measurement of pulmonary function.
- 2. Attempts should be made to improve lung function preoperatively (FEV1 or peak expiratory flow rate [PEFR]).

5.6 Inhaler devices used for drug delivery

The mainstay of treatment is by inhalation of medication to the site of the infection. This can be achieved by a number of different types of device. A number of different inhalation devices are available. The pressurised metered-dose inhaler (pMDI) is commonly used device, which may be used along with a spacer device. Chlorofluorocarbons (CFC)-free inhaler devices using hydrofluoroalkanes (HFAs) have been developed and contains drug dissolved or suspended in the propellant under pressure. When activated, a valve system releases a metered volume of drug. Other devices include breath-actuated pMDIs (BA-pMDI), such as Autohaler and Easi-Breathe. They incorporate a mechanism activated during inhalation that triggers the metered-dose inhaler. Dry powder inhalers (DPI), such as Turbohaler, Diskhaler, Accuhaler and Rotahaler, are activated by inspiration by the patient. The powdered drug is dispersed into particles by the inspiration. With nebulisers oxygen, compressed air, or ultrasonic power is used to break up solutions or suspensions of medication into droplets for inhalation.

For young children or infants or those who are unable to cooperate to routine delivery of drug, can use spacer and valve holding chamber and have someone else actuate the device without loss of the actuated dose, to breathe normally and preventing the need for coordinating actuation. "Spacer" refers to simple open tubes that are placed on the mouthpiece of an MDI to extend it away from the mouth of the patient. Valved holding chambers, (VHCs) are manufactured devices that have one-way valves that do not allow the patient to exhale into the device. Both spacers and VHCs are intended to retain large particles emitted from the MDI.

Children Age (yr)	Preferred device	Alternative device
< 4	pMDI plus dedicated spacer with face mask	Nebulizer with face mask
4-6	pMDI plus dedicated spacer with mouthpiece	Nebulizer with mouthpiece
>6	DPI, or breath actuated pMDI or pMDI with	Nebulizer with mouthpiece
	spacer and mouthpiece	

5.7 Combination therapy for management of asthma.

ICS/LABA combination therapy

Inhaled steroids plus leukotriene-receptor antagonists

Leukotriene-receptor antagonist plus antihistamines

5.7.1 ICS/LABA combination therapy

The ICSs are considered the most effective anti-inflammatory treatment for control of persistent asthma, and inhaled β 2-adrenergic agonists are the most effective bronchodilators. A Cochrane database systemic review of 30 randomised, controlled studies demonstrated that the addition of a LABA to ICS therapy was more effective than higher dose ICS monotherapy in preventing treatment discontinuation because of deteriorating asthma control in patients with primarily moderate disease. (Refer Table 7).

Table 2: Pharmacokinetic properties of antiasthamatic drugs and their marketed preparations [103, 104, 105].

Category/ Drug	Absorption window	Half life (hr)	Bioavai lability (%)	Dosage form available in market	Common marketed preparation / dosage form	Available in dose	Labelled uses	Mfg by
Triamcinolone acetonide	GIT	88 min	22-25%	Inhalation aerosol, injection,	Inhalation aerosol			Abbott laboratory (Phased out by fda in 2010)
				Suspension for injection	Acort /Suspension for injection	10 mg*1ml/ 40mg*1ml	Prophylaxis and treatment of allergic rhinitis Allergic and inflammatory responses	Abbott laboratory
Flunisolide	Lung	1.8	4-4.5	Inhalation aerosol, injection, nasal spray	Inhalation aerosol			Forest laboratory (Phased out by fda in 2010)
Beclomethasone dipropionate	Nasal mucosa	0.5	1-4	MDI	Beclate / MDI	200 md (50/puff, 100, 200, 250/puff)	prophylaxis <u>asthma</u>	Cipla

Category/ Drug	Absorption window	Half life (hr)	Bioavai lability (%)	Dosage form available in market	Common marketed preparation / dosage form	Available in dose	Labelled uses	Manufactured by
Fluticasone propionate	Nasal mucosa	15.1	<2	Nasal spray	FLONASE / nasal spray	120 md (50 mcg/actuation)		GlaxoSmithKline
Ciclesonide	Nasal mucosa		<1	MDI	CICLOHAL E / MDI	120 md (80mcg/puff, 160mcg/puff)	maintenance treatment in persistent asthma	Cipla
Mometasone furoate	Lungs	5.8hr		Nasal spray	AQUAMET / Nasal spray	120md (0.5 % w/v/ puff)	maintenance treatment of asthma	Sun
2. Mast cell stabilisers								
Cromolyn sodium	Lungs	1.3	< 7	Inhalation aerosol Nasal spray,	Inhalation aerosol		Prophylaxis of asthma	King Pharma (Phased out by fda in 2010)
				inhaler	IFIRAL / Nasal spray	20 mg x 10ml	AIRYFEN	JB chemicals
Kitotifen	Stomach	12	60	Tablet, syrup	Airyfen /Tablet	1 mg x 10's	Prophylaxis of asthma	Panacea
Category/ Drug	Absorpt ion window	Half life (hr)	Bioavai lability (%)	form available in	Common marketed preparation / dosage form	Available in dose	Labelled uses	Manufactured by
Nedocromil sodium	Lungs	3.3	89	Inhalation	Inhalation aerosol	210 mg/puff	Moderate to severe persistent allergic asthma	King Pharma (Phased out by fda in 2010)

					Tilade / Mint Aerosol	60 *1s (2 mg/puff)	Preventive management of asthma.	Sanofi (singapur)
3. Immunomodulator Monoclonal anti IgE antibody Omalizumab	SC	26 days	62 (SC)	Sc injection	xolair /Lyophilized, sterile powder	Lyophilized, sterile powder 5ml vial, 150 mg	Moderate to severe persistent allergic asthma	Novartis
4. Leukotriene modifi	ers							
a) Leukotriene biosynthesis inhibitor Zileutine	GIT	2.5		Tablet	Zyflo /ER tablet	600 MG (120's)	Prophylaxis and chronic treatment of asthma	Abbott laboratories

Category/ Drug	Absorption	Half	Bioavai	Dosage	Common	Available in	Labelled uses	Manufactured by
	window	life (hr)	lability (%)	form available in	marketed preparation /	dose		
		(111)	(70)	market	dosage form			
b) Leukotriene	stomach	3-6	60	Tablet,	Montair	4mg, 5mg, 10	Chronic asthma;	cipla
receptor antagonist				chewable	/Tablet	mg	Allergic rhinitis	
Monteleukast				Tablet			Prophylaxis of	
							exercise-induced	
							asthma	
					SINGULAIR/	10 mg	Chronic asthma;	MSD pharma
					Tablet		Allergic rhinitis	pvt.ltd
					SINGULAIR /	4 mg, 5 mg	Chronic asthma;	MSD
					tablet		Allergic rhinitis	pharmaceuticals
Zafirlukast	stomach	8-12			ZUVAIR	10 mg	Chronic asthma	Dr. Reddys
					/Tablet	(10's)		laboratories
5. Bronchodilators								

a) Long acting β agon	ists (LABAs):							
Fluticasone propionate	Nasal mucosa	5.6	21	MDI	FLOHALE INHALER/ MDI	120md (25 mcg / puff, 50 mcg/puff, 125 mcg/puff)	Prophylaxis of asthma, Chronic severe asthma	Cipla
Category/ Drug	Absorpt ion window	Half life (hr)	Bioavai lability (%)	Dosage form available in market	Common marketed preparation / dosage form	Available in dose	Labelled uses	Manufactured by
Salmeterol xinafoate		5.5		DPI	Serevent Diskhaler Disk, Servent Diskus/ DPI	50 mg/blister	Prevention of bronchospasm; prevention of exercise- induced bronchospas m; maintenance treatment of asthma	Glaxo smithkline Inc
Formoterol	GIT	10		MDI	DERIFORM/ MDI	120 md (12mcg/puff)	Acute ronchospasm; Reversible airways obstruction, Prevention of exercise-induced bronchospasm	Zydus Cadila (German Remedies)
Carmoterol			<5	NA				
Indacaterol	Lungs	>30 hr	43-45 (inhalti on)	NA				
Category/ Drug	Absorpt ion window	Half life (hr)	Bioavai lability (%)	Dosage form available in market	Common marketed preparation / dosage form	Available in dose	Labelled uses	Manufactured by
Budesonide	GIT	2-4	10- 20/IV	Respules	budate	0.5 mg x 2ml	Asthma, COPD	lupin

b) Methylxanthines-								
Theophylline	GIT	7-12	100/ IV	Tablet	PHYLOBID	200, 300 mg	Bronchospasm	Wockhardt
Dyphylline	GIT	1.8-		NA			Bronchodilator	
(diprophylline)		2.1						
Doxophylline	GIT	7 hr		Tablet	doxovent	400 mg /800	Reversible airways	Glenmark
					/Tablet	mg SR	obstruction	
B Quick-relief medica	ations							
1. Anticholinergics		-	-	MDI	IPRAVENT	20 mcg	Chronic obstructive	Cipla
Ipratropium bromide						_	pulmonary disease	
2. Short acting b agon	ist (SABAs)							
Salbutamol xinafoate	β2-adre-	4-6	50	inhalant	SERVENT	50 mcg*1S	Asthma, COPD	GSK
	nergic							
	receptor							
Levosalbutamol	β2-adre-	3-3.4	-	Inhaler	Levolin	200md (50	Asthma, COPD	Cipla
	nergic				inhaler	mcg/puff)		
	receptor							

Category/ Drug	Absorption window	Half life (hr)	Bioavai lability (%)	Dosage form available in market	Common marketed preparation / dosage form	Available in dose	Labelled uses	Manufactured by
Pirbuterol	β2-adre-	2	-	Inhalation	Inhalation			Graceway Pharma
	nergic			aerosol	aerosol			(Phased out by fda
	receptor							in 2010)
Metaproterenol	β2-adre-	6	Inhalati	Inhalation	Inhalation			Boehringer
	nergic		on-3,	aerosol	aerosol			Ingelheim Pharma
	receptor		Oral -					(Phased out by fda
	_		40					in 2010)
Bitolterol	-	-	-				Discontinued	
Fenoterol	-	-	-	NA			Discontinued	
Bambuterol	GIT	13	20	Tablet	ASTHAFREE/	10 mg*10s	long-term	Zuventus
hydrochloride					Tablet		management of	

www.wjpr.net

						persistent asthma	
3. Systemic Glucocort	icosteroids						
Hydrocortisone	GIT	6-8	 Powder for	ACUCORT	100 mg*1s,	Acute asthma	Macleods
			injection	/Powder for	200 mg*1s	Asthma excerbations	
				injection			

Category/ Drug	Absorption window	Half life (hr)	Bioavai lability (%)	Dosage form available in market for asthma	Common marketed preparation / dosage form	Available in dose	Labelled uses	Manufactured by
Prednisolone	GIT	2-3	70	Tablet,	OMNACORTI L /Dispersable tablet	(2.5mg, 5mg, 10, 20 mg, 30 mg)*10S	Anti-inflammatory	Macleods
Methyl prednisolone	GIT	18-28		Injection, tablet	MEDROL/ Tablet	4 mg, 8 mg /10 mg	Anti-inflammatory or immunosuppresive	pfizer
4.Tiotropium	Lungs	5-6	19.5 (Inhalat ion)	Handihaler	SPIRIVA HandiHaler /Capsules	18 mcg/cap	long-term treatment of bronchospasm associated with COPD, including chronic bronchitis and emphysema.	Pfizer
5. Orciprenaline sulphate / metaproterenol	GIT	6	40	Tablet	ALUPENT /Tablet	10 mg*10s	Bronchial asthma, chronic bronchitis	Zydus (G rem)

www.wjpr.net Vol 3, Issue 8, 2014. 301

Table 3: Marketed ICS/LABA combination preparations^[49]

Sr	Category/ Drug	Common marketed	Available in dose	Labelled uses	Manufactured by
no		preparation /			
		dosage form			
1	Beclometasone dipropionate ,	AEROVENT/	120 md (50 mcg /100	Prophylaxis of asthma	Cipla
	salbutamol sulphate	MDI	mcg)		(Omnicare)
2	Salbutamol choline theophyllinate	AIROMOL/	100 ml (2/100)	Bronchial asthma; Chronic	Zydus (liva)
		liquid		bronchitis; Emphysema	
3	Salbutamol sulphate, budesonide	Budesal 1 mg /respules	(2.5mg/1 mg)/2.5 ml	Prophylaxis of asthma	Cipla
4	Formoterol fumarate dihydrate	Evocort /Rotacap	400 mcg /6mcg 30 s (200	Maintenance treatment of asthma	cipla
	Mometasone furoate,		mg)		
5	Formoterol fumarate, budesonide.	QUIKHALE-FB / MDI	160 md (6 mcg/200	Asthma, COPD	Intas
			mcg)/puff		
		FORACORT/ rotacap	30'S (100 mcg/ 6	Asthma, COPD	Cipla
			mcg)/puff		
6	Formoterol fumarate, Ciclesonide	SIMPLYONE/	100mcg/6 mcg	Obstructive airway diseases	Cipla
		rotacap			
7	Formoterol fumarate dihydrate	MAXIFLO/ MDI	120 md(250 mcg/6 mcg)	Prophylaxis of asthma, COPD	Cipla
	Fluticasone propionate,				

Sr no	Category/ Drug	Common marketed preparation /	Available in dose	Labelled uses	Manufactured by
		dosage form			
8	Formoterol fumarate, Tiotropium bromide	DUOVA INHALER/ MDI	120 md (9mcg/puff/ 12mcg/puff).	Acute bronchospasm; Reversible airways obstruction, Prevention of EIB	Cipla
9	Fluticasone propionate, salmeterol	SEROFLO-50 INHALER /MDI	(50 mcg/25 mcg)/puff	COPD	Cipla

10	Salmeterol, fluticasone propionate.	AIRTEC-SF/ MDI	150 md (25/250, 25 /125, 25 /50)	Asthma, COPD	Glenmark
		ADVAIR DISKUS	50/100, 50 /250, 50 /500	Chronic bronchitis, Maintenance treatment of asthma, COPD	Glaxo Smithkline Inc
		ADVAIR	25/ 50, 25 /125, 25 /250	Chronic bronchitis, Maintenance treatment of asthma, COPD	Glaxo Smithkline Inc
10	propionate. MDI 25/50) ADVAIR DISKUS 50/100, 50/250, 50/500		Asthma, COPD	Glenmark (Respiratory)	
			Chronic bronchitis, asthma, COPD	Glaxo Smithkline Inc	
Sr no	Category/ Drug	Common marketed preparation / dosage form	Available in dose	Labelled uses	Manufactured by
		ADVAIR	25/ 50, 25/125, 25/250	Chronic bronchitis, Maintenance treatment of asthma, COPD	Glaxo Smithkline Inc
11	Ipratropium bromide, levosalbutamol	IPRAZEST	500 mcg /1,25mg	Seasonal allergic rhinitis Rhinorrhoea associated with rhinitis COPD	Macleods
		DUOLIN/MDI	200md (50/20 mcg)/ puff	COPD	Cipla
12	Guaiphenesin, terbutaline, bromhexine	ASTHAKIND TAB /Tablet	10s	Acute and severe bronchospasm	Mankind
13	Salmeterol beclometasone				
В	Inhaled steroids plus leukotriene-	receptor antagonists			
	Zileuton + Beclometasone				
	Montelukast + (ICS / ICS in combination)				
	Zafirlukast + (ICS / ICS in combi)				
C	Leukotriene-receptor antagonist p	lus antihistamines			
	Montelukast, citrizine				

www.wjpr.net

Zafirlukast, citrizine		

6.0 FINDINGS OF LITERATURE REVIEW-ASTHMA

Table 4: Findings of literature review

Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr			
A	Long-term control medications							
1.	Corticosteroids-Glucocorticosteroids (for inhalation)							
	Triamcinolone acetonide	Submicron emulsion ^[16]	High pressure homogenization	Cuilian Peng et al	Asian Journal of Pharmaceutical Sciences 2010			
		Bilayer buccal adhesive film ^[17]	Solvent casting method HPMC, shitosan, eudragit, ethyl cellulose	R. Bahri-Najafi et al	Research in pharmaceutical sciences, 2012			
		Solid lipid nanoparticles (SLN) ^[18]	High shear homogenization and ultrasound method for SLN and direct compression	M. Kazemipour S. OrmoAz et al	Research in pharmaceutical sciences 2012			
	Budesonide	Suspension, MDI ^[19]	Pressure filling method, HFA 134a (Zephex 134a)	Murthy Tegka et al	Asian Journal of Pharmaceutical Sciences 2011			
		Suspension ^[20]	Hydrofluoroalkanes, HFA 134a, HFA 227	Nichakorn Sukasamea et al	Science Asia, 2011			
		Liposomes ^[21]	Film hydration method, hydroxypropyl-B cyclodextrin	J. J. Parmar et al	Indian journal of pharmaceutical sciences 2010			

Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr
		Noval spray dried	Spray drying	Sonali Naikwade	Scientica Pharmaceutica Sci Pharm.
		microparticles viz.,		et al	2009
		pulmosols			
		microspheres and			
		porous particles ^[22]			
		CFC free pMDI ^[23]		D. Gandertonn et	Elsevier- Respiratory Medicine 2003
				al	
		DPI	Capsule for DPI	Marina Andrade-	Jornal Brasileiro de Pneumologia,

				Lima et al	2012
		Porous PLGA	water-in-oil-in-water double	Yu Jin Oh	Journal of controlled release 2011
		microparticles ^[25]	emulsion method	et al	
		Transdermal drug	Solvent casting on mercury	Updesh B. Lade et	Scientific research,
		delivery system ^[26]	substrate, Eudragit RL-100,	al	Pharmacology & Pharmacy, 2011,
			Eudragit RS-100, PEG-400, Ethyl		
			cellulose (14 cps), PVP (MW 40,000)		
	Flunisolide	Nil			
	Beclomethasone	DPI and HFA based	DPI, MDI	Gopala Krishna	Brazilian Journal of Pharmaceutical
	dipropionate	MDI ^[27]		Murthy Talasila et	Sciences, 2013
Sr no	Category/ Drug	Dosage form DPI ^[28]	Method/polymer used	Author	Published by & yr
	Fluticasone	DPI ^[28]	Nanoprecipitationmethod, Poloxamer	Raisuddin Ali et al	Journal of Microencapsulation, 2013:
	propionate	CEC free propellent	Pressure filling method	TEG Murthey et	Journal of scientific and industrial
		CFC free propellent driven MDI ^[29]		al	research, 2010
	Ciclesonide	DPI ^[30]	Manual capsule filling machine	Kapileshwar	Research Journal of Pharmaceutical,
				Swain et al	Biological and Chemical sciences, 2012
	Mometasone	Nil			
	furoate				
2.	Mast cell stabiliser				
	Cromolyn sodium	DPI ^[31]	Abstract	Elbary AA et al	Arch Pharm Res. 2007
		Ethosomes for TDDDS ^[32]	Dispersion	R. Rakesh et al	J Pharm Bioallied Sci. 2012
		Liposomes ^[33]	Abstract	M S Nagarsenker	International Journal of
				et al	Pharmaceutics 2003
	Nedocromil	DPI ^[34]	Abstract	Martyn J.	Journal of Pharmaceutical Sciences
	sodium			Clarke et al	2001

Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr
3.	Immunomodulat	Nil			
	or				
	Monoclonal anti				
	IgE antibody				
	Omalizumab				
4.	Leukotriene modif	fiers			
	Leukotriene	Sustained-release	Extrusion/spheronization techniques	Yihong	International Journal of
\mathbf{A}	biosynthesis	multiparticulate		Qiu et al	Pharmaceutics 1996
	inhibitor	formulations ^[35]			
	Zileutine	Sustained-release	Wet granulation	Yihong	Journal of Controlled Release 1997
		hydrophilic matrix tablet ^[36]		Qiu et al	
		Liposomes ^[37]	Extrusion/spheronization	Pramod	International Journal of
		_	techniques.	Gupta et al	Pharmaceutics 1996
В	Leukotriene	Mouth dissolving	Direct compression, croscarmellose	Ajaykumar Patil	Research Journal of
	receptor	tablets ^[38]	sodium, crospovidone	et al	Pharmaceutical, Biological and
	antagonist				Chemical Sciences 2011
	Monteleukast	Chewable tablets ^[39]	Wet granulation ,MCC, HPC	Priyanka et al	Journal of Chemical and
					Pharmaceutical Sciences 2013

Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr
		Solid lipid	Hot homogenization,	K Priyanka et al	J Young Pharm., 2012
		nanoparticles ^[40]	ultrasonication		
			Compritol 888ATO		
		Chewable tablets	WET granulation, Hydroxy Propyl	K Shruthi et al	Pelagia Research Library Der
		using modified	Cellulose		Pharmacia Sinica, 2013
		karaya gum ^[41]			
		Buccoadhesive	Direct compression, HPMC,	Rahul saxena et al	Asian Journal of Pharmaceutical and
		Tablet ^[42]	Sodium Carboxy Methyl Cellulose		Clinical Research 2011
		Tablet -Pulsatile	Compression coating technique,	Krishnaveni.G et	Int J Adv Pharm Genuine Res 2013

www.wjpr.net

	Drug Delivery	xanthan gum	al	
	System ^[43]			
	Fast Dissolving Tablets ^[44]	Direct compression, Crospovidone and Sodium starch glycolate	Kiran GB Kumar et al	Asian journal of biomedical and pharmaceutical sciences 2012
Zafirlukast	Nil			
Pranlukast	Nil			

Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr				
5.	Bronchodilators:	Bronchodilators:							
A	Long acting b ago								
	Salmeterol	Microparticles ^[45]	Spray freeze drying (SFD)	Mohamma	Advanced Powder Technology 2013				
	Xinafoate		technique; hydroxy propyl beta	d Reza Rahmati et					
			cyclodextrin (HPβCD)	al					
		Fast Dissolving	Direct compression, Crospovidone	Shikhar Baboo et	Pharma research library, 2013				
		Tablets ^[46]		al					
		Dry Powder	Spray drying of suspensions	Shah Vishal Vilas	International journal of				
		Formulation ^[47]	obtained by Antisolvent method/	et al	pharmaceutical and chemical				
			Poloxamer 188.		sciences, 2013				
		Dry powder	Microcrystallization, poly(ethylene	Darragh Murnane	Journal of Pharmaceutical Sciences				
		formulations. ^[48]	glycol)	et al	2009				
		DPI [49]	Liquid anti-solvent precipitation	Nutan shah et al	Asian Journal of Pharmaceutical and				
			method, HPMC		Clinical Research 2011				

Sr	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr
no					
	Formoterol	HFA pMDI ^[50]	Introduction of active/excipients into pressure vessel, polyethylene glycol (0.05-2.5% w/w), PVP	D purohit et al	Indian J Pharm Sci. 2009
		EVA copolymer	N methyl 2 pyrrolidone	Kakubari i et al	Biol Pharm Bull. 2006

		matrix patches. [51]			
	Carmoterol	Nil			
	Indacaterol	Nil			
	Budesonide	Refer 1			
	Tiotropium	Inhalation	O/W emulsion,	Nam Muk oh et al	Journal of pharmaceutical
	bromide	formulation ^[52]	Poly lactide co glycolide (PLGA)		investigation 2013
В	Methylxanthines				
	Theophylline	Time and pH	Abstract	V.S.	International Journal of
		dependent colon	Capsule,	Mastiholimath et	Pharmaceutics
		specific pulsatile	Eudragit L-100 and S-100	al	2007
		specific pulsatile delivery ^[53]			
		Microspheres ^[54]	Abstract, Emulsion solvent	L Pachuau et al	Tropical journal of pharmaceutical
		_	evaporation, Ethyl cellulose		research, 2008
		Transdermal	Abstract,	S. Narasimha	Drug development and industrial
		Patches ^[55]	HPMC	Murthy et al	pharmacy, 2001
Sr	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr
no					
		SR Tablet ^[56]	Wet granulation, HPMC, ethyl	Tetsuo	International journal of pharmaceutics,
			cellulose	Hayashi et al	2005
		Microspheres ^[57]	Emulsion solvent evaporation,	Wasfy M.	Journal of Microencapsulation, 2006
			Eudragit S 100	Obeidat et al	
		SR Tablets [58]	Direct compression,	Sunita s shinde et	Research journal of pharmacy and
			HPMC, Xanthan gum	al	technology 2013
	Doxofylline	SR matrix tablet ^[59]	Wet granulation,	Pandya Hima V.	International research journal of
			HPMC k4M	et al	pharmacy, 2011
	Bamifylline	Nil			
	Etophylline	Nil			
	Enprophylline	Nil			
	Dyphylline	Nil			
В. С	uick –relief medica	tions			
1.	Anticholinergics	Hollow, spherical	Spray-drying	Taylor M K et al	Pharmceutical Development

www.wjpr.net

	Ipratropium bromide	particles ^[60]			Technology. 2006	
Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr	
2.	Short acting ß agonist (SABAs)					
	Salbutamol	DPI ^[61]	Liquid antisolvent precipitation method.	Bhavna et al	European Journal of Pharmaceutics and Biopharmaceutics, 2009	
		Modified push–pull osmotic system ^[62]	Abstract, Oral osmotic pump, Hydrophilic polymers	D. Prabakaran et al	International journal of pharmaceutics, 2004	
		Mucoadhesive Microspheres ^[63]	Abstract, Emulsion solvent method, Chitosan	S. K. Jain et al	Drug Delivery, 2004	
		Transdermal delivery of salbutamol sulphate [64]	Abstract, Casting method, Eudragit	Nashwa A. El- Gendy et al	Pharmaceutical development and technology, 2009	
		Mucoadhesive buccal patches ^[65]	Solvent casting method, Eudragit, HPMC Carbopol	Prasanth Viswanadhan Vasantha et al	Saudi pharmaceutical journal, 2011	
		Microspheres ^[66]	Spray drying, chitosan	Dinal Patel et al	International Journal Pharmaceutical Sciences and Research, 2013.	
	Levalbuterol	ODT ^[67]	Abstract, Direct compression	Hu Shujuan et al	Shanghai Medical & Pharmaceutical Journal 2007	
		Mucoadhesive microspheres ^[68]	Spray drying method, Chitosan	D. Dinal Patel et al	J Pharm Bioallied Sciences: 2012	
Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr	
	Pirbuterol	Nil				
	Metaproterenol	Nil				

Terbutaline	Microspheres ^[69]	Solvent evaporation, PLGA (25/75)	Selek H et al	J Microencapsul. 2003
		and L-PLA		
	Fast melting	Direct compression	Mathew Tet al	Research Journal of Chemical
	tablet ^[70]	Croscarmellose Na, Crospovidone		Sciences 2011
	Buccal patches ^[71]	Solvent casting method, HPMC E	Peeyush singhal et	International Journal of Research in
		50 carbopol 934	al	Pharmaceutical Sciences 2010
	SR tablet [72]	Wet granulation, HPMC K15 and	Rajeswari Kola et	Indian Journal of Research in
		HPMC K4M	al	Pharmacy and Biotechnology; 2013
	Mucoadhesive SR	Wet granulatio	Ranabir Chandaa	Asian Journal of Pharmaceutical
	tablets ^[73]		et al	Sciences 2010
	Mucoadhesive	Direct compression, Sodium	Gururaj s kulkarni	International research journal of
	buccal talets ^[74]	alginate	et al	pharmacy; 2013
	Buccoadhesive	Direct compression Carbopol 934P,	Nakhat P D et al	Indian Journal of Pharmaceutical
	tablet ^[75]	Methocel K4M, Methocel K15M		Sciences 2007
	Mouth dissolving	Direct Compression,	S. Dineshmohan et	Der Pharmacia Lettre, 2014
	tablets ^[76]	Microcrystalline Cellulose	al	

Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr
		Bilayer tablet [77]	Wet granulation, HPMC 5cps	Dr.N. G. Raghavendra rao, et al	Int J Pharm Bio Sci, 2012
		Mucoadhesive tablet [78]	wet granulation, Zizyphus mauritiana and Aegle marmelos HPMC K4M	Ranabir Chanda et al	Iranian journal of pharmaceutical sciences, 2009
		Delayerd release capsule ^[79]	Direct compression, polyethylene oxide (PEO) WSR N-10, N-80, N-750	Mahajan AN et al	Ars Pharmaceutica, 2010
		Mouth dissolving Drug delivery systems [80]	Wet granulation, gelatin	Debashrita Sahoo, et al.	Indian Journal of Pharmaceutical Science & Research, 2014
		Microsponge,	Oil solvent diffusion method,	Biswajit Basu et al	Pharmaceut Anal Acta, 2013, 4(2):87

www.wjpr.net

World Journal of Pharmaceutical Research

		compression coated tablets [81]	HPMC K100M, Eudragit RS100		
		Transdermal Patches [82]	Sodium alginate, Chitosan, HPMC, HPMC-E5, HEC	Shobhraj Malvi et al	International Journal of Pharmaceutical Sciences, 2012
		DPI ^[83]	Emulsification and ionotropic gelation method, Chitosan	Deepak J Singh et al	International Journal of advances Pharmaceutical Sciences, 2010
Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr
		Liposomes [84]	Lipid film mhydration technique	Mayank R Joshi et al	Indian journal of experimental biology, 1999
		Rapid release mouth disintegrating tablets [85]	Direct compression, T-314, indion 414, tulsion 339, crospovidone	S. Bhagat	International Journal of Research in Pharmacy and Chemistry; 2014
		Dry powder inhaler/Rotahaler ^[86]	Powder	JO Onyechi et al	Journal of Pharmaceutical and Allied Sciences, 2010
		Mucoadhesive Buccal Tablets [87]	Direct compression method. Carbapol 934P, chitosan, HPMC K4M and HPMC K15M	V. M. Vaidya et al	International Journal of Pharm Tech Research, 2009
		Pulsatile Drug Delivery System [88]	Direct Compression, EudragitS- 100, EudragitL-100	Vaishali patil et al	American Journal of Advanced Drug Delivery 2013
		Fast dissolving sublingual films [89]	Maltodextrin, Na alginate, Carpabol 430, xanthan gum, HPMC E5, PVP K-25, and Na CMC	Soha Sayed et al	Molecular Pharmaceutics, 2013
		Fast Dissolving Tablet ^[90]	Direct compression, MCC	Sanjay Kumar Bhupathi et al	Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2012
Sr no	Category/ Drug	Dosage form	Method/polymer used	Author	Published by & yr
		Fast Dissolving Tablet ^[91]	Direct compression, Explotab, Ac- Di-Sol and Polyplasdone XL	Rangasamy M et al	Asian J Pharm, 2009

www.wjpr.net Vol 3, Issue 8, 2014.

		Sustained Release	Wet granulation, HPMC K200M,	Mohd Abdul Hadi et	Research Journal of Pharmaceutical
		Matrix Tablets ^[92]	Ethylcellulose	al	Dosage Form and Technology, 2013
		Mucoadhesive	Direct compression, guar gum	Gururaj s kulkarni et	Journal of pharmacy research 2013
		buccal talets ^[93]		al	
		Sustained release	Emulsion solvent evaporation	Khattab I et al	Drug discoveries & therapeutics;
		microspheres ^[94]	process, Eudragit RSPM		2009
	Bitolterol	Nil			
	Fenoterol	Nil			
3	Systemic Glucoo	corticosteroids			
	Hydrocortisone	Fast dissolving	Direct compression, crosspovidone,	Tank Nimit A et al	Res. Journal of Pharma, Biological
		tablets ^[95]	microcrystalline cellulose		and Chemical Sciences, 2011
	Prednisolone	Sustained-release	Polyvinyl chloride	P F Darcy et al	Journal of Pharmaceutical Sciences
		matrix ^[96]			2006
		Tablet -Colon	Direct compression,	Chetan Singh	Journal of Chemical and
		targeted DDS [97]	Eudragit L100, Eudragit S 100	Chauhan et al	Pharmaceutical Research 2010
	Methyl	Parenteral depot	Rapid stirring and colloid milling	Alam a et al	Indian J Pharm Sci. 2009
	prednisolone	suspension ^[98]	method, PEG 3350		

<u>www.wjpr.net</u> Vol 3, Issue 8, 2014.

7.0 HERBAL THERAPY FOR ASTHMA

The traditional medicinal systems and the availability of a large variety of medicinal plants in universe have greatly facilitated the researchers to develop keen interest in their screening, research and development. Ayurveda offers comprehensive approach to management of asthma by proper concern of the respiratory tract. This includes maintaining the nourishing functions of the lungs in providing oxygen to the body. Ayurvedic formulations used in the management of asthma combine herbs for breathing support with antioxidant herbs to support digestive, cardiac and nerve functions, expectorant herbs as well as soothing herbs. Pulmonary tonic, expectorant, antispasmodic, demulcents, antimicrobials, and Nervine support herbs are the components normally included in the ayurvedic system for management of asthma. Refer table 5 for anti-asthmatic plants.

Table 5: Anti-asthmatic plants and their active principles [99, 101, 110]

Sr. No.	Plant /family	Parts used	Active principle	Pharmacological action/indications	Marketed preparation
1	Achyranthes	Roots	Flavonoids, alkaloid	Asthma and	ASTHA-15
	aspera (Amaranthaceae)		s, saponins and triterpenoids	COPD	capsules
2	Aerva lanta Linn	Roots	Alkaloids	Bronchodilator,	NA
	(Amaranthaceae)	/Leaves		anti anaphylactic	
3	Ageratum	Leaves	Tannins and	Bronchodilator	NA
	conyzoides		flavonoids		
	(Asteraceae)				
4	Amburana	Trunk	Flavonoids	Bronchodilator	NA
	cearensis	bark or	isokaempferide		
	(Fabaceae)	seed			
5	Argemone	Seeds and	Alkaloids	Bronchial asthma	NA
	Mexicana	seed oil			
	(Papaveraceae)				
6	Asystasia	Leaves	Alkaloids,	Anti	NA
	gangetica		flavonoids, reducing	inflammatory,	
	(Acanthaceae)		sugars, and	management	
			triterpenoids	of asthma	
Sr.	Plant /family	Parts	Active principle	Pharmacological	Marketed
No.		used		action/	preparation
				indications	
7	Atropa	Leaves	Alkaloids, atropine	Asthma	NA
	belladonna		hyoscyamine,		
	(Solanaceae)		scopolamine		
8	Azadirachata	Leaves	Tannins, alkaloids,	Bronchitis,	NA
	indica (Meliaceae)		phenols, flavonoids,	bronchial asthma	
			glycosides		
9	Bacopa monnieri	Leaves	Alkaloids brahmine,	Mast cell	BACUP

1	L		herpestatine	inhibitor,	capsule
	(Scrophulariaceae)		nerpestatine	bronchitis	(keshav HC)
10	Boswellia serrata	Roots	Boswellin, boswellic	Leukotriene	NA
10	(Burseraceae)	Roots	acids	biosynthesis	IVA
	(Durscraceae)		acius	inhibitor	
11	Carrie and bear	Tanana	Elavanaida		KOFLET
11	Cassia sophera	Leaves	Flavonoids.	Cough associated	
10	(Caesalpiniaceae)	T	A 111-1-1-	with COPD	syrup
12	Casuarina	Leaves,	Alkaloids,	Antihistamine	NA
	equisetifolia Linn	wood and	phytosterols		
- 10	(Casuarinaceae)	bark			******
13	Clerodendrum	Roots and	Flavonoids	Bronchial asthma	KOFOL
	Serratum Linn	leafs			syrup
	(Verbenaceae)				(charak)
14	Cnidium	Seeds and	Osthole	Anti allergic,	NA
	monnieri	fruits		Asthma	
	(Umbelliferae)			management	
15	Crinum glaucum	Seeds	Alkaloids	Mast cell	NA
	(Amaryllidaceae)			stabilizer	
16	Curculigo	Rhizomes	Flavanoids, tannins,	Mast cell	NA
	orchioides Gaertn		glycosides, alkaloids	stabilizer,	
	(Amaryllidaceae)		saponnis	bronchial asthma	
17	Curcuma longa	Roots	Curcumin,	Mast Cell	ASTHA-15
	(Zingiberaceae)		Curcuminoids	Stabilizers	capsule
				bronchial asthma,	(dalmia)
				,	` ,
				whooping cough	
Sr.	Plant /family	Parts	Active principle		Marketed
Sr. No.	Plant /family	Parts used	Active principle	Pharmacological action/	
	Plant /family		Active principle	Pharmacological	Marketed preparation
	·		Active principle Alkaloids,	Pharmacological action/	
No.	Plant /family Cynodon dactylon (Poaceae)	used		Pharmacological action/indications	preparation
No.	Cynodon dactylon (Poaceae)	used	Alkaloids, flavanoids	Pharmacological action/indications Bronchitis, asthma	preparation
No. 18	Cynodon dactylon (Poaceae) Eclipta alba Linn	used Doob	Alkaloids,	Pharmacological action/indications Bronchitis, asthm	preparation NA
No. 18	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae)	Doob Leaves	Alkaloids, flavanoids Alkaloids, flavanoids	Pharmacological action/indications Bronchitis, asthma Bronchitis, asthma	nA NA
No. 18	Cynodon dactylon (Poaceae) Eclipta alba Linn	used Doob	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids,	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm	preparation NA
No. 18	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis	Doob Leaves Leaves,	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic	Pharmacological action/indications Bronchitis, asthma Bronchitis, asthma	nA NA
No. 18 19 20	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae)	Doob Leaves Leaves, fruits	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough	NA NA NA
No. 18	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta	Doob Leaves Leaves,	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell	nA NA
No. 18 19 20 21	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae)	Doob Leaves Leaves, fruits aerial part	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer	NA NA NA NA
No. 18 19 20	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis	Doob Leaves Leaves, fruits	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator	NA NA NA
No. 18 19 20 21 22	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae)	Doob Leaves Leaves, fruits aerial part Fruits	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma	NA NA NA NA NA NA
No. 18 19 20 21	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria	Doob Leaves Leaves, fruits aerial part	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator	NA NA NA NA
No. 18 19 20 21 22	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria parviflora	Doob Leaves Leaves, fruits aerial part Fruits	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and quercetin	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma	NA NA NA NA NA NA
No. 18 19 20 21 22 23	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria parviflora (Fumariaceae)	Leaves, fruits aerial part Fruits Leaves	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and quercetin glycosides.	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma Bronchitis	NA NA NA NA NA NA NA NA
No. 18 19 20 21 22	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria parviflora (Fumariaceae) Gmelina arborea	Doob Leaves Leaves, fruits aerial part Fruits	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and quercetin	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma	NA NA NA NA NA NA
No. 18 19 20 21 22 23	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria parviflora (Fumariaceae) Gmelina arborea Verbenaceae	Leaves Leaves, fruits aerial part Fruits Leaves Leaves	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and quercetin glycosides. Alkaloids	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma Bronchitis	NA
No. 18 19 20 21 22 23	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria parviflora (Fumariaceae) Gmelina arborea Verbenaceae Hemidesmus	Leaves, fruits aerial part Fruits Leaves	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and quercetin glycosides. Alkaloids Tannins, flavonoids,	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma Bronchitis Bronchitis	NA NA NA NA NA NA NA NA
No. 18 19 20 21 22 23	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria parviflora (Fumariaceae) Gmelina arborea Verbenaceae Hemidesmus indicus R.	Leaves Leaves, fruits aerial part Fruits Leaves Leaves	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and quercetin glycosides. Alkaloids Tannins, flavonoids, hyperoside, rutin	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma Bronchitis	NA
No. 18 19 20 21 22 23 24 25	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria parviflora (Fumariaceae) Gmelina arborea Verbenaceae Hemidesmus indicus R. (Asclepiadaceae)	Leaves Leaves, fruits aerial part Fruits Leaves Leaves Roots	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and quercetin glycosides. Alkaloids Tannins, flavonoids, hyperoside, rutin and coumarino	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma Bronchitis Chronic bronchitis	NA
No. 18 19 20 21 22 23	Cynodon dactylon (Poaceae) Eclipta alba Linn (Asteraceae) Emblica officinalis (Euphorbiaceae) Euphorbia hirta (Euphorbiaceae) Ficus bengalensis Linn (Moraceae) Fumaria parviflora (Fumariaceae) Gmelina arborea Verbenaceae Hemidesmus indicus R.	Leaves Leaves, fruits aerial part Fruits Leaves Leaves	Alkaloids, flavanoids Alkaloids, flavanoids Tannins, alkaloids, and phenolic compounds Sterols, alkaloids, tannins Alkaloids and flavon oids Kaempferol and quercetin glycosides. Alkaloids Tannins, flavonoids, hyperoside, rutin	Pharmacological action/indications Bronchitis, asthm a Bronchitis, asthm a Asthma, cough Mast cell stabilizer Bronchodilator Asthma Bronchitis Bronchitis	NA

No.	- Marie / Marining	used	Teare principle	action/ indications	preparation
40 Sr.	Plants from Zinziberaceae Plant /family	Rhizome Parts	NA Active principle	Expectorant, asthma Pharmacological	NA Marketed
39	Pinus roxburghii (Pinaceae)	Resin	Turpentine oil	Bronchitis	NA
38	Piper betel Linn (Piperaceae)	Leaves	Essential oil, alkaloids	Bronchodilator	NA
37	Phymatodes scolopendria (Polypodiaceae)	Bronchod ilato	Alkaloids	Bronchodilator	NA
36	Ocimum sanctum L Lamiaceae	leaves	Tannins, alkaloids, carbohydrates, phenols, flavonoids, glycosides	Bronchitis, Bronchial asthma	NA
36	Olea europea (Oleaceae)	Whole plant	Glycosides, alkaloid	Bronchial asthma	NA
35	Nyctanthes arbortristis (Oleaceae)	Leaves	Alkaloid nyctanthin	Bronchodilator	NA
34	Myrica esculenta Buch. (Myricaceae)	Bark	Phenol, tannin, flavonoid, saponin, and alkaloid	Bronchial asthma	NA
33	Mucuna pruriens (Fabaceae)	Seeds, Roots	alkaloids	mast cell stabiliser, Bronchial Asthma	NA
32	Momordica dioica (Cucurbitaceae)	Fruits and leaves	Alkaloids, steroids, triterpenoids and saponins	Asthma	NA
31	Mimosa pudica (Fabaceae)	Whole plant	Alkaloid mimosine, glycoside, flavonoid and tannis.	Bronchitis	NA
30	Mentha spicata L (Lamiaceae)	Leaves,	Phenols	Bronchitis	NA
Sr. No.	Plant /family	Parts used	Active principle	Pharmacological action/indications	Marketed preparation
29	Liquorice (Papilionaceae)	Leaves	Alkaloids	Bronchial asthma	Biocivas syr. (maximaa proyurveda)
28	Leptadenia reticulate (Asclepiadaceae)	Leaves	Alkaloid and steroids	Asthma, Rhinitis	NA
27	Lepidium sativum Linn (Cruciferae)	Roots	Alkaloids lepidine, glucotropaeolin anthracene glycosides	Hiccough asthma	NA
				bronchitis, asthma	syrup(zydus)

41	Premna obtusifolia (Verbenaceae) Semecarpus	Roots Fruit	Flavanoids, diterpenes and alkaloids Alkaloids,	Bronchitis Bronchitis	NA NA
	anacardium (Anacardiaceae)		flavonoids and phenols		
43	Striga oroban- chioides Benth (Scrophulariaceae)	Whole plant	Alkaloids	Mast cell stabilizing	NA
44	Sphaeranthus indicus Kurz (Asteraceae)	Whole plant	Glycoside, flavonoid, alkaloids, sterols	Bronchodilator	NA
45	Swertia chirata (Gentianaceae)	Whole plant	Xanthones, flavonoids, alkaloids	Bronchial asthma	NA
46	Terminalia belerica (Combretaceae)	Fruit	termilignan, thannilignan	Bronchodilator	HALEEZY Tablet/ syrup (Charak)
47	Terminalia chebula (Combretaceae)	Fruit	Chebulagic, chebulinic acid and corilagin	Antiallergic, Bronchodilator	KOFLET LOZ (Himalaya)
48	Tephrosia purpurea (Leguminosae)	Whole plant	Flavones, flavanones and phenylated flavonoids	Immunomodulato rs Bronchodilator	NA
49	Trachyspermum ammi L (Apiaceae)	Fruit	Essential oil, essential oil, with thymol, thymol	Bronchodilator	NA
50	Vitex negundo	Leaves	Alkaloids, flavonoids, tannins and a phenolic acid	Mast cell stabilizer, bronchodilator	NA

8.0 Review Of Guidelines/Reports

Table 6: Asthma guidelines/ Reports

Sr no	Title of doc	Authority	Current doc	Document
			and yr of	history
			publication	
1	Guidelines for diagnosis and	National Asthma Education	Expert panel	EPR 1-1991
	management of asthma ^[1]	and Prevention Program	report (EPR) 3,	EPR 2- 1997,
		(NAEPP) National Heart,	2007	EPR update
		Lung, and Blood Institute		2002
2	Global strategy for asthma	Global initiative for asthma	Global strategy	1995, 2002,
	management and	(GINA)	for asthma	2006
	prevention ^[2]		management and	
			prevention-2012	
3	Canadian asthma consensus	1999 Canadian Medical	Canadian	1999
	report, 1999 ^[9]	Association	asthma	
			consensus	

			report, 1999	
4	British Guideline on the	British Thoracic Society	Revised may	2003, 2008,
	Management of Asthma ^[10]		2011	2009
5	An Official American	American Thoracic Society	American	2009
	Thoracic Society/European		journal of	
	Respiratory Society		respiratory and	
	Statement: Asthma Control		critical care	
	and Exacerbations ^[7]		medicine 2009	

9 REFERENCES

- National Heart, Lung, and Blood Institute. National Asthma Education and Prevention Program Expert panel report 3: guidelines for the diagnosis and management of asthma—full report 2007. August 28, 2007. Available at: www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf. Accessed April, 2014.
- Global Initiative for Asthma. Global strategy for asthma management and prevention.
 2008 [Accessed April 2014]. Available from: www.ginasthma.com.
- 3. Global surveillance, prevention and control of chronic respiratory diseases : a comprehensive approach / Jean Bousquet and Nikolai Khaltaev, 2007.
- 4. National Heart, Lung and Blood Institute. Evidence table 11. Pharmacologic therapy: inhaled corticosteroids—combination therapy. Available at: www.nhlbi.nih.gov/guidelines/asthma/evid_tbls/11_icscombther.pdf. Accessed April, 2014.
- 5. Guidance for Industry Chronic Obstructive Pulmonary Disease: Developing Drugs for Treatment, draft guidance, Center for Drug Evaluation and Research (CDER) November 2007.
- 6. U.S. Food and Drug Administration. Public health advisory: Serevent Diskus (salmeterol xinafoate inhalation powder), Advair Diskus (fluticasone propionate & salmeterol inhalation powder), and Foradil Aerolizer (formoterol fumarate inhalation powder). Updated 5/2006. Available at: www.fda.gov/cder/drug/advisory/LABA.htm. Accessed April, 2014.
- 7. American Thoracic Society An Official American Thoracic Society/European Respiratory Society Statement: Asthma Control and Exacerbations American journal of respiratory and clinical care medicine vol 2009; (180): 59–99.
- 8. Richard A. Hansen, Gerald Gartlehner, Kathleen N. Lohr, Shannon Carson, Timothy Carey, Drug Class Review on Inhaled Corticosteroids 2006.
- 9. Canadian asthma consensus report, Canadian Medical Association, 1999.

- 10. British Thoracic Society Scottish Intercollegiate Guidelines Network, British Guideline on the Management of Asthma Quick Reference Guide, 2008, Revised 2012.
- 11. An Official American Thoracic Society Clinical Practice Guideline: Exercise-induced Bronchoconstriction Am J Respir Crit Care Med, 2013; 187 (9): 1016–1027.
- 12. Working Group Report on managing asthma during pregnancy: recommendations for pharmacologic treatment; update 2004.
- 13. P.J. Barnes, Pathophysiology of asthma, European Respiratory Monograph; 2003;23: 84–113.
- 14. Heidi Kalister, Medicine Cabinet Treating children with asthma, A review of drug therapies, WJM;2001(174): 415-420.
- 15. Guidelines Implementation Panel Report for: Expert Panel Report 3—Guidelines for the Diagnosis and Management of Asthma Partners Putting Guidelines Into Action 2008, NIH Publication No. 09-6147.
- 16. Cuilian Peng, Xiaonan Yan, Xing Tang, Preparation and characterization of a triamcinolone acetonide palmitate submicron emulsion, Asian Journal of Pharmaceutical Sciences 2010;5 (2): 61-73.
- 17. R. Bahri-Najafi, G. Khodarahmi, E. Yazdanian, Formulation and evaluation of triamcinolon acetonid bilayer buccal adhesive film, Research in pharmaceutical sciences, 2012;7(5): S343.
- 18. M. Kazemipour, S. Ormoz1, M. Ansari Formulation and evaluation of physicochemical properties of buccoadhesive tablet containing solid lipid nanoparticles (SLN) of triamcinolone acetonide, Research in pharmaceutical sciences, 2012;7(5): S213.
- 19. Murthy Tegka, Bala Vishnu Priya M, Satyanarayana V, Studies on influence of formulation/device variables on performance of budesonide metered dose inhalers, Asian Journal of Pharmaceutical Sciences 2011;6 (3–4): 159-165.
- 20. Nichakorn Sukasamea, Prapaporn Boonmea, Teerapol Srichana, Development of budesonide suspensions for use in an HFA pressurized metered dose inhaler, Science Asia;2011; 37: 31–37.
- 21. J. J. Parmar, D. J. Singh, Darshana D. Hegde, A. A. Lohade, P. S. Soni, A. Samad, and Mala D. Menon, Development and Evaluation of Inhalational Liposomal System of Budesonide for Better Management of Asthma, Indian journal of pharmaceutical sciences 2010 Jul-Aug; 72(4): 442–448.

- 22. Sonali Naikwade, Amrita Bajaj, Preparation and In Vitro Evaluation of Budesonide Spray Dried Microparticles for Pulmonary Delivery, Scientica Pharmaceutica Sci Pharm. Mar 2009; 77: 419–441.
- 23. Ganderton D, Lewis D, Davies R, Meakin B, Church T, The formulation and evaluation of a CFC-free Budesonide pressurised metered dose inhaler, Elsevier- Respiratory Medicine (2003) (Supplement D):S4–S9.
- 24. Marina Andrade-Lima; Luiz Fernando Ferreira Pereira; Ana Luisa Godoy Fernandes, Pharmaceutical equivalence of the combination formulation of budesonide and formoterol in a single capsule with a dry powder inhaler, Jornal Brasileiro de Pneumologia; 2012: 38(6).
- 25. Yu Jin Oh, Jangwook Lee, Ji Young Seo, Taiyoun Rhim, Sang-Heon Kim, Ho Joo Yoon, Kuen Yong Lee, Preparation of budesonide-loaded porous PLGA microparticles and their therapeutic efficacy in a murine asthma model, Journal of controlled release Volume 150, Issue 1, 2011; 150(1): 56–62.
- 26. Updesh B Lade, Yogesh M Amgaonkar, Rupesh V Chikhale, Dinesh M Biyani, Milind J Umekar, Design, Formulation and Evaluation of Transdermal Drug Delivery System of Budesonide, Scientific research, Pharmacology & Pharmacy, 2011; 2:199-211.
- 27. Gopala Krishna Murthy Talasila, Formulation and evaluation of CFC free inhalers for beclomethasone dipropionate, Brazilian Journal of Pharmaceutical Sciences 2013; 49(2):221-231.
- 28. Raisuddin Ali, Gaurav Mittal, Rashid Ali, Manish Kumar, Roop Kishan Khar, Farhan Jalees Ahmad and Aseem Bhatnagar, Development, characterisation and pharmacoscintigraphic evaluation of nano-fluticasone propionate dry powder inhalation as potential antidote against inhaled toxic gases, Journal of Microencapsulation, 2013: 1–13.
- 29. TEG Murthey Priya, M Bala Vishnu Satyanarayana, V Performance of CFC free propellant- driven MDI of fluticasone propionate Journal of scientific and industrial research, 2010;60: 866-871.
- 30. Kapileshwar Swain, RN Gupta, VK Arora, and Sharath Reddy, Formulation and Evaluation of Dry Powder Inhaler of Ciclesonide, Research Journal of Pharmaceutical, Biological and Chemical sciences, 2012;4(4): 1482.
- 31. Elbary AA, El-laithy HM, Tadros MI, Promising ternary dry powder inhaler formulations of cromolyn sodium: formulation and in vitro-in vivo evaluation, Arch Pharm Res. 2007;30(6):785-92.

- 32. Rakesh R, Anoop KR. Formulation and optimization of nano-sized ethosomes for enhanced transdermal delivery of cromolyn sodium, J Pharm Bioallied Sci. 2012; 4(4): 333–340.
- 33. Nagarsenker MS, Londhe VY, Preparation and evaluation of a liposomal formulation of sodium cromoglicate, International Journal of Pharmaceutics 2003; 251(1-2):49-56.
- 34. Martyn J. Clarke, Michael J. Tobyn and John N. Staniforth, The formulation of powder inhalation systems containing a high mass of nedocromil sodium trihydrate, Journal of Pharmaceutical Sciences February 2001; 90 (2): 213–223.
- 35. Yihong Qiu, Pramod Gupta, Jackie Briskin, Howard Cheskin, Susan Semla Sustained-release multiparticulate formulations of Zileuton, In vitro and in vivo evaluation, International Journal of Pharmaceutics November 1996;143(2):179–185.
- 36. Yihong Qiu, Howard Cheskin, Jackie Briskin, Kevin Engh, Sustained-release hydrophilic matrix tablets of zileuton: formulation and in vitro/in vivo studies Journal of Controlled Release 1997;45 (7): 249–256.
- 37. Pramod Gupta, John Cannon, Akwete AdjeiLiposomal formulations of ABT-077: In vitro characterization studies International Journal of Pharmaceutics, 1996; 140 (1): 16: 119–129.
- 38. Ajaykumar Patil, Taqiuddin Aman, Nithin Bhargava, Madhuri Turaga, Supriya Kulkarni, Formulation and evaluation of mouth dissolving tablets of montelukast sodium, Research Journal of Pharmaceutical, Biological and Chemical Sciences 2011;2(3):268-274.
- 39. Priyanka, Pragati Kumar B, Formulation development and evaluation of montelukast sodium chewable tablets, Journal of Chemical and Pharmaceutical Sciences, 2013; 6 (1): 35-40.
- 40. K Priyanka and A Abdul Hasan Sathali, preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles, J Young Pharm. 2012; 4(3): 129–137.
- 41. K Shruthi1, Ch Archana1, Preparation and evaluation of montelukast sodium chewable tablets using modified karaya gum, Pelagia Research Library Der Pharmacia Sinica, 2013; 4(4):125-135.
- 42. Rahul Saxena, T.A.Premchandani, R.C.Saxena formulation and evaluation of buccoadhesive tablet of montelukast sodium, Journal of Pharmaceutical and Clinical Research 2011; 4 (4):65-68.
- 43. Krishnaveni.G, Muthukumaran.M, Krishnamoorthy.B Krishnaveni.G et al; Development and Evaluation of Pulsatile Drug Delivery System containing Montelukast Sodium by

- Press Coated Tablet using natural Polysaccharides International Journal of Adv Pharm Genuine Research 2013; 1(2):41-51.
- 44. Kiran GB Kumar, Errola Mahesh, Formulation and Evaluation of Montelukast Sodium Fast Dissolving Tablets, Asian journal of biomedical and pharmaceutical sciences, 2012; 2 (14):75-82.
- 45. Mohammad Reza Rahmati, Alireza Vatanara, Ahmad Reza Parsian, Kambiz Gilani, Khosrow Malek Khosravi, Majid Darabi, Abdolhossein Rouholamini Najafabadi Effect of formulation ingredients on the physical characteristics of salmeterol xinafoate microparticles tailored by spray freeze drying Advanced Powder Technology; 2013;24(1): 36–42.
- 46. Shikhar Baboo, B.U. Jhansi, S.K Jain, Formulation and Evaluation of Fast Dissolving Tablets Salmeterol Inernational Journal of Chemistry and Pharmaceutical Sciences, International Journal of Chemistry and Pharmaceutical Sciences; 2013;1(8): 497-501.
- 47. Shah Vishal Vilas, Shah Nutan Dhanpal and Patil Smita Jagganath Formulation and Evaluation of Combination Dry Powder for Inhalation: Influence of Crystalline Excipient; 2013; 2 (1): 437-450.
- 48. Darragh Murnane, Gary P. Martin and Christopher Marriott, Dry powder formulations for inhalation of fluticasone propionate and salmeterol xinafoate microcrystals, Journal of Pharmaceutical Sciences 2009;98(2):503–515.
- 49. **Nutan Dhanpal Shah, Vishal Vilas Shah, Smita Jagganath Patil,** Process Optimization and Characterization of Combination Dry Powder for Inhalation: Perspective Approach to Traditional Formulation, Am. J. PharmTech Res.: 2012; 2(3): 707-722.
- D Purohit, A Trehan, V Arora, Development of room temperature stable formulation of formoterol fumarate/beclomethasone HFA pMDI, Indian J Pharm Sci; 2009;71(6):713-715.
- 51. Ikuhiro Kakubari, Norihiro Shinkai, Junji Kawakami, Akemi Uruno, Toshiyuki Takayasu, Hitoshi Yamauchi, Satoshi Takayama, Kozo Takayama, Formulation and evaluation of ethylene-vinyl acetate copolymer matrix patches containing formoterol fumarate, Biological & Pharmaceutical Bulletin; 2006;29(3):513-516.
- 52. Nam Muk Oh, Kyung Taek Oh, Yu Seok Youn, Deok-Keun Lee, Kyung-Hoi Cha, Eun Seong Lee, Development of tiotropium inhalation formulations for the treatment of chronic obstructive pulmonary disease, Journal of Pharmaceutical Investigation; 2013, 43(1): 55-57.

- 53. Mastiholimath VS, Dandagi PM, Jain SS, Gadad AP, Kulkarni AR, Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma, Int J Pharm., 2007;328(1):49-56.
- 54. L Pachuau, S Sarkar and B Mazumder, Formulation and evaluation of matrix microspheres for simultaneous delivery of salbutamol sulphate and Theophylline, Tropical Journal of Pharmaceutical Research; 2008;7(2): 995-1002.
- 55. S. Narasimha Murthy, Shobha Rani and R. Hiremath, Formulation and Evaluation of Controlled-Release Transdermal Patches of Theophylline–Salbutamol Sulfate;2001; 27(10): 1057-1062.
- 56. Tetsuo Hyashi, Hideyoshi Kanbe, Minoru Okada Suzuki, Yasuo Ikeda, Yoichi onuki, Tetsuo Kaneko, Takashi Sonobe, Formulation study and drug release mechanism of a new theophylline sustained release preperation, International Journal of Pharmaceutics, 2005;304(1-2): 91–101.
- 57. Wasfy M Obeidat, James C Price, Preparation and evaluation of Eudragit S 100 microspheres as pH-sensitive release preparations for piroxicam and theophylline using the emulsion-solvent evaporation method, Journal of Microencapsulation; 2006; 23(2):195-202.
- 58. Shinde Sunita S., Amol S. Shete, Patil Manisha V, J.I. Disouza, Formulation and Evaluation of Sustained Release Tablets using Direct Compression Method, Research Journal of Pharmacy and Technology; 2013; 6(6): 637-640.
- 59. Pandya Hima V, Patel Akshay R, Bodiwala Janki B, Formulation, Development and Evaluation of Doxophylline Sustained Release Matrix Tablet, International Research Journal of Pharmacy; 2011;2(12):204-207.
- 60. Taylor MK, Hickey AJ, VanOort M., Manufacture, characterization, and pharmacodynamic evaluation of engineered ipratropium bromide particles, Pharm Dev Technol; 2006; 11(3):321-36.
- 61. Bhavna, Farhan Jalees Ahmad, Gaurav Mittal, Gaurav K. Jain, Geena Malhotra, Roop K. Khar, A seem Bhatnagar, Nano-salbutamol dry powder inhalation: A new approach for treating broncho-constrictive conditions, European Journal of Pharmaceutics and Biopharmaceutics 2009;71(2):282–291.
- 62. Prabakaran D, Singh P, Kanaujia P, Jaganathan KS, Rawat A, Vyas SP, Modified push-pull osmotic system for simultaneous delivery of theophylline and salbutamol: development and in vitro characterization, Int J Pharm.; 2004;284(1-2):95-108.

- 63. Jain SK, Chourasia MK, Jain AK, Jain RK, Shrivastava AK, Development and characterization of mucoadhesive microspheres bearing salbutamol for nasal delivery, Drug Delivery; 2004; 11(2):113-22.
- 64. Nashwa A. El-Gendy, Nirmeen A. Sabry, Mai El-Attar, Emad Omar, Manal Mahmoud, Transdermal delivery of salbutamol sulphate: Formulation and evaluation Pharmaceutical development and technology, 2009;14(2): 216-225.
- 65. Prasanth Viswanadhan Vasantha, Ayarivan Puratchikody, and Ashok Kumar Balaraman, Development and characterization of Eudragit based mucoadhesive buccal patches of salbutamol sulphate, Saudi pharma Journal; 2011;19(4):207-214.
- 66. Dinal Patel, Nirav Patel, Vaishali Thakkar, Ashok Modi and Tejal Gandhi, Development and characterization of mucoadhesive microspheres of levosalbutamol sulphate, Indian Journal of Pharmaceutical Sciences and Research; 2013;4(5):1838-1851.
- 67. Hu Shujuan, Fan Yuling, Ji Yubin, Hu Shujuan, Fan Yuling, Ji Yubin, Preparation of levalbuterol hydrochloride orally disintegrating tablets, Shanghai Medical & Pharmaceutical Journal 2007.
- 68. D. Dinal Patel, V. Nirav Patel, and R. Tejal Gandhi, Preparation and evaluation of Levosalbutamol sulphate chitosan microsphere for the treatment of asthma, J Pharm Bioallied Sci; 2012; 4(1): S46–S47.
- 69. Selek H, Sahin S, Ercan MT, Sargon M, Hincal AA, Kas HS, Formulation and in vitro/in vivo evaluation of terbutaline sulphate incorporated in PLGA (25/75) and L-PLA microspheres, J Microencapsul. 2003 Mar-Apr; 20(2):261-71.
- 70. Mathew T and Agrawal S Design and development of fast Melting Tablets of Terbutaline Sulphate Research Journal of Chemical Sciences; 2011;1 (1): 105-110.
- 71. Peeush singhal, gajendra singh jadoun, mukesh sinha, shubhini A saraf, Formulation and Evaluation of Buccal Patches of Terbutaline Sulphate, International Journal of Research in Pharmaceutical Sciences; 2010; 1(4): 440-449.
- 72. Rajeswari Kola, Deepa Ramani N, Pragati Kumar B, Formulation and in-vitro evaluation of terbutaline sulphate sustained release tablets, Indian Journal of Research in Pharmacy and Biotechnology; 2013; 1 (5):621-624.
- 73. Ranabir Chandaa, Amit Roy, Sanjib Bahadurb, Suman Sahab, Sujoy Das, Ananta Choudhury, Formulation of terbutaline sulphate mucoadhesive sustained release oral tablets from natural materials, and in vitro-in vivo evaluation, Asian Journal of Pharmaceutical Sciences 2010;5 (4): 168-174.

- 74. Gururaj S.Kulkarni, N.G RaghavendraRao, D.Narasimhareddy, Formulation development and evaluation of terbutaline sulphate mucoadhesive buccal tablets, International research journal of pharmacy; 2013; 4(3):189-192.
- 75. PD Nakhat, AA Kondawar, IB Babla, LG Rathi, PG Yeole, Studies on buccoadhesive tablets of terbutaline sulphate, Indian journal of pharmaceutical sciences; 2007;69 (4): 505-510.
- 76. S. Dineshmohan, V. R. M. Gupta, K. Srikanth, Formulation development and evaluation of mouth dissolving tablets of terbutaline sulphate for bronchospasm, Der Pharmacia Lettre, 2014;6 (4):272-277.
- 77. Dr. N. G. Raghavendra Rao, Harsh Panchal and Mohd abdul Hadi, Formulation and evaluation of biphasic drug delivery system of terbutaline sulphate for chronotherapy, Int J Pharm Bio Sci; 2012;3(3): 626 637.
- 78. Ranabir Chanda; Lila Kanta Nath; Sontosh Mahapatra, Formulation Development of Oral Mucoadhesive Coated Terbutaline Sulphate Tablets Using Some Natural Materials Extracted from Edible Fruits Available in India, 2009;5(1): 3-12.
- 79. Mahajan AN, Pancholi SS, Formulation and Evaluation of Timed Delayed Capsule Device for Chronotherapeutic Delivery of Terbutaline Sulphate; Ars Pharm, 2010;50 (4): 215-223.
- 80. Debashrita Sahoo, Jharana Mallick, Durga Madhab Kar, Formulation, evaluation and spectroscopic validation of terbutaline sulphate mouth dissolving Drug delivery systems, Indian Journal of Pharmaceutical Science & Research, 2014;4 (2): 87-93.
- 81. Biswajit Basu, Development and characterization of terbutaline sulphate microsponge and its colonic delivery by compression coated tablets; Pharmaceut Anal Acta, 2013;4(2):87.
- 82. Shobhraj Malvi., Bhaskar Umarji, C. C. Patil, Preparation and Evaluation of Transdermal Patches of Terbutaline Sulphate, International Journal of Pharmaceutical Sciences, 2012;4(2):-1824-1834.
- 83. Deepak J Singh, Jayesh J Parmar, Darshana D Hegde, Atul A Lohade, Pritam Singh Soni, Abdul Samad, Mala D Menon Development and Evaluation of Dry Powder Inhalation System of Terbutaline Sulphate for Better Management of Asthma, International Journal of advances Pharmaceutical Sciences 2010: 1(2).
- 84. Mayank R Joshi, A N Misra, Liposomes of terbutaline sulphate: in vitro and in vivo studies; Indian journal of experimental biology, 1999; 37:881-887.

- 85. S. Bhagat, C. Rodrigues and RV. Keny, Design and development of rapid release mouth disintegrating terbutaline sulphate tablets-a comparative evaluation of superdisintegrants and their combinations, International Journal of Research in Pharmacy and Chemistry; 2014;4(3): 586-594.
- 86. JO Onyechi, D Ganderton, C Marriott, The formulation and evaluation of terbutaline sulphate and dry powder inhalation mixtures with the rotahaler device, Journal of Pharmaceutical and Allied Sciences, 2010; 7(3).
- 87. V. M. Vaidya, J. V. Manwar, N. M. Mahajan, and D. M. Sakarkar Design and In-Vitro Evaluation of Mucoadhesive Buccal Tablets of Terbutaline Sulphate, International Journal of PharmTech Research, 2009;1(3):588-597.
- 88. Vaishali patil, Dr. Chandrasekhara S, Dr. Nagesh C, Praveen K & Rekha S Pulsatile Drug Delivery System of Terbutaline Sulphate; Using pH Sensitive Polymer American Journal of Advanced Drug Delivery; 2013;1(4): 635-650.
- 89. Soha Sayed, Howida Kamal Ibrahim, Magdy Ibrahim Mohamed, and Mohamed Farid E-Milligi, Fast-Dissolving Sublingual Films of Terbutaline Sulfate: Formulation and *In Vitro/In Vivo* Evaluation, Molecular Pharmaceutics; 2013; *10* (8): 2942–2947.
- 90. Sanjay Kumar Bhupathi, Ryali Jithendra, Sowjanya Bandaru, Vindya Vasini Bhupathi, Design and Evaluation of Fast Dissolving Tablet of Terbutaline Sulphate, Research Journal of Pharmaceutical, Biological and Chemical Sciences; 2012; 3 (4): 138-154.
- 91. Rangasamy M, Ayyasamy B, Raju S, Gummadevelly S. Design and evaluation of the fast dissolving tablet of terbutaline sulphate, Asian J Pharm; 2009; 3(3):215-217.
- 92. Mohd Abdul Hadi, A. Srinivasa Rao, P. Vineeth, Md. Azharuddin, Formulation and Evaluation of Once Daily Sustained Release Matrix Tablets of Terbutaline Sulphate for the Treatment of Nocturnal Asthma Research Journal of Pharmaceutical Dosage Form and Technology, 2013;5(1): 28-33.
- 93. Gururaj S.Kulkarni, N.G RaghavendraRao, Upendra Kulkarni, Formulation development and evaluation of terbutaline sulphate mucoadhesive buccal tablets, Journal of Pharmaceutical Research 2013; 1(3).
- 94. Khattab I, Bandarkar F, Lila A, Formulation and optimization of sustained release terbutaline sulfate microspheres using response surface methodology. Drug discoveries & therapeutics; 2009;3(3): 123-135.
- 95. Tank Nimit A, Divakar Goli, GS Shantha Kumar, Tank Nishit A, Patel Priyanka, Patel Chirag R, Formulation and evaluation of fast dissolving tablets of hydrocortisone sodium

- Succinate Research Journal of Pharmaceutical, Biological and Chemical Sciences; 2011;2 (2): 817-837.
- 96. P. F. D'arcy, J. P. Griffin, J. S. Jenkins, W. F. Kirk and A. W. C. Peacock, Sustained-release formulation of prednisolone administered orally to man Journal of Pharmaceutical Sciences 2006; 60 (7): 1028–1033.
- 97. Chetan Singh Chauhan, Pushpendra Singh Naruka, Rajendrapal Singh Rathore, Viralkumar Badadwal, Formulation and evaluation of Prednisolone tablet for colon targeted drug delivery system, Journal of Chemical and Pharmaceutical Research 2010;2(4):993-998.
- 98. Alam A, Ahuja A, Baboota S, Gidwani SK, Ali J. Formulation and evaluation of pharmaceutically equivalent parenteral depot suspension of methyl prednisolone acetate.Indian J Pharm Sci. 2009 Jan;71(1):30-4. S. Ushasri, J. Ranjith kumar, CH. Sudha Bhargavi, L. Spoorthi and A. Pushpa Sai, Anti Asthmatic Herbal Drugs A Compilation international journal of pharmaceutical and chemical sciences 2013; 2 (1): 383-392.
- 99. C. S. Barik, S. K. Kanungo, J. R. Panda, N. K. Tripathy, Management of asthma by herbal therapy with special reference to polyherbal formulation, International journal of pharmaceutical sciences, 2014; 5(2): 73-94.
- 100. USP-NF, The official compendia of standards, 2007.
- 101. Tripathi KD. Essentials of medical pharmacology. 4th ed. New Delhi, India: Jaypee brothers medical Publishers Ltd; 2001.
- 102. Lachmann, L; Lieberman, H. A.; Kanig J. L,. Theory and Practice of Industrial Pharmacy, Varghese Publishing House; 1991, third edition: 589-618.
- 103. www.drugbank.ca.
- 104. www.sso.mims.com.
- 105. www.fda.gov.
- 106. www.thoracic.org.
- 107. www.cdc.gov.
- 108. http://www.nhlbi.nih.gov.
- 109. National Center for Health Statistics.
- 110. http://www.herbalextractsplus.com.