

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 5.045 ISSN 2277 - 7105

Volume 3, Issue 8, 01-11.

Research Article

OPTIMIZE ENVIRONMENTAL PRODUCTION CONDITIONS OF EXTRACELLULAR ALKALINE PHOSPHATASE FROM Bacillus sp. I

Rabab Omran*, Jaafar Anwer Qaddoori

Prof. Assist. Dr. of Biotechnology and Genetic Engineering, Faculty of Biology,
Department, College of Science, Babylon University Iraq.

Article Received on 28 July 2014,

Revised on 21 August 2014, Accepted on 16 Sept 2014

*Correspondence for Author

Dr. Rabab Omran

Prof. Assist. Dr. of
Biotechnology and Genetic
Engineering, Faculty of
Biology, Department,
College of Science,
Babylon University Iraq.

ABSTRACT

Background: Alkaline phosphatase (ALPase) has vital applications in many aspects of life as molecular biology and genetic engineering applications is used in non-radioactive detection techniques, probing, blotting and sequencing systems and in immunology, diagnosis, linked enzymes in ELISA. Thus it is commercially produced from calf intestine and *Escherichia coli*. Bacterial enzyme located in periplasmic space of *E.coli* cells that require costlier extraction method and complex downstream processes. Whereas *Bacillus spp.* capable to produce Extracellular ALPase which is extracted and purified from crude filtrate and the amount of ALPase is more and easier downstream processes. The present paper amid to isolate new bacterial

producer for ALPase regarded to *Bacillus sp.* and optimize some environmental conditions of enzyme production. Methodology: We used fifteen *Bacillus* isolates were isolated previously from different soil and waste sources were collected from polluted area, in Advanced Biotechnology and Genetic Engineering Laboratory, College of Science in Babylon University, Iraq. The production of extracellular ALPase enzymes were screened, in liquid media and the best isolate was selected and identified, subsequently it was grown in different cultural conditions as pH, temperature, incubation periods and aeration and agitation to optimize enzyme production. Results: twelve out of fifteen isolates had capable to produce extracellular ALPase enzymes at variant levels. The best one (*Bacillus sp.*I) was selected to produce the enzyme depending for its high value of specific activity of ALPase. After that the environmental conditions for enzyme production were optimize and results revealed that the optimum conditions of extracellular ALPase production in fermentation medium were pH 8.2, 40°C for four days in stand incubator. Conclusion: Most *Bacillus* isolate produce

extracellular ALPase enzymes that encourage more screening of *Bacillus* isolates for ALPase enzymes production especially that isolated from extreme environment sources as alkaliophilic and thermophilic sources.

KEY WORD: Extracellular Alkaline Phosphatase, *Bacillus*, *Production*, *Optimize* conditions.

INTRODUCTION

Alkaline phosphatase (ALPase; orthophosphoric-monoester phosphohydrolase, EC 3.1.3.1) is a hydrolase enzyme responsible for removing phosphate groups in the 5- and 3- positions from many types of molecules, including nucleotides, proteins, and alkaloids [1]. The catalytic activities of the enzyme are metal ion dependent, as Mg²⁺, Zn²⁺ and Co²⁺ that are the main activators. It has catalytic activity optima at alkaline PH [1,2,3]. Alkaline phosphatases have been identified in a wide variety of organisms from bacteria to mammals [3-6], bacterial strains like Escherichia coli, Vibrio sp., Shewanella sp. and Bacillus sp. [7-11]. Although the actual purpose of the enzyme is still not fully understood, the simple hypothesis, that it is a means for the bacteria to generate free phosphate groups for uptake and use [4], alkaline phosphatase plays a vital role in phosphate transportation and metabolism and is a most crucial enzyme for the survival of organisms under phosphate starvation [12]. In bacteria, the enzyme is located in the periplasmic space of Gram negative bacteria. Bacillus species produce alkaline phosphatase when phosphate becomes growth limiting as well as during sporulation, when phosphate supplies are abundant [12, 13]. Alkaline phosphatase of *Bacillus licheniformis* and Bacillus subtilis is located intracellularly and extracellularly [10 11, 13]. It has been shown that culturing conditions significantly affect such as metal ions [14, 15, 16] available N and P,temperature and pH [17,18].

The enzyme has many applications in molecular biology and genetic engineering that used primarily for dephosphorylation of 5'-phosphorylated DNA or RNA end and used in non-radioactive detection techniques, probing, blotting and sequencing systems. Also in immunology, diagnosis, linked enzymes in ELISA [19-24]. The aim of this research is screened some *Bacillus sp.* isolates for alkaline phosphatase production and optimization of some production conditions of selected isolate.

MATERIALS AND METHODS

Bacterial Isolates

The isolates were isolated previously in our laboratory from soil samples contaminated with gypsum and decomposed waste feather samples and soil of chicken cage samples. The isolates were preliminary characterized depending on microbiological, cultural characteristics and their reactions with catalase and oxidase tests. The microorganisms were maintained on nutrient agar slants at 4°C and were subcultured every 4 weeks.

The ability of extracellular alkaline phosphatase production from these isolates was screened using production liquid medium according to Pandey and Banik method $^{[25]}$. The production medium composed of (g/L) glucose 0.2%; peptone 0.5% , (NH₄)₂SO₄ 3.0 g/L, CaCl₂ 0.2 mmol , NaCl 0.08 mol , KCl 0.02 mol, NH₄Cl 0.02 mol ,MgSO₄ 1 mmol, ZnCl₂ 0.004 mmol, Na₃PO₄ 200 μ mol, Ca(NO)₃ 50 mmol $^{[26]}$. 10 ml of culture medium was taken in 50 ml Erlenmeyer flask with an initial pH maintained at 8, and Flasks were autoclaved at 121 °C for 20 min. The sterilized media was cooled at room temperature. 5% of *Bacillus sp.* suspension culture was inoculated in each flask and the flasks were incubated at 37°C for 4d. Subsequently the culture broths were centrifuged at 6000 rpm for 15 min at 4°C; the biomass was separated while the supernatant that containing extracellular ALPase was stored at -18°C for further analysis. The selected isolate was confirmed identification according to microbiological, cultural and biochemical characteristics $^{[27]}$

Assay of Alkaline Phosphatase

ALPase activity was measured by spectrophotometrically by monitoring the release of p-nitrophenol from p-nitrophenyl phosphate (pNPP) at 405nm according to modified method ^[26]. A typical reaction mixture contained 1.9 ml of 20 mM p-nitrophenyl phosphate (pNPP) diluted in 1 M diethanolamine buffer (pH 9.8) and 0.1ml of enzyme filtrate. The reaction was performed at 37°C for 5 min, and then was stopped by adding 50 μl of 4 M sodium hydroxide solution. The color intensity was measured spectrophotometrically at 405 nm against blank. Blank was prepared by replacing the enzyme with 0.1 ml distilled water. One unit of enzyme defined as the amount of enzyme required to liberate 1 μg orthophosphoric acid under assay conditions.

Preparation of Substrate

0.219 gm of para nitro phenyl phosphate (PNPP) were dissolved in 50ml of 1 M diethanolamine buffer (pH 9.8) as a substrate ^[26].

Protein Concentration Determination

The protein concentration was determined using Bradford method ^[28] with bovine serum albumin as the standard protein.

Effect of Some Environmental Conditions on Extracellular Alkaline Phosphatase Productions

The effect of initial pH on alkaline phosphatase production was observed by adjusting initial pH of fermentation medium in the range 5-12 by using available buffers and incubation at temperature 37°C for 4d

The effect of temperature on productivity of alkaline phosphatase was checked by incubation fermentation media of *Bacillus sp.I* in temperature ranging from 20 to 55°C for 4d.

The optimal incubation period of alkaline phosphatase was determined by incubation of fermentation media of *Bacillus sp.I* for different periods ranging 1-7d under optimal conditions.

The effect of aeration and agitation on productivity of alkaline phosphatase was checked by incubation of fermentation media of *Bacillus sp.I* in shaker incubator at agitation speed 120 rpm, also it was incubated in stand incubator under optimal conditions.

RESULTS AND DISCUSSION

Bacillus isolates were subjected to screening of extracellular ALPase production were isolated previously from different sources (Table 1) in Biotechnology and Genetic engineering Laboratory / College of Science / Babylon University, twelve out of fifteen isolate appeared variable abilities to produce the extracellular ALPase enzyme in liquid medium, this variation may be due to the differences among bacterial species and the sources of bacterial isolation as well as the genetic content of these isolates, cultural media and environmental conditions of screening [10,11,13]. Because of the presence many members or types of alkaline phosphatase group such as bound ALPase enzymes with bacterial cell membrane or Free enzyme that secreted to extracellular in Gram positive bacteria or located in periplasmic space of Gram negative bacteria or located intracellularly [10-13]. In the present study, liquid production medium was used in the screening to produce extracellular ALPase from Bacillus isolates instead of primary screening solid media that cannot be differentiate between the types of ALPases [26]

Table (1): Screening of extracellular alkaline phosphatase from Bacillus isolates

No.	The isolates	ALPase activity (U/ml)	Protein concen. (mg/ml)	Specific activity U/mg of protein	Sample source and date of isolation
1	Bacillus sp. Fea 89	8	42.2	0.19	decomposed waste feather, 2012
2	Bacillus sp. Fea 8b	19	32.75	0.58	decomposed waste feather, 2012
3	Bacillus sp. Fea ab	0	150	0	decomposed waste feather, 2012
4	Bacillus sp. R18	170	150	1 .13	soil of chicken cage, 2012
5	Bacillus sp. R19	160	105.8	1.5	soil of chicken cage, 2012
6	Bacillus sp. R20	0	101.05	0	soil of chicken cage, 2012
8	Bacillus sp. S14	68	102.6	0.66	soil of chicken cage, 2012
9	Bacillus sp. S20	0	103.3	0	soil of chicken cage, 2011
10	Bacillus sp. S25	100	150	0.66	soil of chicken cage, 2011
11	Bacillus sp. S24	108	150	0.72	soil of chicken cage, 2011
12	Bacillus sp. 1	1166	97.5	11.95	Soil contaminated with gypsum, 2010
13	Bacillus sp. 40A	1123.85	118.3	9.5	Soil contaminated with gypsum, 2010
14	Bacillus sp. 281	162	150	1.08	Soil contaminated with gypsum, 2010
15	Bacillus sp. 282	618	150	4.12	Soil contaminated with gypsum, 2010

Depending on the value of specific activity of producing ALPase from the isolates, the isolate has the higher one (*Bacillus sp.* 1) was selected to produce ALPase.

Bacillus sp. I was re-identified depending on morphological and biochemical characteristics according to Bergey's Manual of determinative Bacteriology ^[27]. The isolate is Gram positive bacilli and arrange in single cells, pair or short chain. It form ellipsoidal spore located in center or sub-center of the cell. It has circular white to creamy color colonies with smooth texture and regular edge, its diameter 4-5mm when it was grown on nutrient agar medium for 24h. the isolate is motile and showed positive reactions to catalase and oxidase tests and it produced protease and amylase and appeared ability to gelatin liquefaction, citrate utilization and ferment carbohydrates and sugar as Glucose, Fructose, Maltose, Xylose, Sucrose and

Arabinose, whereas it cannot ferment Lactose, Melezitose and Rhamnose. *Bacillus sp. I* has ability to grow in different temperatures (15-55°C), pHs (5-12) and in the presence different concentrations of sodium chloride ranged from 0 to 20%. The optimal conditions for growing are 37°C, pH8.5 and 2% NaCl.

Some optimal conditions for ALPase production were studied and the results revealed that the optimum initial pH of production medium was approximately 8.2 to 8.3 that get maximal production and the enzyme produced in the alkaline medium ranged from 8 to 9 at 37°C for 4d (Fig.1). The level of enzyme production became limited at acid and neutral pHs (5-7) and extreme alkaline pH (10-12). *Bacillus sp. I* showed optimum productivity of alkaline phosphatase at pH 8.2 and this result was similar to that of optimum pH of alkaline Phosphatases produced from *E.coli* (pH 8.3) [^{29]} and *B. licheniformis* MTCC1483 (pH8) ^[27]. The effects of pH on solubility of nutritional medium compositions that available for bacteria growth, as well as ion state and stability of biological compounds that produced from fermentation processes ^[30].

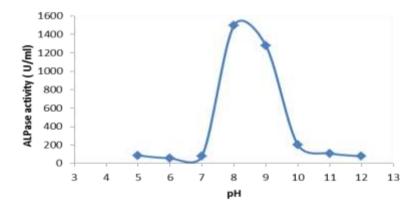


Fig.1. The effect of pH on ALPase production from Bacillus sp. I

The bacterial isolate was grown in production medium at 37°C for 4d.

The optimal temperature for maximal production at 40°C and the enzyme produced in the range from 30 to 40 °C at pH8 for 4d (Fig.2). The level of ALPase production became limited at the temperature less than 30°C and above 40°C but the production stopped at 55°C. *Bacillus sp* showed optimum productivity of alkaline phosphatase at temperature 40°C and this result was similar to that of alkaline phosphatase from Psychrophilic bacteria [31] and *E. coli* [32]. Temperature plays a vital role in producing of enzyme from microorganisms by effect in solubility of oxygen in nutritional medium, increasing of kinetic energy of

molecules and speed of enzymatic reaction in the cell , bacterial growth and its metabolism [30]

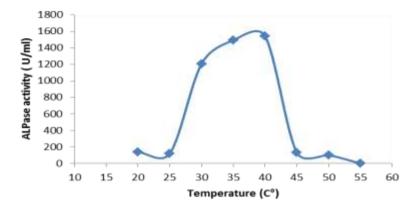


Fig.2. The effect of temperature on ALPase production from Bacillus sp. I

The bacterial isolate was grown in production medium at pH8.2 for 4d.

The bacterial cells produced the ALPase during sporulation stage at stationary phase after two days (Fig.3) and the production was reaching maximum level after four days, subsequently the production were reduced that indicate the optimal incubation period was four days under optimal conditions. *Bacillus* species produce alkaline phosphatase when phosphate becomes growth limiting as well as during sporulation, when phosphate supplies are abundant [1,25]

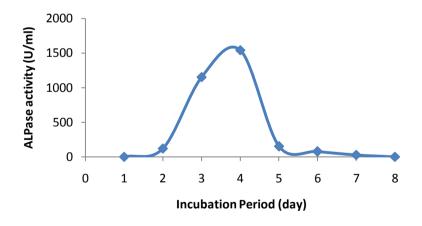


Fig.3. The effect of incubation period on ALPase production from Bacillus sp. I

The bacterial isolate was grown in production medium at pH8.2, 40°C.

The effect of aeration and agitation was checked on enzyme production by incubate bacterial culture in the shaker incubator at 120 rpm under optimal conditions and in stand incubator, the results revealed that ALPase produced in stand conditions higher than in shaker

conditions (Fig.4) that may be due to the sensitivity of enzyme protein to agitation or oxidation^[25].

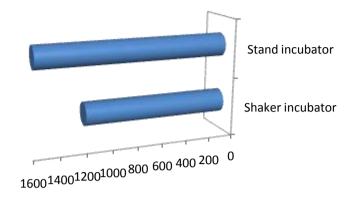


Fig.4. The effect of aeration and agitation on ALPase production from Bacillus sp. I

The bacterial isolate was grown in production medium at pH8, 40°C for 4d.

CONCLUSION

The genus of *Bacillus* is mostly produced extracellular ALPase enzymes that can be harvested from the commercial production medium in comparison with other sources of alkaline phosphatase that located intracellular such as *E.coli* and calf intestine which are comparatively costlier and have very complex downstream processes.

REFERENCES

- 1. Holander VP. Acid Phosphatases. In: Enzymes. P.D. Boyer (Ed.) Academic Press, NewYork;1971; 450-498.
- 2. Mori S, Okamoto M, Nishibori M, Ichimura M, Sakiyama J, and Endo H. Purification and characterization of alkaline phosphatase from *Bacillus stearothermophilus*. Biotechnol. 1999; 29: 235-239.
- 3. Rina M, Pozidis C, Mavromatis K, Tzanodaskalaki M, Kokkinidis M, and Bouriotis V. Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. Europian J. Biochem. 2000; 267:1230-1238.
- 4. Oh WS, Im YS, Yeon KY, Yoon YJ and Kim JW. Phosphate and Carbon Source Regulation of Alkaline phosphatase and Phospholipase in *Vibrio vulnificus*. J. Microbiol. 2007;45: 311-317.
- 5. Simao AMS, Beloti MM, Rosa AL, Oliveria PT, Granjeiro JM, Pizauro JM and Ciancaglini P. Culture of osteogenic cells from human alveolar bone: A useful source of alkaline phosphatase. Cell Biol. Int. 2007; 31: 1405-1413.

- 6. Sasajima Y, Iwasaki R, Tsumoto K, Kumagai I, Ihara M and Ueda, H. Expression of antibody variable region-human alkaline phosphatase fusion proteins in mammalian cells. J. Immunol.l Meth. 2010; 361:57-63.
- Junior, AB, Guimaraes LHS, Terenzi HF, Jorge JA, Leone FA and Polizeli MLTM. Purification and Biochemical Characterization of Thermostable Alkaline Phosphatases Produced by *Rhizopusmicrosporus var. rhizopodiformis*. Folia. Microbiol. 2008;53:509-516.
- 8. Huang Q and Shindo H. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol. Biochem. 2000; 32: 1885–1892.
- 9. Asgeirsson B and Andresson OS. Primary structure of cold-adapted alkaline phosphatase from a *Vibrio sp.* as deduced from the nucleotide gene sequence. Biochim. Biophys. Acta, 2001;1549: 99-111.
- 10. Ishida Y, Tsuruta H, Tsuneta S, Uno T, Watanabe K and Aizono, Y. Characteristics of psychrophilic alkaline phosphatase. Biosci. Biotechnol. Biochem. 1998; 62:2246-2250.
- 11. Mahesh M, Guleria N, Rajesh TS, Somashekhar R and Puttaiah ET. Isolation and characterization of extracellular thermostable alkaline phosphatase enzyme from *Bacillus spp*. Int. J. Appl. Biol. Pharm. Tech.,2010;1:21-33.
- 12. Michaeliss and Beckwith J. Mechanism of incorporation of cell envelope proteins in *Escherichia coli*. Ann. Rev. Microbiol. 1982;36:435-465.
- 13. Glynn JA, Schaffel SD, McNicholas JM and Hulett FM. Biochemical localization of alkaline phosphatase of *Bacillus licheniformis* as a function of culture age. J. Bacteriology.1977;129:1010-1019.
- 14. Spencer DB, Chen CP and Hulett FM.Effect of cobalt on synthesis and activation of *Bacillus licheniformis* alkaline phosphatase.J Bacteriol.1981;145:926-933.
- 15. Flint KP and Hopton JW. Substrate specificity and ion phosphatases of waters and sewage sludges inhibition of bacterial and particle associated alkaline. Eur. J. Appl Microbiol. 1977;4:195-204.
- 16. Huang Q and Shindo H. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol. Biochem. 2000; 32:1885–1892.
- 17. Olander LP and Vitousek PM. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochem. 2000;49: 175–190.

- 18. Criquet S, Ferre E, Farnet AM and Lepetit J. Annual dynamics of phosphatase activities in an evergreen oak litter influence of biotic and abiotic factors. Soil Biol.biochem., 2004; 36:1111-1118.
- 19. Chen CC, Tai YC, Shen SC, Tu YY, Wu MC and Chang HM. Detection of alkaline phosphatase by competitive indirect ELISA using immunoglobulin in yolk(IgY) specific against bovine milk alkaline phosphatase. Food Chem.2006; 95:213-220.
- 20. Sun L, Ghosh I, Barshevsky T, Kochinyan S and Xu MQ. Design, preparation and use of ligated phosphoproteins: A novel approach to study protein phosphatases by dot blot array, ELISA and Western blot assays. Methods. 2007;42:220-226.
- 21. Muginova SV, Zhavoronkova AM, Polyakov AE and Shekhovtsova T. Clinical analysis for the determination of their cofactors; Zinc and Magnesium application of alkaline phosphatases from different sources in pharmaceutical ions. Analytical Sci. 2007;23: 357-363.
- 22. Baranov K, Volkova O, Chikaev N, Mechetina L, Laktionov P, Najakshin A and Taranin A. A direct antigen-binding assay for detection of antibodies against native epitopes using alkaline phosphatase-tagged proteins. J. Immunol. Meth. 2008;332:73-81.
- 23. Nilgiriwala KS, Alahari A, Rao AS. and Apte, SK. Cloning and over expression of Alkaline Phosphatase Pho K from *Sphingomonas sp.* Strain BSAR-1 for Bioprecipitation of Uranium from Alkaline Solutions. Appl. Envir. Microbiol. 2008;74: 5516-5523.
- 24. Sasajima Y, Iwasaki R, Tsumoto K, Kumagai I, Ihara M and Ueda H. Expression of antibody variable region-human alkaline phosphatase fusion proteins in mammalian cells. J. Immunol. Meth.2010; 361:57-63.
- 25. Pandey SK and Banik RM. Optimization of process parameters for alkaline phosphatase production by *Bacillus licheniformis* using response surface methodology. J. Agri. echnology. 2010; 6(4):721-732.
- 26. Dhaked RK, Alam SI, Dixit A and Singh L. Purification and characterization of thermo-labile alkaline phosphatase from an Antarctic psychrotolerant *Bacillus sp. P9*. Enzyme and Microbial Technol. 2005;36: 855-861.
- 27. Vos PD, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH and Whitman WB. BERGEY'S MANUAL OF Systematic Bacteriology, Second Edition Vol.3, The Firmicutes, Springer is part of Springer Science+Business Media (www.springer.com) 2009; 21-228.
- 28. Bradford M. A rapid and sensitive method for the quantitation of migrogram quintities of protein using the principle of protein-dye binding. Ana.Biochem. 1976; 72: 248-254.

- 29. Danielle A, Raymond P. Optimized extracellular production of alkaline phosphatase by lky mutants of Escherichia coli K12. Appl. Microbiol. Biotechnol.1984;19:5-12.
- 30. Bull AT and Bushnell ME. Environmental control of fungal growth. In: The Filamentous Fungi (JE Smith and DR Berry eds.) 1976; Vol. 2:1- 26.
- 31. Ishida Y, Tsuruta H, Tsuneta S, Uno T, Watanabe K, Aizono Y. Characteristics of psychrophilic alkaline phosphatase. Biosci Biotechnol Biochem. 1998;62:50-2236.
- 32. Dahot MU, Memon AN, Hanif MN and Ayub SA. Optimal conditions for alkaline phosphatase secretion by *Pencillium expansum*. J. Pharm. Univ. Kar.1986; 4: 89-93.