

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 5.045

Volume 3, Issue 10, 1667-1675.

Research Article

ISSN 2277-7105

PHARMACOGNOSTICAL AND PHYTOCHEMICAL STUDY OF SHODHANA PROCESS OF SWETAGUNJA (WHITE VARIETY OF ABRUS PRECATORIOUS)

*Deshmukh Arun Rang rao¹, Kharat Ravindra Sahebrao², **Deshpande Manasi M

¹Designation: Associate Professor, Department of Dravyagunavigyan, MUPS college of ayurved, Degaon, Risod.

²Associate Professor, Department of Dravyagunavigyan, CSMSS Ayurved Mahavidyalaya, kanchanwadi, Aurangabad. 431005.

³Guide, Professor and HOD, Department of Dravyagunavigyan, Bharti Vidyapeeths College of Ayurved, Katraj, Pune.

Article Received on 14 October 2014,

Revised on 08 Nov 2014, Accepted on 01 Dec 2014

*Correspondence for Author Dr. Deshmukh Arun Rang rao

Designation: Associate Professor, Department of Dravyagunavigyan, MUPS college of ayurved, Degaon, Risod.

ABSTRACT

The use of plants, animal products and minerals as a source of medicine and food is as old as humanity itself. Ancients discovered medicinal properties of them, developed folk and herbal medicines and finally gave rise to traditional system of herbal medicine such as *Ayurveda*. *Swetagunja* is included in *Upavisha Gana* of *Bhaprakash Nighantu* as it has toxic effect. But if it is used by *Yukti* it is useful in various *Kasthasadhya* diseases like *Mutrakruccha*, *Jwara* and *Vajikaran*. *Shodhana* process is said to be very effective to discard the poisonous effects, but it is necessary to create an evidence by employing modern scientific techniques.

KEYWORDS: Abrus precatorious, Swetagunja, Shodhana, detoxification.

INTRODUCTION

The use of plants, animal products and minerals as a source of medicine and food is as old as humanity itself. Ancients discovered medicinal properties of them, developed folk and herbal medicines and finally gave rise to traditional system of herbal medicine such as *Ayurveda*. *Charaka* has described *Chiktsa Chatuspad* as *Vaidya*, *Dravya*, *Paricharak* and *Rugna*. he has

given prime importance to *Vaidya* followed by *Dravya* .he also quotes that each and every *Dravya* of this universe has its own medicinal properties if administered by *Yukti Pramana*.^[1] *Swetagunja* is included in *Upavisha Gana* of *Bhaprakash Nighantu* as it has toxic effect. But if it is used by *Yukti* it is useful in various *Kasthasadhya* diseases like *Mutrakruccha,Jwara And Vajikaran*.^[2] *Shodhana* process is said to be very effective to discard the poisonous effects. ^[3] But it is necessary to create evidence by employing modern scientific techniques. The study was carried out at *Bharti vidyapeet's* college of *Ayurved* in the year 2002 as his post graduate dissertation.

Aims and Objectives

To evaluate the Shodhana process of Swetagunja.

To make comparison of standardization factors of Swetagunja before and after Shodhana.

To collect and compile, ayurvedic as well as modern literature on Swetagunja.

MATERIALS AND METHODS

Type of Study: Experimental Study

Materials

- 1. Swetagunja seeds
- 2. Cow Milk
- 3. Materials required performing analytical tests.
- 4. Materials required for Shodhana Process.

Methodology

Collection: *Swetagunja* seeds were self-collected from *Mehekar* which is situated in *Buldhana* District of *Maharashtra*. It is hot tropical area and according to types of *Desha* described in *Ayurved* may be called as *Sadharan Desha*. ^[4] *Godugdha* was collected from a milkman from *Sinhagarh* to assure quality.

Shodhana Process

There are two *Shodhana* processes described in *Rasa-Tarangini* for *Swetagunja Shodhana*.in first procedure, fresh seeds of *Swetagunja* were crushed and kept in double layred cloth by making its *Pottali*.this *Pottali* was subjected to *Swedana* in *Dolayantra* with *Godugdha* for six hours. ^[5]

In second procedure, *Swetagunja* seeds were subject to *Swedana* in *Dolayantra* with *Kanji* for three hours. ^[6]

As the *Swetagunja* is stated to be taken with milk in various *Kalpas* the first procedure was selected. The fresh seeds of *Swetagunja* were collected and crushed to form *Yavakuta Churna* of mesh 44.100 gms of *Bharad Churna* was kept in double layred cotton cloth and *Pottali* was made. *Dolayantra* was preapered .*Pottali* was tied in *Dolayantra* without touching to any side.milk was added in *Dolayantra* In such a manner that *Pottali* should lie in between milk level.then *Dolayantra* was kept on *Agni* for next six hours.by keeping caution that the *Pottali* should lie in between milk level till the end of procedure. After six hours *Dolayantra* was removed from *Agni* and *Potalli* was opened to obtain *Shodit Swetagunja* seeds.these *Swetagunja* seeds were washed with warm water and dried in shade before analysis. [7]

Analytical Study

Physical and chemical analysis of following samples was done.

- 1. Swetagunja seeds before Shodhana
- 2. Milk before Shodhana
- 3. Swetagunja seeds after Shodhana
- 4. Milk after Shodhana

Organoleptic study [8]

Organoleptic Evolution means conclusions drawn from studies resulted due to impressions on organs of senses. *Dwivedi* et al has laid down certain parameters and Performa to identify drugs on the basis of *Panchendriya Pariksha*.

Physical analysis [9]

% moisture, %total ash, %acid soluble ash, water soluble ash, Extractive values, and pH of all the four samples were performed according to the official methods prescribed in WHO guidelines on quality control methods for medicinal plant materials and *Ayurvedic* pharmacopeia

Chemical Analysis [10]

All the four samples were extracted with different solvents, viz. chloroform, ethanol, benzene and water. The extracts were then subjected to phytochemical screening as per standard methods prescribed in literature. Thin layer chromatography profile TLC of different extracts was carried out as per API guidelines.

RESULTS

Organoleptic Study: Oragnoleptic findings Before and after *Shodhana* process of all samples have been described in Table 1 and Table 2.

Oragnoleptic findings Before Shodhana.

S. No	Organoleptic Findings	Swetagunja Before Shodhana	Milk before Shodhana
1	Shabda	Avyakta(none)	Avishesh (Non specific)
2	Sparsha	Kathin, Slakshana (hard)	Snigdha(oily)
3	Roopa(shape)	Pitabhasweta(yellowish)	Sweta
4	Rasa (taste)	Tikta-Kashaya	Madhura
5	Gandha(odor)	Typical	Non specific

Oragnoleptic findings After Shodhana.

S. No	Organoleptic Findings	Swetagunja After Shodhana	Milk After Shodhana
1	Shabda	Avyakta(none)	Avishesh(Non specific)
2	Sparsha	Snigdha,Mridu	Snigdha(oily)
3	Roopa(shape)	Dhusar rakta	Dhusar rakta
4	Rasa (taste)	Tikta-Madhur	-
5	Gandha(odor)	Smell of Ghee	Burnt smell

Physical analysis

Results of % moisture, %total ash, %acid soluble ash, water soluble ash, Extractive values, and pH are given in table 3

S. No	Parameters	Swetagunja Before Shodhana	Swetagunja After Shodhana
1.	% Moisture	09.3472	09.3521
2.	% Total Ash	02.9500	02.5985
3.	% Acid insoluble ash	00.4651	00.4900
4.	% water soluble ash	01.6540	0.7228
5.	% Ethanol soluble extractive	03.1505	04.4802
6.	% benzene soluble extractive	0.3747	02.1420
7.	% chloroform Soluble extractive	00.5060	00.4960
8.	% Water soluble extractive	16.9523	15.0091
9.	pH value	6.674	6.241

Chemical analysis

In the preliminary phytochemical screening for commonly occurring plant constituents was carried using the maceration procedure. The testing was carried out on residue obtained by evaporation of water extract of drug. Results of phytochemical screening are listed in the table 4.

S. No	Constituents	Swetagunja Before Shodhana	Swetagunja After Shodhana
1.	Test for Alkaloids	Present	Present
2.	Test for Sugar	Present	Present
3.	Test for Amino acid	Present	Present
4.	Test for Flavonoids	Present	Present
5.	Test for Calcium	Present	Present
6.	Test for Nitrogen	Present	Present
7.	Test for steroids	Present	Present
8.	Test for tannins	Absent	Absent
9.	Test for proteins	Present	Present

Test for Toxic albumin and globulin

Heat coagulation test was performed to detect toxic albumin and globulin before and after *Shodhana* the results are tabulated in table no.5

S. No		Swetagunja Before Shodhana	Swetagunja After Shodhana
1	Test for toxic albumin and globulin	Present	Absent

Thin layer chromatography profile

Methanol extract of *Swetagunja and milk, before and after shodhana* were subjected to TLC analysis using Tolune: Ethyle acetate (8:2) and Methanol:Chloroform(1:9) as a solvent system. The Rf values of the resolved components were determined and detailed results of number of components present are given in table 6.

					o of Spots	Observed	
Sample	Extract	Adsorbant	Solvent system	254	365 nm	Iodine	Rf Values
				nm	light	vapour	
Swatagunia							0.98(blue),
Swetagunja Before	Methanol	Silica gel	Tolune: Ethyle	1	2	2	0.45(blue),
Shodhana	Wiemanoi	"G"	acetate (8:2)	1	2	2	0.98(yellow),
Snoanana							0.66,0.77(blue)
Swetagunja		Cilian cal	Toluna, Ethyla				0.97(blue),
After	Methanol	Silica gel "G"	Tolune: Ethyle	1	1	3	0.76(blue), 0.45,
Shodhana		"G" acetate (8:2)				0.56, 0.97(yellow)	
Milk Before	Methanol	Silica gel	Methanol:Chloroform	1	2	2	0.05(violet),0.05(blue)
Shodhana	Methanoi	60F 254	(1:9)	1	1 2	2	,0.99(bluish-white)
Milk After	Methanol	Silica gel	Methanol:Chloroform	1	2	2	0.05(violet),
Shodhana	Memanor	60F 254 (1:9)	1	2	2	0.05(pink),0.99(bluish)	

Protein content

S. No	Particular	% protein
1	Protein content of Swetagunja Before Shodhana	9.52
2	Protein content of Milk Before Shodhana	4.42
3	Protein content of Swetagunja after Shodhana	8.93
4	Protein content of Milk after Shodhana	5.61

DISCUSSION

To get a genuine sample the market drug was not used for the experiment but the seeds of *Swetagunja* Were collected personally to assure genuine quality and mature sample also the *Godugdha* was collected from one milkman *Sinhgarh* road *Pune* personally to assure genunity.

In organoleptic study *Swetagunja* and milk has shown significant difference in *Sparsh*, *Roopa*, *Rasa* and *Gandha* after *Shodhana*.

There was no significant difference in physical analysis of *Swetagunja* seeds before and after *Shodhana* in terms of mosture value, ash value, acid insoluble ash, water soluble ash, water soluble extractive, benzene soluble extractive, ethanol soluble extractive, chloroform soluble extractive. so we eleucited that there was no effect on in organic content s of seeds after *Shodhana* process.

Ph of milk was decreased after *Shodhana* .which indicates change in physical properties of milk due to *Shodhana*.

In chemical analysis, prelimnary phytochemical screenig for commanaly occuring constituents was carried out using the aqueous extract of the seeds before and after *Shodhana* process. qualitative analysis for alkoloides, amino acids, flavonoides, proteins, calcium, nitrogen and steroids were carried out. Both before and after *Shodhana* extracts showed the presence of these constituents while tannins were absent in seeds. *Swetagunja* showed presence of sugar.

In the test for toxic albumins and globulins *Swetagunja* showed presence before *Shodhana* and absence after *Shodhana*.

The quantitative estimation of proteins of seed extract and milk before and after *Shodhana* and after *Shodhana* was carred out. *Abrin* is one of the major chemical constituents of *Swetagunja* seeds which makes highly toxic to *Swetagunja* seeds. it is type of toxalbumin (protein) The protein content was estimated by nitrogen content estimation there was significant decrease in protein content of seeds from 6.73 % to 6.51 % in *Swetagunja*. The protein content of *Godugdha* was increased after *Shodhan* from 4.76 % to 7.99% in milk used for *Shodhana* of *Swetagunja*.

We concluded that the proteins might have infiltrated from seeds into the milk also due to heating, there might be evaporation of water from milk and thus relatively concentrating the proteins in the milk.

In the thin layer chromatography *Swetagunja* seeds before and after *Shodhana* were much identical and thin layer chromatography of milk which were also identical before *Shodhana* gave an additional spot at rf 0.01, indicating there is addition of some chemical constituents of *Swetagunja* after *Shodhana*.

From above studies and observations we concluded that the seeds of *Abrus precatorius* has detoxified from toxic albumin and globulin after *Shodhana*.

Picture 1-Swetagunja (Abrus precatorious).

Picture 2-Swetagunja before Shodhan.

Picture 3- Swetagunja after Shodhan.

CONCLUSION

In this study following conclusions can be drawn There is change in organoleptic characters of both type of *Swetagunja* and milk due to *Shodhana*.change in physical characters of both type of *Swetagunja* and milk due to *Shodhana* Toxic albumins and globulins were present before *Shodhana* but they are absent after *Shodhana*.in quantitative analysis of protein content of seeds were decreased after *Shodhan* suggesting loss of some proteins from the seeds due to *Shodhana* In quantitative analysis of protein content of milk were increased after *Shodhan* suggesting addition of some proteins from the seeds due to *Shodhana* in it.

In thin layer chromatography of milk there was additional spot present after *Shodhana* as compare to before *Shodhana* which indicates addition of any chemical constituent of *Swetagunja* in it.

REFRENCES

- 1. Joshi YG, editor. Charaksamhita. In Ayurveddipikavyakhya. Pune: Vaidyamitra Prakashan, 2003; 133.
- 2. Chunekar KC, Pandey GS, editors. Bhavaprakasha nighantu. In. Varanasi: Chaukhamba vishvabharti, 2010; 339.
- 3. Sharma PV. Dravyagunavigyan vol 1 Varanasi: Chaukhamba Vishvabharti, 1995; 341.
- 4. Dwivedi V, Tripathi I, editors. Rajnighantu. In Dravyagunaprakashika. Varanasi: Krishnadas Academy, 1982; 8.
- 5. Shastri K, editor. Rasatarangini. In. New Delhi: Motilal Banvaridas, 1969; 729.

- 6. Shastri K, editor. Rasatarangini. In. New Delhi: Motilal Banvaridas, 1969; 730.
- 7. Shastri K, editor. Rasatarangini. In. New Delhi: Motilal Banvaridas, 1969; 731.
- 8. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. In. Pune: Nirali Prakashan, 2008; 6.3.
- 9. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. In. Pune: Nirali Prakashan, 2008; 6.14.
- 10. Kokate CK, Purohit AP, Gokhale SB. Pharmacognosy. In. Pune: Nirali Prakashan, 2008;6.11.