

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 5.045

Volume 4, Issue 2, 1593-1601.

Research Article

ISSN 2277-7105

OPTIMIZATION OF IRBESARTAN TABLET FORMULATION BY 2³ FACTORIAL DESIGN EMPLOYING β CD, CROSPOVIDONE AND SLS

Ch. Tarakaramarao¹ and K. P. R. Chowdary²*

¹Ph. D Research Scholar, School of Pharmaceutical Sciences and Technologies, JNTUK, Kakinada- 533003.

²Chairman, BOS in Pharmacy, JNTUK, Kakinada- 533003.

Article Received on 09 Dec 2014,

Revised on 03 Jan 2015, Accepted on 28 Jan 2015

*Correspondence for Author Prof. K. P. R. Chowdary Chairman, BOS in

Pharmacy, JNTUK,

Kakinada-533003.

ABSTRACT

Irbesartan, a widely prescribed anti hypertensive drug belongs to class II under BCS classification and exhibit low and variable oral bioavailability due to its poor aqueous solubility. Because of poor aqueous solubility and dissolution rate it poses challenging problems in its tablet formulation development. It needs enhancement in the dissolution rate in its formulation development. Complexation with β -cyclodextrin (β CD) and use of Crospovidone and SLS are tried in the present study for enhancing the dissolution rate of Irbesartan in its formulation development. The objective of the present study is optimization of Irbesartan tablet formulation with NLT 85%

dissolution in 15 min employing β CD, Crospovidone and SLS by 2^3 factorial design. Eight irbesartan tablet formulations employing selected combinations of the three Factors i.e., β CD, Crospovidone, and SLS as per 2^3 Factorial design were formulated and prepared by direct compression method. All the tablets prepared were evaluated for drug content, hardness, friability, disintegration time and dissolution rate characteristics. The dissolution rate (K1) values were analysed as per ANOVA of 2^3 Factorial design to find out the significance of the individual and combined effects of the three Factors involved on the dissolution rate of irbesartan tablets formulated. The individual and combined effects of β CD, Crospovidone and SLS on the dissolution rate (K₁) of irbesartan tablets are highly significant (P<0.01). Irbesartan tablet formulation (F_{bc}) disintegrated rapidly with in 1 min and gave very rapid dissolution of irbesartan, 100% in 15 min. Higher levels of β CD and lower levels of Crospovidone gave low dissolution rates of irbesartan tablets. The increasing order of dissolution rate (K₁) observed with various formulations was F_{bc}> F_b>F_{ab}>F_{abc}> F₁>F_{ac}> F_a>

F_c. The polynomial equation describing the relationship between the response i.e. percent drug dissolved in 15min (Y) and the levels of β CD (X₁), Crospovidone (X₂) and SLS (X₃) based on the observed results is **Y**= **58.543** - **1.891** (**X**₁) + **34.55** (**X**₂) – **3.606** (**X**₁ **X**₂) -**1.826** (**X**₃) +**3.138** (**X**₁ **X**₃) + **1.503** (**X**₂ **X**₃) - **4.871** (**X**₁ **X**₂ **X**₃). Based on the above polynomial equation, the optimized irbesartan tablet formulation with NLT 85% dissolution in 15 min could be formulated employing β CD at 1:3 ratio of drug: β CD, Crospovidone at 26.72% of drug content, and SLS at 1% of drug content. The optimized irbesartan tablet formulation gave 85.58 % dissolution in 15 min fulfilling the target dissolution set. Formulation of irbesartan tablets with NLT 85% dissolution in 15 min could be optimized by 2³ Factorial design.

KEYWORDS: Irbesartan tablets, Optimization, β -cyclodextrin, Crospovidone, SLS, Factorial Design, Formulation development.

INTRODUCTION

Optimization^[1] of pharmaceutical formulations involves choosing and combining ingredients that will result in a formulation whose attributes confirm with certain prerequisite requirements. The choice of the nature and qualities of additives (excipients) to be used in a new formulation shall be on a rational basis. The application of formulation optimization techniques is relatively new to the practice of pharmacy. In general the procedure consists of preparing a series of formulations, varying the concentrations of the formulation ingredients in some systematic manner. These formulations are then evaluated according to one or more attributes, such as hardness, dissolution, appearance, stability, taste and so on. Based on the results of these tests, a particular formulation (or series of formulations) may be predicted to be optimal. The optimization procedure is facilitated by applying factorial designs and by the fitting of an empirical polynomial equation to the experimental results. The predicted optimal formulation has to be prepared and evaluated to confirm its quality.

Irbesartan, a widely prescribed anti hypertensive drug belongs to class II under BCS classification and exhibit low and variable oral bioavailability due to its poor aqueous solubility. Because of poor aqueous solubility and dissolution rate it poses challenging problems in its tablet formulation development. It needs enhancement in the dissolution rate in its formulation development.

Several techniques^[2] such as micronisation, cyclodextrin-complexation, use of surfactants, solubilizers and super disintegrants, solid dispersion in water soluble and water dispersible carriers, microemulsions and self emulsifying micro and nano disperse systems have been used to enhance the solubility, dissolution rate and bioavailability of poorly soluble BCS class II drugs. Among the various approaches cyclodextrin complexation^[3, 4] and use of superdisintegrant^[5, 6] such as Crospovidone and sodium starch glycolate (Primojel) and surfactant such as sodium lauryl sulphate (SLS) are simple industrially useful approaches for enhancing the dissolution rate of poorly soluble drugs in their formulation development. Complexation with β -cyclodextrin (β CD) and use of Crospovidone and SLS are tried in the present study for enhancing the dissolution rate of Irbesartan in its formulation development. The objective of the present study is optimization of Irbesartan tablet formulation with NLT 85% dissolution in 15 min employing β CD, Crospovidone and SLS by 2^3 factorial design.

EXPERIMENTAL

Materials

Irbesartan was a gift sample from M/s Hetero Drugs Ltd., Hyderabad. Crospovidone, sodium lauryl sulphate (SLS) and β -cyclodextrin were gift samples from M/s. Eisai Pharma Technology Ltd, Visakhapatnam. Talc and magnesium stearate were procured from commercial sources. All other materials used were of pharmacopoeial grade.

Methods

Estimation of Irbesartan

An UV Spectrophotometric method based on the measurement of absorbance at 244 nm in 0.1N hydrochloric acid was used for the estimation of Irbesartan. The method was validated for linearity, accuracy, precision and interference. The method obeyed Beer's law in the concentration range of $0 - 10 \,\mu\text{g/ml}$. When a standard drug solution was repeatedly assayed (n=6), the relative error and coefficient of variance were found to be 0.80% and 1.35% respectively. No interference by the excipients used in the study was observed.

Formulation of Irbesartan Tablets

For optimization of irbesartan tablets as per 2^3 Factorial designs the β CD, Crospovidone and SLS are considered as the three Factors. The two levels of the Factor A (β CD) are 1:1 and 1:5 ratio of drug: β CD, the two levels of the Factor B (Crospovidone) are 2% and 30% of drug content; and the two levels of Factor C (SLS) are 0% and 2% of drug content. Eight irbesartan tablet formulations employing selected combinations of the three Factors i.e., β CD,

Crospovidone, and SLS as per 2³ Factorial design were formulated and prepared by direct compression method.

Preparation of Irbesartan Tablets

Irbesartan (100 mg) tablets were prepared by direct compression method as per the formula given in Table1. The required quantities of irbesartan, βCD , Crospovidone and SLS as per the formula in each case were blended thoroughly in a closed polythene bag. Talc and magnesium stearate were then added by passing through mesh no.80 and blended. The blend of ingredients was then compressed directly into tablets using an 8- station RIMEK tablet punching machine employing 9mm or 12mm round and flat punches.

Evaluation of Tablets

All the irbesartan tablets prepared were evaluated for drug content, hardness, friability, disintegration time and dissolution rate as follows:

Hardness

The hardness of prepared tablets was determined by using Monsanto hardness tester and measured in terms of kg/cm².

Friability

The friability of the tablets was measured in a Roche friabilitor using the formula Friability $(\%) = [(\text{Initial weight} - \text{Final weight}) / (\text{Initial weight})] \times 100.$

Drug Content

Weighed tablets (5) were powdered using a glass mortar and pestle. An accurately weighed quantity of powder equivalent to 20 mg of irbesartan was taken into 100 ml volumetric flask, dissolved in 0.1N Hydrochloric acid and the solution was filtered through Whatman filter paper no.41. The filtrate was collected and suitably diluted with 0.1N hydrochloric acid and assayed for irbesartan at 244 nm.

Disintegration time

Disintegration time of the tablets was determined using single unit disintegration test apparatus (Make: Paramount) employing water as test fluid.

Dissolution Rate Study

Dissolution rate of irbesartan tablets prepared was studied in 0.1N hydrochloric acid (900 ml) employing eight station dissolution rate test apparatus (LABINDIA, DS 8000) using paddle

stirrer at 50 rpm and at a temperature of $37^{\circ}\text{C} \pm 1^{\circ}\text{C}$. One tablet was used in each test. Samples of dissolution fluid (5 ml) were withdrawn through a filter at different time intervals and assayed for irbesartan at 244 nm. The sample of dissolution fluid withdrawn at each time was replaced with fresh drug free dissolution fluid and a suitable correction was made for the amount of drug present in the samples withdrawn in calculating percent dissolved at various times. Each dissolution experiment was run in triplicate (n=3).

Analysis of Data

The dissolution data were analyzed as per zero order and first order kinetic models. Dissolution efficiency (DE $_{30}$) values were estimated as suggested by Khan.^[7] Dissolution rate (K₁) values were analyzed as per ANOVA of 2^3 Factorial experiment.

RESULTS AND DISCUSSION

The objective of the present study is to optimize the irbesartan tablet formulation employing β CD, Crospovidone and SLS by 2^3 Factorial design to achieve NLT 85% dissolution in 15 min. For optimization of Irbesartan tablets as per 2^3 Factorial design the β CD, Crospovidone and SLS are considered as three Factors. The two levels of the Factor A (β CD) are 1:1 and 1:5 ratio of drug: β CD, the two levels of the Factor B (Crospovidone) are 2% and 30% of drug content; and the two levels of Factor C (SLS) are 0% and 2% of drug content. Eight irbesartan tablet formulations employing selected combinations of the three Factors i.e., β CD, Crospovidone, and SLS as per 2^3 Factorial design were formulated and prepared by direct compression method as per the formula given in Table 1. All the tablets prepared were evaluated for drug content, hardness, friability, disintegration time and dissolution rate characteristics. The dissolution rate (K1) values were analysed as per ANOVA of 2^3 Factorial design to find out the significance of the individual and combined effects of the three Factors involved on the dissolution rate of irbesartan tablets formulated.

The physical parameters of the irbesartan tablets prepared are given in Table 2. The hardness of the tablets was in the range $4.5\text{-}5.0~\text{kg/cm}^2$. Weight loss in the friability test was less than 0.92 % in all the cases. Irbesartan content of the tablets prepared was within 100 ± 3 %. Many variations were observed in the disintegration and dissolution characteristics of the irbesartan tablets prepared. The disintegration times were in the range 1min to 8 min 50 sec. Irbesartan tablet formulations (F_b , F_{bc} , and F_{abc}) disintegrated rapidly with in 1 min. All other tablets disintegrated rather slowly in about 2 - 9 min. As β CD level was increased the disintegration time is increased, whereas as Crospovidone concentration is increased the disintegration time

is reduced. However, all the irbesartan tablets prepared fulfilled the official (USP 2008) requirements with regard to drug content, hardness, friability and disintegration time specified for uncoated tablets.

Dissolution rate of irbesartan tablets prepared was studied in 0.1N hydrochloric acid. The dissolution profiles of the tablets are shown in Fig.1 and the dissolution parameters are given in Table 3. Dissolution of irbesartan from all the tablets prepared followed first order kinetics with coefficient of determination (R^2) values above 0.958. The first order dissolution rate constant (K_1) values were estimated from the slope of the first order linear plots. Much variations were observed in the dissolution rate (K_1) and dissolution efficiency (DE_{30}) values of the tablets prepared due to formulation variables. ANOVA of K_1 values indicated that the individual and combined effects of the three Factors, βCD , Crospovidone and SLS in influencing the dissolution rate of irbesartan tablets are highly significant (P < 0.01).

Irbesartan tablet formulation (F_{bc}) gave very rapid dissolution of irbesartan than others. The tablet formulation (F_{bc}) gave 100% dissolution in 15min. Higher levels of β CD and lower levels of Crospovidone gave low dissolution of irbesartan tablets. The increasing order of dissolution rate (K_1) observed with various formulations was $F_{bc} > F_b > F_{ab} > F_{ab} > F_{ac} > F_a > F_c$.

Optimization

For optimization, percent drug dissolved in 15 min was taken as response (Y) and level of β CD as (X₁), level of Crospovidone as (X₂) and level of SLS as (X3). The polynomial equation describing the relationship between the response ,Y and the variables, X₁ , X₂ and X₃ based on the observed data was found to be Y = 58.543 - 1.891 (X₁) +34.55 (X₂) - 3.606 (X₁ X₂) -1.826 (X₃) +3.138 (X₁ X₃) + 1.503 (X₂ X₃) - 4.871 (X₁ X₂ X₃). Based on the above polynomial equation, the optimized irbesartan tablet formulation with NLT 85% dissolution in 15 min could be formulated employing β CD at 1:3 ratio of drug: β CD, Crospovidone at 26.72% of drug content, and SLS at 1% of drug content. To verify, irbesartan tablets were formulated employing the optimized levels of β CD (300 mg/ tablet), Crospovidone (26.72 mg/tablet) and SLS (1.0 mg/tablet). The formulae of the optimized irbesartan tablets is given in Table 1. The optimized irbesartan tablet formulation was prepared by direct compression method and the tablets were evaluated. The physical parameters of the optimized formulation are given in Table 2 and the dissolution parameters are given in Table 3. The hardness of the optimized irbesartan tablets was 5.0 kg/sq.cm. Friability (percent weight loss) was less than

0.92%.Disintegration time of the tablets was 1 min. The optimized irbesartan tablet formulation gave 86.18 % dissolution in 15 min fulfilling the target dissolution set. The dissolution results also indicated validity of the optimization technique employed. Hence formulation of irbesartan tablets with NLT 85% dissolution in 15 min could be optimized by 2^3 Factorial design.

Table1: Formulae of Irbesartan Tablets Prepared Employing β CD, Crospovidone and SLS as Per 2^3 Factorial Design

Ingredient (mg/tab)	$\mathbf{F_1}$	Fa	$\mathbf{F_b}$	$\mathbf{F_{ab}}$	$\mathbf{F_c}$	$\mathbf{F_{ac}}$	$\mathbf{F_{bc}}$	$\mathbf{F}_{\mathbf{abc}}$	F _{Opt}
Irbesartan	100	100	100	100	100	100	100	100	100
βCD(Factor A)	100	500	100	500	100	500	100	500	300
Crospovidone (Factor B)	2	2	30	30	2	2	30	30	26.72
SLS (Factor C)	-	-	-	-	2	2	2	2	1
Talc	4	12	4.6	12.6	4.08	12.08	4.64	12.64	8.6
Magnesium stearate	4	12	4.6	12.6	4.08	12.08	4.64	12.64	8.6
Total weight (mg)	210	626	239.2	655.2	212.16	628.16	241.28	657.28	444.92

Table 2: Physical Parameters of Irbesartan Tablets Prepared Employing βCD , Crospovidone and SLS as per 2^3 Factorial Design

Formulation	Hardness (Kg/cm ²)	Friability (% Wt loss)	Disintegration Time (min-sec)	Drug Content (mg/tablet)
$\mathbf{F_1}$	4.5	0.85	8-50	98.6
$\mathbf{F_a}$	4.5	0.92	6-55	99.5
$\mathbf{F_b}$	5.0	0.75	1-00	99.4
$\mathbf{F_{ab}}$	4.5	0.85	3-20	98.2
$\mathbf{F_c}$	5.0	0.80	8-05	98.4
$\mathbf{F_{ac}}$	5.0	0.91	2-10	99.5
$\mathbf{F_{bc}}$	5.0	0.75	1-15	99.3
F _{abc}	4.5	0.80	1-10	98.5
$\mathbf{F_{Opt}}$	5.0	0.90	1-00	99.0

Table 3: Dissolution Parameters of Irbesartan Tablets Prepared Employing βCD , Crospovidone and SLS as per 2^3 Factorial Design

Formulation	PD ₁₅ (%)	DE_{30} (%) ($\bar{x} \pm sd$)	$K_1 \times 10^3 (min^{-1}) (\bar{x} \pm s d)$	T ₅₀ (min)	T ₉₀ (min)
F_1	33.62	29.23±8.25	27±7.31	60	>60
F _a	21.03	17.75±5.18	15.7±7.60	50	>60
F _b	97.18	80.05±0.47	237±1.13	1.5	9
F _{ab}	89.65	78.24±0.47	151±1.24	40	60
F_{c}	10.94	11.44±1.23	7.1 ± 2.40	50	>60
F _{ac}	30.39	30.30±1.60	22.6±1.15	3	20
F _{bc}	100	91.29±1.28	835.3±3.5	1	4

F abc	85.54	76.89±0.95	127±1.75	10	18
F _{Opt}	85.58	73.41±0.97	131±1.05	5	20

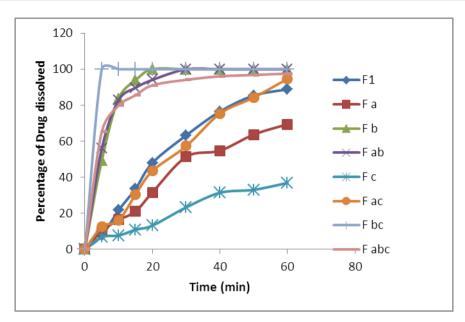


Fig.1: Dissolution Profiles of Irbesartan Tablets Prepared Employing β CD, rospovidone and SLS as per 2^3 Factorial Design

CONCLUSIONS

- 1. The individual and combined effects of β CD, Crospovidone and SLS on the dissolution rate (K_1) of irbesartan tablets are highly significant (P<0.01).
- 2. Irbesartan tablet formulation (F_{bc}) disintegrated rapidly with in 1 min and gave very rapid dissolution of irbesartan, 100% in 15 min.
- 3. Higher levels of β CD and lower levels of Crospovidone gave low dissolution rates of irbesartan tablets.
- 4. The increasing order of dissolution rate (K_1) observed with various formulations was $F_{bc} > F_{ab} > F_{abc} > F_1 > F_{ac} > F_a > F_c$.
- 5. The polynomial equation describing the relationship between the response i.e. percent drug dissolved in 15min (Y) and the levels of β CD (X₁), Crospovidone (X₂) and SLS (X₃) based on the observed results is Y= 58.543 1.891 (X₁) + 34.55 (X₂) 3.606 (X₁ X₂) -1.826 (X₃) +3.138 (X₁ X₃) + 1.503 (X₂ X₃) 4.871 (X₁ X₂ X₃).
- 6. Based on the above polynomial equation, the optimized irbesartan tablet formulation with NLT 85% dissolution in 15 min could be formulated employing β CD at 1:3 ratio of drug: β CD, Crospovidone at 26.72% of drug content, and SLS at 1% of drug content.
- 7. The optimized irbesartan tablet formulation gave 85.58 % dissolution in 15 min fulfilling the target dissolution set.

8. Formulation of irbesartan tablets with NLT 85% dissolution in 15 min could be optimized by 2³ Factorial design.

REFERENCES

- 1. Bolton. S, Pharmaceutical Statistics, New York, NY, Marcel Decker Inc, 2nd Edition, 1990; 532-570.
- 2. Chowdary, K. P. R and Madhavi, BLR, Novel Drug Delivery Technologies for Insoluble Drugs, **Indian Drugs**, 2005; 42(9): 557 562.
- 3. Fromming, K.H. and Szejtli, J. Cyclodextrins in Pharmacy. Kluwer Academic Publications, Dordrecghi, 1994; 20.
- 4. Duchene, D., Woussidjewe, D. and Dumitriu, S. Polysaccharides in Medical Applications. Marcel Dekker, New York, 1996; 575-602.
- 5. HariHar Prasad.M, Duraivel.S., Effect of Different Binders and Super Disintegrants on Formulation of Glimepiride Immediate Release Tablets by Wet Granulation Method, IJPCR, 2012; 4(4): 44-47.
- 6. Karthik Neduri, Vijaya Kumar Bontha, Sateesh Kumar Vemula, Different Techniques to Enhance the Dissolution Rate of Lovastatin: Formulation and Evaluation, **Asian Journal of Pharmaceutical and Clinical Research**, 2013; 6(1): 56-60.
- 7. Khan, K. A., J. Pharm. Pharmacol, 1975; 27: 48 49.