

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 7.523

Volume 6, Issue 7, 1141-1148.

Research Article

ISSN 2277-7105

ISOLATION OF BACTERIA FROM IRON AND STEEL INDUSTRY EFFLUENT

Jayapriya D.* and K. K. Kavitha

Department of Environmental and Herbal Science, Faculty of sciences, Tamil University, Thanjavur-613010.

Article Received on 26 April. 2017,

Revised on 16 May. 2017, Accepted on 06 June. 2017

DOI: 10.20959/wjpr20177-8775

*Corresponding Author Jayapriya D.

Department of
Environmental and Herbal
Science, Faculty of sciences,
Tamil University,
Thanjavur-613010.

ABSTRACT

The present study deals with investigate of the essential physicochemical parameters and isolation, identification of bacteria from the effluent collected from Iron and Steel coolant processing unit in Bharath heavy electrical limited at Trichy. On basis of morphological, biochemical analysis revealed that the isolates were identified as *Pseudomonas sp, Proteus sp, Bacillus sp, Klebsiella sp, Salmonellas sp* present in the coolant effluent. The purpose of this work is to evaluate the effect of several indigenous microorganisms to the effluent in remediating the effluent. Naturally occurring microorganism will be useful to treat the Iron and Steel Industry effluent in Bioremediation treatment processes method.

KEYWORDS: Pseudomonas sp, Bacillus sp, Bacteria, effluent.

INTRODUCTION

The Iron and Steel is one of the most basic materials required for industrialization and plays a vital role in the country's economic growth. From Iron and Steel industry the adequate amount of waste water (effluent) released on water bodies. The main important processing in Iron and Steel industry is cooling machine system – by using water and oil for cooling purpose, to reduce the heat and damage of the machines. The improper disposal of the waste water leads to the environmental pollution, water pollution is one of the greatest concerns now a days. In recent years considerable attention has been paid to industrial wastes discharged to land and surface water. Industrial effluent containing a several organic and inorganic compounds. The coolant unit effluent is normally used in physical treatment it recycled high cost of biomembrane. Bioremediation of effluent treatment will be reducing the

effluent organic and inorganic waste it will be easy and economically reduce the physical treatment cost by reducing the bio membrane frequent usage. [19] Many microbial strains, each capable of degrading a specific compounds, are available commercially for bioremediation. However, indigenous bacteria in the polluted soil and effluent can degrade wide range organic and inorganic pollutants.

In the present study, identifying and isolating bacteria present in the coolants in effluent waste from iron and steel industry, BHEL in Trichy. The microorganism can be reabsorbing the valuable heavy metal in industrial effluent and capable of biodegrading or detoxify the heavy metals usually are already present in contaminated water.^[13] Bioremediation technique improve the physical treatment methods and recovery of metals.

MATERIALS AND METHOD

Collection of Samples

The effluent samples were collected from four selected coolant processing unit in Iron and Steel industry BHEL at Trichy in Tamil Nadu. They were the following four processing unit Milling (cutting in minute iron chips), Drilling (making hole in iron bars), Cutting (cut the iron bars), Grinding (finishing the iron bars). The effluent samples were collected from these sampling units in sterile plastic bottles was stored transfer aseptically and processed immediately in laboratories as per method.^[1] The Samples were used to analysis and microbial study Bergey's (1984) manual method.^[9]

Physiochemical analysis of Iron and Steel Industry coolant effluent samples.

As per APHA (1995) method the effluent collected from milling, Drilling, cutting and grinding units were analyzed for physiochemical parameters.^[3] The effluent characterized by various parameters such as Color, Odor, pH, Electrical conductivity, Total suspended solids, Total dissolve solid, chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, Sulphate, Fluoride, Iron, Total oil & grease, Chromium.^{[15],[17]} By using AAS, pH meter, UV Spectrometer, Electrical conductivity meter.

Isolation and identification of Bacteria

Bacterial biodiversity of Iron and Steel Industry coolant effluent samples were studied for six months from Sep (2015) to Feb (2016). Population of bacteria has isolated from the effluent collected from four units by serial dilution technique. Bacteria were identified based on colony characteristics, gram staining method. Morphological studies of the isolates were done

1142

on the basis of colonies, size, color, shape, diameter, elevation and whether opaque, transparent or translucent and by various biochemical studies as given by Bergey's (1984) manual of determinative by bacteriology.^[9]

RESULTS AND DISCUSSION

Physiochemical analysis of untreated Iron and Steel Industry effluent

The collected coolant effluent samples of Iron & steel Industry was assessed for its physicochemical properties (Table-1.1, 1.2, 1.3, 1.4). Result of analysis of the physiochemical parameters of untreated industrial effluent collected for a period of six months. The result of this study revealed that the color of the untreated industrial were blackish effluent with unpleasant odour. [8],[12] A large number of pollutants can impart color taste and odour to the receiving water bodies. There by making them unaesthetic and unfit or domestic consumption. The pH of the untreated Iron and Steel industry effluent was found to be within the range of 8.2. The untreated iron and steel industry effluent showed higher level of Electrical conductivity value is 5885 above the CPCB permissible limit^{[5],[6],[7]}, which could reflect the presence of organic and inorganic substances and salts would have increased the conductivity. The Iron and Steel Industries used water for cooling machine processes that carries away the solid particles and increases the Total suspended solids level in the effluent. The TSS and TDS have a minimum value of 354mg/l (Nov 2015) and 3283mg/l (Nov 2015). The presence of TSS and TDS may be due to the insoluble organic and inorganic present in the effluent. [18] The high level of COD was analyzed in grinding unit effluent 3550mg/l. The present investigation revealed high level of COD. This indicates that the untreated effluent is unsuitable for the existence of aquatic organisms. The present study revealed high level of BOD value 1020mg/l. In the untreated effluent due to the presence of considerable amount of organic matter high level of BOD 1662mg/l. The maximum level of chloride and sulphate in the Iron and Steel industry effluent was found to be 890mg/l (Feb 2016) and 680mg/l (Sep2015) respectively. The Iron and Steel industry untreated effluent show the within the range of Iron and Oil and grease value is 54mg/l (Dec 20150) and 16.2mg/l (Sep 2015) respectively. The film of oil that floats over the water body there by distributing processes of photosynthesis in the aquatic plants. oil bioaccmulates in the higher animals and further enters the food chain. The physiochemical properties and heavy metals concentration of the effluent varies depending on the production of sampling station in various industries higher value of chromium 1.87mg/l was found in the untreated effluent of Drilling sampling station. [4][10] The similar value was recorded in various Iron & steel Industry effluent. [10]

Isolation and identification of Bacterial diversity in Iron and Steel Industry coolant effluent

Bacterial diversity has not been studied in iron and steel industry effluent. However a few reports are available on the bacterial flora of certain iron and steel industry effluents. The collected effluents were used to study the bacterial biodiversity. The present study 3 bacterial genera isolated from the in Iron and Steel Industry coolant effluent (table-2.2). Less number of bacterial communities was apparently due to the environmental stress caused by the high level of pollutants, which allowed only a restricted number of species that tolerant such conditions.^[14]

On basis of morphological, biochemical analysis revealed that the isolates were identified as, *Pseudomonas sp. Proteus sp. Bacillus sp. Klebsilella sp. and Salmonellas sps.*(Table 2&3). Out of these six genera these three species, *Pseudomonas areuginosa, Klebsiella sp. Bacillus sp.* was predominantly present in all the effluent samples collected in study area. Several reports reported that *Pseudomonas areuginosa* also dominant species in heavy metal rich soil as well as in Industrial effluents^{[11],[16]}

It was concluded that bacterial colonies of *Pseudomonas areuginosa* and *Klebsiella sp*, *Bacillus sp*. can grow successfully in coolant effluent. Several Gram positive bacteria were also known to reduce chromium (III) including several member of the genera *Bacillus sp*. Chromium resistant bacteria capable of reducing chromate have been reported from Chromium polluted environment and they were showing resistance in lower concentration. ^[2] The selected *Bacillus sp and Pseudomonas sp* will be used further for bioremediation heavy metals and organic pollutants present in the coolant effluent of Iron and Steel Industry coolant effluents. ^[20]

Table: 1.1 Physiochemical analysis of Untreated Iron and Steel Industry coolant effluent Sampling Station-Milling

Parameters	Sep-2015	Oct-2015	Nov-2015	Dec-2015	Jan-2016	Feb-2016
Colour	Black	Black	Black	Black	Black	Black
Odour	Unpleasant	Unpleasant	Unpleasant	Unpleasant	Unpleasant	Unpleasant
рН	8.8	8.7	8.5	8.3	8.6	8.7
Temperature	30	28	27	35	23	26
Electrical conductivity	5685	5347	4296	4983	4752	4261
Total Suspended solids	362	817	354	365	1143	986
Total Dissolve Solids	3431	4754	3283	3403	5736	5112
BOD	702	922	960	690	750	870

COD	2240	2880	2920	2199	2137	2447
Chloride	780	685	824	747	690	880
Sulphate	370	550	410	370	640	440
Fluoride	1.2	1.8	2.5	1.6	1.4	1.5
Iron	3.4	4.9	4.8	5.1	4.4	3.8
Total oil & grease	16	15.6	14.5	15.2	14.3	13.5
Chromium	1.93	2.60	2.24	1.64	1.27	1.16

Table: 1.2 Physiochemical analysis of Untreated Iron and Steel Industry coolant effluent Sampling Station-Drilling

Parameters	Sep 2015	Oct 2015	Nov 2015	Dec 2015	Jan 2016	Feb 2016
Colour	Black	Black	Black	Black	Black	Black
Odour	Unpleasant	Unpleasant	Unpleasant	unpleasant	Unpleasant	Unpleasant
pН	8.5	7.8	8.6	8.5	8.7	8.5
Temperature	34	27	27	28	27	25
Electrical conductivity	5473	4471	4542	4354	4745	4285
Total Suspended solids	751	396	1122	874	1357	1129
Total Dissolved Solids	4553	3771	5384	4763	5828	6253
BOD	310	820	924	940	846	970
COD	756	2410	2750	2850	2557	2844
Chloride	810	690	710	642	792	890
Sulphate	470	360	340	370	570	220
Fluoride	1.6	0.8	0.6	1.5	1.8	1.4
Iron	4.2	4.5	4.4	5.3	4.6	3.2
Total oil & grease	17.1	14.5	15.5	13.4	14.1	13.7
Chromium	1.62	1.37	1.42	1.76	1.83	1.87

Table: 1.3 Physiochemical analysis of Untreated Iron and Steel Industry coolant effluent Sampling Station-Cutting

Parameters	Sep-2015	Oct-2015	Nov-2015	Dec-2015	Jan-2016	Feb-2016
Colour	Black	Black	Black	Black	Black	Black
Odour	Unpleasant	Unpleasant	Unpleasant	Unpleasant	Unpleasant	Unpleasant
рН	8.2	8.6	9.1	8.8	8.5	8.2
Temperature	34	32	33	27	28	28
Electrical conductivity	5420	4415	4346	4557	4349	4688
Total Suspended solids	798	1023	984	748	992	1335
Total Dissolve Solids	4730	5712	4987	4504	5623	6117
BOD	1020	930	822	910	893	916
COD	3550	2935	2615	2780	2743	2915
Chloride	760	810	790	748	852	796
Sulphate	650	470	420	560	420	340
Fluoride	0.8	0.4	1.4	1.8	1.4	1.2
Iron	3.4	5.4	4.7	4.5	5.3	3.5
Total oil & grease	6.2	13.5	14.6	14.3	15.3	14.6
Chromium	1.24	1.56	2.37	2.59	1.17	1.43

Table: 1.4 Physiochemical analysis of Untreated Iron and Steel Industry coolant effluent Sampling Station-Grinding

Parameters	Sep-2015	Oct-2015	Nov-2015	Dec-2015	Jan-2016	Feb-2016
Colour	Black	Black	Black	black	Black	Black
Odour	Unpleasant	Unpleasant	Unpleasant	Unpleasant	Unpleasant	Unpleasant
pН	8.5	8.2	8.7	8.4	8.3	8.6
Temperature	34	36	33	28	28	27
Electrical conductivity	4920	4614	4745	4757	4845	3488
Total Suspended solids	985	782	863	961	356	973
Total Dissolve Solids	5330	4716	4884	5105	4348	5216
BOD	924	842	810	720	928	785
COD	2860	2617	2533	2266	2825	2124
Chloride	740	830	860	720	863	870
Sulphate	680	430	530	580	520	370
Fluoride	1.6	1.8	2.2	2.4	1.8	1.8
Iron	3.3	4.5	4.3	5.4	4.7	5.3
Total oil & grease	15.5	12.4	12.7	12.9	13.6	13.9
Chromium	1.24	1.56	2.37	2.59	1.17	1.43

Table: 2.1 Biochemical characterization of isolated bacterial stains from Coolant effluents

Test	Colony-2	Colony-3	Colony-4	Colony-5	Colony-6
Gram staining	Gram negative rods	Gram negative rods	Gram negative rods	Gram positive rods	Gram Negative bacilli
Motility	Motile	Non- Motile	Motile	Positive	Motile
Catalase	Positive	Positive	Positive	Positive	Positive
Oxidase	Negative	Negative	Positive	Negative	Negative
Glucose	Positive	Positive	Negative	Positive	Negative
Lactose	Positive	Positive	Negative	Negative	Negative
Sucrose	Positive	Positive	Negative	Negative	Negative
Manitol	Positive	Positive	Positive	Negative	Negative
Indole	Positive	Negative	Negative	Negative	Negative
Methyl red	Positive	Negative	Negative	Positive	Positive
Voges proskauar	Negative	Positive	Negative	Positive	Negative
Citrate	Positive	Positive	Positive	Positive	Positive
Urease	Negative	Positive	Negative	Negative	Positive
TSI	Positive	Negative	Negative	Negative	Positive
Strains	Salmonella Sp	Klebsilella sp	Pseudomonas sp	Bacillus sp	Proteus sp

Table-2.2 Number of Isolates From Selected Sampling Units

S.no	Effluent sample collection units	Dilution	Number of isolates
1	Milling	10 ⁻⁴	Pseudomonas sp, Salmonella sp,Proteus sp.
2	Drilling	10 ⁻⁴	Pseudomonas sp, Klebsilella sp.
3	Cutting	10 ⁻⁴	Pseudomonas sp. Bacillus sp.
4	Grinding	10 ⁻⁴	Pseudomonas sp, Klebsileella sp, Bacillus sp.

CONCLUSION

In this present study the isolated *Bacillus sp* and *Pseudomonas sp* bacteria were used to assess the bioremediation from Iron and Steel industrial effluent. By using various physic chemical parameters like odour, taste, pH, temperature, BOD,COD, chloride, chromium, fluoride, iron, oil and grease were assessed to show the efficacy the bacterial species and the above results were showed that the *Bacillus sp* and *Pseudomonas sp* are eco-friendly bacteria.

REFERENCES

- 1. Adewoye. S.O., A.O. Adewoye., O.A.Opasola., and J.A. Elegbede, "Physiochemical Prameters And Heavy Metals Analysis of Water Samples From Hand Dug Wells In Gambari, Ogbomoso, Oyo State" *Journal of Environmental Science, Toxicology And Food Technology*, 2013; 5: 22-30.
- 2. Amer Basha and K. Rajaganesh, "Microbial Bioremediation of heavy metals From Textile Industry Dye effluent using Isolated Bacterial Strains" *International Journal of current Microbiology and Applied sciences*, 2014; 3: 785-794.
- 3. APHA, 1995. Standard methods for the examination of water and waste water, American water work Association.
- 4. Arasappan sugasini., Kalyanaraman Rajagopal, "Characterization of Physiochemical Parameters and heavy metal Aanalysis of Tannery Effluent" *International Journel of Current Microbiology and Applied sciences*, 2015; 4: 349-359.
- Central Pollution Control Boar, Pollution Control Acts, Rules and Notification issued there under Fourth edition. New Delhi, PCB, Ministry of Environment and Forests, 2006; 897.
- 6. CPCB Environmental Protection Rules, General Standards for Discharge of environmental pollutants and effluents, 1986.
- CPCB Pollution Control Acts, rules and modifications. Central Pollution Control Board, New Delhi, 1995.
- 8. Goel PK Water pollution: causes, effects and control. *New Age International publisher* Ltd New Delhi, 2002.
- 9. Krieg, N.R. & Holt, J.C. (eds.). *Bergey's Manual of Systematic Bacteriology*, 1st ed., 1984; 1, Williams and Wilkins, Baltimore.

- 10. Krishina veni. R, Y.Pamila Devi, and S.Ramgopal Rao, "Bioremediation of iron Steel Industrial Effluents using soil Microorganisms, International journal of Advanced Biotechnology and Research, 2013; 4(1): 51-56.
- 11. Neha Gupta. And Vijay Kumar, "Identification and Isolation of Heavy metal (Copper) Resistant Bacteria" *Scholar Research Library, Achieves of Applied science Research*, 2012; 4: 577-583.
- 12. Noorjahan. CM. "Physiochemical Characteristics Identification of Bacteria and Biodegradation of Industrial Effluent" *J Bioremediation and Biodegradation*, 2014; 5: 2155-6199.
- 13. Pandit R.J., B.Patel. A.Nage and P.D.Kunjadia, "Isolation of characterization and molecular resistant bacteria from Industrial effluent Amla-Khadi-Ankleshwar", International Journal of Environmental Science, 2013; 3: 5.
- 14. Prakashveni. R. And M. Jagadeesan, "Isolation Identification and distribution of bacteria in dairy effluent" *Pelagia Research library, Advances in Applied science Research Library, Advances in Applied science Research*, 2012; 1316-1318.
- 15. Rajbala Soni., Bhaskar.R, "Impact of Steel industry waste on Physio- Chemical property of soil" *International Journal of Environmental Sciences*, 2010; 2(3): 2012.
- Rajbanshi. A., "Study on Heavy metal Resistant Bacteria in Guheswari sewage Treatment plant" Central Department of microbiology, Tribhuvan University, Nepal, 2008; 6: 52-57.
- 17. Ram S. Lokhande., Pravin U.Singare., D5eepali S.Pimple, "Study on Physio Chemical Parameters of Waste water effluents from Taloja Industrial Area of Mumbai, India" *International Journel of Ecosystem*, 2011; 1: 1-9.
- 18. Satish Sahau., H.Chandra., Sar.Santosh K., and Ashish Kumar Bhui, Environmental Sinks Of Heavy Metals: Investigations on The Effect of Steel Industry Effluent in The Urbanised Location" *International Journel of Adavanced Engineering Research and Studies*, 2012; 1: 235-239.
- 19. Smirthi. A., and K. Usha, "Isolation and Characterization of chromium Removing bacteria from tannery effluent Disposal site," *International journal of Advanced biotechnology and Research*, 2012; 3: 644-652.
- 20. Tamilselvi. A., E.Anjugam., R.Archana Devi., B. Madhan., S.Kannappan And B. Chanadrasekara, "Isolation and characterization of bacteria from tannery effluent Treatment plant and their Tolerance to Heavy metals Antibiotics" *Asian J. EXP. Biol. Sci.*, 2012; 3: 34-41.