

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 7.523

Volume 6, Issue 11, 244-250.

Review Article

ISSN 2277-7105

244

EVALUATION OF SHOTHAHARA MAHAKASHAYA OF CHARAK SAMHITA: A LITERARY REVIEW

Dr. Vimla Kumari*¹, Prof. Kamini Kaushal², Dr. Ashwini K. Sharma³, Dr. Rajesh Ch. Mishra³, Dr. Meera Bhatt⁴ and Dr. Pradeep Soni⁴

¹P.G. Scholar, PG Department of Dravyaguna, M.M.M. Govt. Ayurved College, Udaipur, Rajasthan.

²H.O.D., PG Department of Dravyaguna, M.M.M. Govt. Ayurved College, Udaipur, Rajasthan.

³Asso. Prof., PG Department of Dravyaguna, M.M.M. Govt. Ayurved College, Udaipur, Rajasthan.

⁴Lecturer, PG Department of Dravyaguna, M.M.M. Govt. Ayurved College, Udaipur, Rajasthan.

Article Received on 25 July 2017, Revised on 16 August 2017, Accepted on 07 Sept. 2017 DOI: 10.20959/wjpr201711-9551

*Corresponding Author Dr. Vimla Kumari P.G. Scholar, PG

Department of Dravyaguna, M.M.M. Govt. Ayurved

College, Udaipur, Rajasthan.

ABSTRACT

Shothahara mahakashaya denotes group of ten medicines, which act on Shotha roga. Shotha roga can be correlated with the term edema/Swelling of modern medicine. Shothahara Mahakashaya is the 38th gana of the 50 mahakashaya gana described in fourth chapter of Sutra sthan of Charak Samhita and includes patala, agnimantha, bilva, syonaka, kashmariya, kantakari, brihati, shalaparni, prishaniparni, goksura ten ingredients. These 10 plants are work together and give enhanced effect. They are also effective individually. These plants having Katu, Tikta, Kasaya Rasa, Ushna Virya, Katu Vipaka, Ruksha, Laghu Guna and Tridoshaghan (Mainly Vataghana) properties.

KEYWORDS: *Shothahara mahakashaya*, swelling, *Dashamula*, *Ayurveda*, Anti-edematous, Diuretic.

INTRODUCTION

Shothahara mahakashaya, group of ten dravyas, which act on Shotha roga. Shotha roga can be correlated with the term Swelling/edema of modern medicine.^[1]

In Ayurveda, various varities of Shothaare described. These include mainly three types as described by charakasamhita -Vataj shotha, Pittaj shotha, kaphaj shotha. Two types (Nija & Agantuja or Ekangaja, Sarvaja four Vattik, Pattik, Shlaismika & Agantuja, seven types Vattika, pattika, Shlaismika, Shanipataja, vatapattika, vattashlaismika, pittashlaismika eight types Vattika, pattika, Shlaismika, Shanipataja, vatapattika, vattashlaismika, pittashlaismika, agantuja. [16]

SAMPRAPATI^[15]

• Bahya sira prapya yada kaphasrikapitani samdushayatiha vayu.

Tairbadhamarga sa tada visharpatyutsedhalinga shawathum karoti.

(Charaka Samhita chikshasthan 12)

Mentioned causative factors of *shotha roga, kapha, asrik* (Blood) *and pitta* enter the external vessels (*Bahaya sira*) and afflict *vata dosha*. As a result, the channel of circulation gets obstructed which spreads to the nearby areas, leading to *shotha*. *Shotha* is characterized by swelling.

SIGN AND SYMPTOMS OF SHOTHA ROG^[15]

Ushma tatha syadwathuh siranamayam ityev ca poorvrupm.

Sgoravam syadanavsthitatvam sotsedhamoosmaatha siratanutavam.

Slomaharshaangavivarnata ca samanyalingam swathoh pradistam.

(Charaka Samhita chikshasthan 12/10-11).

Ushma-Increased temperature.

Davathu-Burning sensation.

Siranam Ayam-Dilation of the vessels of Locality.

Sa gauravam-Heaviness.

Anvasthitatvam-Instability.

Utseda-elevation.

Loma harsa-Horripilation.

Anga vivarnata-Discoloration of skin over the limbs.

SHOTHAHARA MAHAKSHAYA DRAVYAS^[1]

Patlaagnimanthsyonakabilvakashmriyakantkarikabrihatishalparniprishamanigokshura iti dashemani swayathuharani bhawanti. (Charaka Samhita Sutrasthan 4).

Table. 1: Shothahara Mahakshaya Dravyas. [2,3,4,6,7]

S.No.	Name	Botanical Name	Family	English Name	Useful part
1.	Patala	Stereospermum suaveolens DC	Bignoniaceae	Rose flower fragrant	Root bark, flower, seed, leaf, kshara
2	Agnimantha	Clerodendrum phlomidis Linn.	Verbenaceae	Glory Bower	Root bark, bark, panchang, leaves
3	Shyonaka	Oroxylum indicum Vent.	Bignoniaceae	Midnight horror, oroxylum, Indian trumpet flower	Root bark
4	Bilva	Aegle marmelos Corr.	Rutaceae	Bael tree	Fruit, leaves, root
5	Gambhari	Gmelina arborea Linn.	Verbenaceae	Kumil, White teak, Gamar	Root, fruit, flower, leaves
6	Kantkari	Solanum surattense Burm./ S. xanthocarpum Schrad and Wendl	Solanaceae	Yellow berried night shade	Whole plant, root,
7	Brihati	Solanum indicum Linn.	Solanaceae	Poison berry, Indian night shade, African Eggplant, Bush Tomato	Root, fruit
8	Shalaparni	Desmodium gangeticum DC	Leguminosae	Sal leaved desmodium	Whole plant, root
9	Prisnaparni	Ureria picta Desv.	Leguminosae	Indian uraria	Root
10	Gokshura	Tribulus terrestris Linn.	Zygophylaceae	Land caltrops/ Puncture vine/cow hage	Root, fruit

Table. 2: Properties and Action. [2,3,4,6,7]

S. No	Sanskrit Name	Guna	Rasa	Virya	Vipaka	Dosha Karma	Main karma
1	Patla	Laghu, Rooksha	Tikta, kashaya	Ushna	Katu	Tridoshahara	Shothahara, mutral,
2	Agnimanth	Laghu, Rooksha	Tikta, Katu, Kashay, Madhur	Ushna	Katu	Kaphavatahar	Shothahara, vednasthapak
3	Syonaka	Laghu, Rooksha	Madhur, tikta, kashaya	Ushna	Katu	Kaphavatahar	Upashosan, mutral, shothahara
4	Bilv	Laghu, Rooksha	Kasaya,Tikta	Ushna	Katu	Kaphavatahar	Shothahara, Dipan, pachan
5	Gambhari	Guru	Tikta, Kasaya, Madhur	Ushna	Katu	Tridoshahara	Shothahara, mutral
6	Kantkari	Laghu,Rooksh a, Tikshna	Katu, Tikta	Ushna	Katu	Kaphavatahar	Kashahar, mutral,
7	Brihati	Laghu, Rooksha, Tikshna	Katu,Tikta	Ushna	Katu	Kaphavatahar	Kashahar, mutral, hridroghara
8	Shalaparni	guru, snigdha	madhur, Tikta	Ushna	madhur	Tridoshahara	Angamardprashama, Shothahara, deepan
9	Prisnaparni	laghu, snigdha	madhur, Tikta	Ushna	madhur	Tridoshahara	Angamardprashama, deepan
10	Gokshur	Guru, Snigdha	Madhur	Sheeta	_	Vatapittahara	Mutravirechaniya

These 10 dravyas are considered as Dashamoola. *Shothahara mahakashaya* having *Katu*, *Tikta*, *Kasaya Rasa*, *Ushna Virya*, *Katu Vipaka*, *Ruksha*, *Laghu Guna* and *Tridoshaghan* (Mainly *Vataghana*) properties and with *Ushna Virya and Katu Vipaka* change sentence.

Table. 3: Shows chemical constitute, pharmacological properties.

S. No.	Dravya Name	Chemical constitutes	Extract/ Active chemicals	Mode of Action	Ref.
1	Patla	Flavonoids, terpenoids, saponin, stereolensin, Iridoid glycoside, beta-sitosterol etc	ethanol extract of bark	its inhibition on histamine and 5-HT release at the site of inflammation or by blocking their action responsible for prostaglandin synthesis or by inhibiting prostaglandin synthesis through COX-2 inhibition mechanism	[16]
2	Agnimanth	Beta-sitosterol, luteolin, alphelandrine, premnine, betulin, ganiarine etc.	chlorofom extract of aerial part, aqueous extract of root bark	Inhibition of the synthesis of prostaglandins & other inflammatory mediators	[9], [17]
3	Syonaka	Baicalin, tetulin, oroxindin, aloe- emodin,chrysin, oroxylium A, p- coumaric acid, scutellarein-7- rutinosides, prunetin, beta- sitosterol etc.	Ethanol Extract of Stem Bark	suppressed the activation of pro-inflammatory cytokines including NF-κB, TNFα, IL-1β, and IFNγ and the activity of cyclooxygenase enzymes	[10]
4	Bilv	Root- Xanthotoxin, umbelliferone, marmesin, marmin, skimmin, etc.	Root- three active compounds aegeline, skimmianine, and marmin	potently inhibited the histamine release from rat mast cells	[11], [18]
5	Gambhari	Beta-sitosterol, ceryl alcohol, gmelinol, butyric acid, tartaric acid, apigenin, arborone, ardorel, isoarborel, cutytyl ferulate, epieudesmin, gmelanore, etc.	Aqueous & Methanolc extract of bark	inhibition of prostaglandin and other autocoids	[12]
6	Kantkari	Beta-carotene, diosgenin, carpesterol, solasodine, solamargine, beta-solamargine, solasonine, solasodino-L-rhamnosyl-B-D-glucoside, solanocarpine, tomatidienol etc.	Methanolc Extract of Leaf	Inhibitory effect on the release of active pain substance such as histamine, serotonin, polypeptides or prostaglandins	[19]
7	Brihati	Carotene, solasonine, carpesterol, solanocarpone, diosgenin, beta-sitosterol, lanosterol, solanine, solamargine, solasodine, vit-C etc.	Methanolc extract of fruit	Inhibition of pain substance like histamine, serotonin & inhibit the synthesis of prostaglandins, inhibit of the cyclooxygenase pathway	[20]
8	Shalaparni	Flavonoids, N,N-	ethanolic	Flavonoids - anti-inflammatory	[13]

		dimethyltryptamine, hypaphorine,	extract of	effects through its inhibition of	
		hordenine, caudicine, gangetin-3H,	leaves	the cyclooxygenase pathway	
		gangetinin, desmodin etc.			
		Flavonoids, steroids, triterpinoids,	Methanolc	histamine,prostaglandins, kinin	
9	Prisnaparni	tannins, carbohydrate, Amino-	extract of aerial	and pro- inflammatory	[21]
		acids,	part	cytokinins	
				inhibited the expression of	
10	Gokshur	Root- campesterol, beta	ethanolic	cyclooxygenase-2 (COX-2),	[22]
		sitosterol, stigmasterol, neotigogenin	extract of fruit	suppressed the expression of	
				pro-inflammatory cytokines	

DISCUSSION

Dashmool reduces vitiated *Tridosha*; when there is a high *Vata* & it can be used as a tonic to strengthen the system, exhibits anti-oxidant, anti-cancer activity, strengthens the body and enhances the production of tissue. *Dashmoola* is used in Ayurveda texts for the following disorders- use ayurveda terms (Pyrexia (different types of fevers)), (acute and chronic asthma), (chronic cough), (hiccups), (cough), all types of *vata* disorders, pain disorders, epilepsy, heart diseases, renal disorders, all types of paralysis, ascites and all types of post delivery complaints, tetanus aphrodisiac, infertility and in *panchkarma* treatments mainly Basti, ShiroDhara, Swedan Karma.

CONCLUSION

All the drugs are and having Alkaloids, Lignan, Flavanoid etc which, Help the reduce the edema. All the 10 drugs are having the quality to treat the *shotha roga*. *Shothahara mahakashya* helps re-establish normal physiological function in the affected tissues and organs.

Dosha karma (Effect on humors)- specifies mainly vata dosha, normalizes kapha dosha Dhatu (Tissue effect)- Rasa,Mamsa, Asthi Organs effect- Nerves, Muscles, Bones, Joints Main Indication- Vata disorders Physician can select the best drug among these with the help of YUKTI PRAMANA.^[5]

Shothahara mahakasaya every dravya though an ingredient of Dashmool, an anti inflammatory formulation from Ayurveda, is not indicated in Ayurveda as a single drug formulation for internal use in treatment of inflammatory disorders.

REFERENCES

- 1. Pt. Kasinath pandey et al, Shadavirechanshatashritiyadhyam, quotation-38,Charak Samhiat, part-1, Chaukhambha bharati academy, Varanasi, reprint edition, 2013.
- 2. Dr. J.L.N. Sastry Dravyaguna vijnana by J.L.N. Sastry vol.II, Chaukhambha orientalia, reprint edition 2015, page no.98,-100,108,160,367,368, 399,403, 404,418,419,426,865
- 3. Dravyaguna Hastamalak by Vaidya Banvari Lal Mishra edition, 2005.
- 4. Aushadhi vigyan shastra by Acharya Vishwanath Devedi edition, 1970.
- 5. Kamini kaushal, dr.lad meena, shvasahara mahakashaya and its pharmacology: a review study, www.wjpr.netvol, 2015; 4(10): 444-451.
- 6. Padmshri Prof. K.C. Chunekar, Bhavprakash Nighantu, Chaukhambha bharati academy, Varanasi, reprint edition 2013.
- 7. Prof. P.V. Sharma, Dravyaguna vijnana, vol.-II, Chaukhambha bharati academy, Varanasi, reprint edition 2013.
- 8. Journal of Research in Indian Medicine, 1975; 10(2): 6.
- 9. D. Kilimozhi et. al., Antinociceptive, antipyretic and anti-inflammatory effects of Clerodendrum phlomidis in mice and rats, IJBCS, 2009; 3(3).
- 10. Rahul Dev Lawania et al, Oroxylum indicum: A Review, PHCOG J,https://www.researchgate.net/publication/202282458, May 2010; 2(9).
- 11. Jayanti P. Behera et.al. Effect of aqueous extract of Aegle marmelos unripe fruit on inflammatory bowel disease, Indian J Pharmacol, 2012 sep-oct; 44(5): 614-618.
- 12. Yogesh A.kulkarni et al, Effect of Gmelia arborea Roxb. In experimentally induced inflammation and nociception, J Ayurveda Integr Med., 2013 Jul-Sep; 4(3): 152-157.
- 13. Manoj Kumar Sagar et al, Evaluation of antinociceptive and anti inflammatory properties of Desmodium gangeticum (L.) in experimental animals models, Arch.Appl.Sci.Res., 2010; 2(4): 33-43.
- 14. Pt. Kasinath pandey et al, swathuchikitsa, quotation-8,10,11 Charak Samhiat, part-2, Chaukhambha bharati academy, Varanasi, reprint edition, 2012; 354: 356.
- 15. Pt. Kasinath pandey et al., trishothiyamadhyamam, quotation-3,8 Charak Samhiat, part-1, Chaukhambha bharati academy, Varanasi, reprint edition, 2013; 367: 373.
- 16. T Balasubramanian et al, Anti-inflammatory effect of Stereospermum suaveolens ethanol extract in Rats, J Pharmaceutical biology, 2010; 48(3).
- 17. Reshma R. Parekar et al., Evaluation of anti-inflammatory activity of root bark of Clerodendrum phlomidis in experimental models of inflammation, Int. J. App. Bio. Pharma. Tech., July-Sept 2012; 3(3).

- 18. Nugroho AE, Riyanto S, Sukari MA and Maeyama K. The Effects of compounds isolated from Aegle marmelos Correa on the histamine release from mast cells. The 81st Annual Meeting of the Japanese Pharmacological Society, Yokohama, Japan, 2008; 189.
- 19. Amdadul Huque et.al., Analgesic, Anti-Inflammatory and Anxiolytic Activity Evaluation of Methanolic Extract of Solanum Surattense Leaf in Swiss Albino Mice Model, International Journal of Pharmaceutical and Clinical Research, 2015; 7(1): 68-76.
- 20. Prashanta Kr. Deb1 et al., Phytochemical and Pharmacological Evaluation of Fruits of Solanum indicum Linn., Int. J. Pharm. Sci. Rev. Res., Mar Apr 2014; 25(2): Article No. 06, Pages: 28-32.
- 21. Kritika Hem et al, Anti-inflammatory and hepatoprotective activities of the roots of Uraria picta, research gate, march 2017.
- 22. Oh JS, Baik SH, Ahn EK, Jeong W, Hong SS. Anti-inflammatory activity of Tribulus terrestris in RAW264.7 Cells. J Immunol, 2012; 88: 54.2.