

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 7.523

Volume 6, Issue 17, 749-754. <u>Res</u>

Research Article

ISSN 2277-7105

SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF SOME NEW BARBITONE DERIVATIVES

J. V. Dodia*, V. R. Dangar and V. R. Shah

Department of Chemistry, Kamani Science College, Amreli-365601, Gujarat, India.

Article Received on 21 Oct. 2017,

Revised on 12 Nov. 2017, Accepted on 03 Dec. 2017, DOI: 10.20959/wjpr201717-10360

*Corresponding Author J. V. Dodia

Department of Chemistry, Kamani Science College, Amreli-365601, Gujarat, India.

ABSTRACT

Some new 1-(p-Methoxyphenyl)-3-[4'-(p-methylbenzyloxy)-3' methoxyphenyl]-prop-2-en-1-one (1a-l) and 5-[1'-Aryl-3'-{4"-(p-methylbenzyloxy)-3"-methoxyphenyl}-prop-2'-en-1'-ylidene]-pyrimidine-2, 4, 6- (1H, 3H, 5H)-triones (2a-l) were prepared. All the prepared compounds were characterized by their spectral (I.R., N.M.R., Mass) data and screened for their antimicrobial activities.

KEYWORDS: Chalcone, Barbitone, Antimicrobial activities.

INTRODUCTION

The emerging role of barbitones in pharmaceutical chemistry as well as in biochemistry stimulated tremendous interest in the synthesis^[1-3] of barbitones of therapeutic interest. Most important is the effect of barbiturates on the central nervous system. Barbituric acid derivatives constitute an important class of compounds possessing diverse type of biological properties including hypnotic, sedative, anticonvulsant, cardiovascular etc. Different methods are used for the preparation of barbitones in literature. Some barbituric acid derivatives used as sedative and hypnotic is carbubarb^[6], which is used as veterinary anesthetic. Some isoxazolo pyrimidines have been studied because of their potential as pesticidal^[7-8] activity. Some barbiturates showing cardiovascular^[9-11] and analgesic and anti-inflammatory activities^[12] have been reported.

This inspired us to synthesize 1-(p-Methoxyphenyl)-3-[4'-(p-methylbenzyloxy)-3' methoxyphenyl]-prop-2-en-1-one (1a-l) and 5-[1'-Aryl-3'-{4''-(p-methylbenzyloxy)-3''-methoxyphenyl}-prop-2'-en-1'-ylidene]- pyrimidine-2, 4, 6- (1H,3H,5H)-triones (2a-l).

The structure of synthesized compounds were assigned based on Elemental analysis, I.R. ¹H-NMR and Mass spectral data. The antimicrobial activity was assayed by using the cup-plate agar diffusion method^[13] by measuring the zone of inhibition in mm. All the compounds were screened *in vitro* for their antimicrobial activities^[14] against varieties of bacterial strains such Staphylococcus aureus, *Bacillus subtillis*, *Escherichia coli*, Proteus vulgaris and fungi *Aspergillus niger* at 40 μg concentration. Standard drugs like Ampicillin, Amoxicillin, Norfloxacin, Benzyl penicillin and Griseofulvin were used for comparison purpose (Table-1).

RESULTS AND DISCUSSION

The synthesis of 1-(p-Methoxyphenyl)-3-[4'-(p-methylbenzyloxy)-3' methoxyphenyl]-prop-2-en-1-one (1a-l) and 5-[1'-Aryl-3'-{4"-(p-methylbenzyloxy)-3"-methoxyphenyl}-prop-2'-en-1'-ylidene]- pyrimidine-2, 4, 6- (1H,3H,5H)-triones (2a-l) was carried out in two steps, first by the condensation of 4-[(2-chlorobenzyl)oxy]-3-methoxy benzaldehyde (1) with different aromatic acetophenone by Claisen-shmidt condensation in presence base catalyst to give chalcone derivatives (1a-l), which in next step were refluxed with barbituric acid in presence of glacial acetic acid to yield barbitone derivatives (2a-l). (scheme-1). The formulas of the selected compounds were confirmed by the elemental analysis and their structures were determined by IR, H-NMR, and mass spectral data.

Antibacterial Activity

It has been observed from the microbiological data that all compounds (1a-l) and (2a-l) were found to be mild to moderately active against Gram positive and Gram negative bacterial strains. The screening data indicated that among chalcone and barbitone derivatives, tested compounds 1c, 1h and 2i, 2j possesses very good against *S.aureus*. However, the compounds 1j, 1h and 2d, 2j displayed comparable activity against *B.subtilis*. The compounds 1e, 1i, and 2d, 2l showed greater degree of antibacterial activity against *E.coli*. However, the compounds 1e, 1i, and 2f, 2g showed mildly active against *P.vulgaris*. All the compounds were found to possess moderate to good activity against Gram positive and Gram negative strains.

Antifungal Activity

The antifungal data revealed that compounds were least toxic to the fungal strain. However mild activity was shown by the compounds against *A.niger*. The antibacterial activity was compared with standard drug viz. and antifungal activity was compared with standard drug viz. Griseofulvin. The screening data indicated that among chalcone and barbitone derivatives, tested compounds **11**, **1e**, and **2a**, **2e** showed maximum activity against *A.niger*.

All other compounds exhibit mild to moderate antifungal activity against A.niger.

Experimental Section

Melting points were taken in open capillary tubes are uncorrected. IR spectra (cm⁻¹) were recorded on Shimadzu-435-IR Spectrophotometer and 1 H-NMR spectra on Bruker spectrometer(300MHz) using TMS as an internal standard, chemical shift in δ ppm.

General procedure for the preparation of 1-Aryl-3-[4'-(p-methylbenzyloxy)-3'-methoxyphenyl]-propenones

Take a mixture of 4-[(p-methylbenzyl)oxy]-3-methoxy benzaldehyde (1) (0.01M) and 4-methoxy acetophenone (0.01) in methanol, add a NaOH (0.002M) to the reaction mixture. The reaction mixture was magnetically stirred for 12 hrs and then left overnight. After it was pour over ice and neutralized with dil.HCl and ethanol is added for crystallization.

1-Aryl-3-[4'-(p-methylbenzyloxy)-3'-methoxyphenyl]-propenones

Yield 76%, m.p. 112⁰C; IR(KBr): v 2968,2841,1456 (Alkane,-CH₃), 1255 (-OCH₃), 1255 (Ar-O-C), 1663 (C=O), 1591 str. (C=C), 3064,1511,1133,806 (Aromatic), cm⁻¹; ¹H-NMR (CDCl₃): δ 3.84, (s,6H,-OCH₃), 7.00 & 7.20 (d,2H,-CH=CH-), 5.08(s,2H,-O-CH₂-), 6.96-8.05(m,11H, Ar-H), Mass m/z 388 .M.F.:C₂₅H₂₄O₄.

General procedure for the preparation of 5-[1'-Aryl-3'-{4"-(p-methybenzyloxy)-3"-methoxyphenyl}-prop-2'-en-1'-ylidene]- pyrimidine-2, 4, 6- (1H,3H,5H)-triones (2a-l)

A solution of 1-(p-Methoxyphenyl)-3-[4'-(p-methylbenzyloxy)-3'-methoxyphenyl]-prop-2-en-1-one (4.98g, 0.01M) and barbituric acid (1.28g, 0.01M) in methanol (40ml) was refluxed in presence of gla. acetic acid (catalytic amount) for 12 hrs. The reaction mixture was poured in crushed ice, filtered washed and dried, crystallized from methanol, Yield 76%, m.p.122°C. C₂₉H₂₆N₂O₆; Required: C, 69.73; H, 5.21; N, 5.61 %; Found: C, 69.69; H, 5.11; N, 5.11 %. Similarly, other barbitones were prepared. The physical data are recorded in Table No. 1.

5-[1'-Aryl-3'-{4"-(p-methybenzyloxy)-3"-methoxyphenyl}-prop-2'-en-1'-ylidene]-pyrimidine-2, 4, 6- (1H,3H,5H)-triones

Yield 76%, m.p. 122 ⁰C; IR(KBr): v 2957,1456 (Alkane,-CH₃), 1253 (-OCH₃), 1267 (Ar-O-C), 1548 (C=C), 3084,1498,1145 (Aromatic), 3305 (-NH-), cm⁻¹; ¹H-NMR (CDCl₃): δ 3.87 (s,3H,- OCH₃), 10.0,11.2 (s,2H,-NH), 5.16 (s, 2H, -O-CH₂-), 6.87-8.04 (m,13H, Ar-H),2.31,2.38(s,6H,-CH₃). Mass m/z 499 . M.F.:C₂₉H₂₆N₂O₆.

Table-1.

Characterization data of the compounds (1a-l) and (2a-l)							
Compd No.	R	Molecular formula	Mole.Wt.	M.P. $({}^{0}C)$	Nitrogen %		
					Calcd	Found	
1a	$-C_6H_5$	$C_{24}H_{22}O_3$	358	122	-	-	
1b	-4-NH ₂ -C ₆ H ₄	$C_{24}H_{23}NO_3$	373	170	3.75	3.51	
1c	-4-Br-C ₆ H ₄	$C_{24}H_{21}BrO_3$	437	112	-	-	
1d	-4-Cl-C ₆ H ₄	$C_{24}H_{21}CIO_3$	392.5	108	-	-	
1e	-2,4-(Cl ₂)-C ₆ H ₃	$C_{24}H_{20}CI_2O_3$	427	140	-	-	
1f	-2-OH- C ₆ H ₄	$C_{24}H_{22}O_4$	374	73	-	-	
1g	-3-OH- C ₆ H ₄	$C_{24}H_{22}O_4$	374	78	-	-	
1h	-4-OH- C ₆ H ₄	$C_{24}H_{22}O_4$	374	72	-	-	
1i	-4-OCH ₃ -C ₆ H ₄	$C_{25}H_{24}O_4$	388	112	-	-	
1j	-4-CH ₃ - C ₆ H ₄	$C_{25}H_{24}O_3$	372	134	-	-	
1k	-3-NO ₂ - C ₆ H ₄	$C_{24}H_{21}NO_5$	403	92	3.47	3.32	
11	-4-NO ₂ - C ₆ H ₄	$C_{24}H_{21}NO_5$	403	148	3.47	3.29	
2a	-C ₆ H ₅	$C_{28}H_{24}N_2O_5$	468.5	118	5.97	5.94	
2b	-4-NH ₂ -C ₆ H ₄	C ₂₈ H ₂₅ N ₃ O ₅	483.5	110	8.60	8.56	
2c	-4-Br-C ₆ H ₄	$C_{28}H_{23}BrN_2O_5$	547.5	155	5.11	5.01	
2d	-4-Cl-C ₆ H ₄	$C_{28}H_{23}CIN_2O_5$	502.9	138	5.56	5.51	
2e	-2,4-(Cl ₂)- ₆ H ₃	C ₂₈ H ₂₂ CI ₂ N ₂ O ₅	537.3	132	5.21	5.11	
2f	-2-OH- C ₆ H ₄	$C_{28}H_{24}N_2O_6$	484.5	136	5.77	5.72	
2g	-3-OH- C ₆ H ₄	$C_{28}H_{24}N_2O_6$	484.5	172	5.77	5.73	
2h	-4-OH- C ₆ H ₄	$C_{28}H_{24}N_2O_6$	484.5	140	5.77	5.74	
2i	-4-OCH ₃ -C ₆ H ₄	$C_{29}H_{26}N_2O_6$	498.5	122	5.61	5.58	
2j	-4-CH ₃ - C ₆ H ₄	$C_{29}H_{26}N_2O_5$	482.5	135	5.80	5.76	
2k	-3-NO ₂ - C ₆ H ₄	C ₂₈ H ₂₃ N ₃ O ₇	513.5	78	8.10	8.04	
21	-4-NO ₂ - C ₆ H ₄	C ₂₈ H ₂₃ N ₃ O ₇	513.5	90	8.10	8.02	

Table-2.

Compd No.	Antibacterial activity (zone of inhibition in mm)				Antifungal activity
	S.aureus	B.subtillis	E.coli	P.vulgaris	A.niger
1a	10	17	17	15	16
1b	18	14	15	18	15
1c	20	15	15	16	14
1d	16	17	18	13	13
1e	14	10	19	18	20
1f	15	12	13	17	15
1g	18	16	16	15	17
1h	19	18	15	16	18
1i	12	16	19	19	18
1j	13	19	16	15	16
1k	18	15	15	14	17
11	12	17	17	11	19

2a	13	14	17	11	19
2b	13	14	17	13	15
2c	19	16	19	14	13
2d	19	28	20	15	11
2e	16	13	17	18	23
2f	17	13	15	19	11
2g	15	17	14	19	16
2h	14	17	13	16	14
2i	21	21	17	14	14
2j	21	21	17	14	14
2k	18	21	19	11	12
21	19	20	21	10	18
Ampicillin	22	20	21	24	0
Amoxicillin	20	23	22	21	0
Norfloxacin	19	20	23	22	0
Benzyl penicillin	21	21	19	18	0
Griseofulvin	0	0	0	0	25

Scheme-1.

CONCLUSION

The present study leads to a convenient synthetic method for the synthesis of new compounds. Which show significant antibacterial and antifungal activity. Further investigation with appropriate structural modification of the above compounds may result in therapeutically useful products.

ACKNOWLEDGMENT

The authors are thankful to authorities of Kamani Science College, Amreli for providing research facilities and we are also thankful to Department of Chemistry Saurashtra University Rajkot for I.R., N.M.R., Mass spectral & elemental analysis.

REFERENCES

- 1. Cao-Yan Weu, Chai Xain Dong, Jiang Yue-Shan et al.; Gaodeng Xuexiao Huaxue Xuebao, 1995; 16(2): 225-29. Chem. Abstr., 123, 33021u (1995).
- 2. M. R. Mahmoud, Awatef E. F. Ebrahim, M. S. Abd El-Halim and A. M. Radwan; Indian J. Heterocyclic Chem., 1994; 4: 131-36.
- 3. Funda Ougus and Liknur Dogan; Chem. Abstr., 1998; 129: 16097e.
- 4. J. B. Dickey and A. R. Gray; Org. Syn. Coll. 1943; 2: 60.
- 5. C. B. Reese and S. R. James; Tetrahedron Letters, 1975; 29: 15.
- Malcom Daniels and Alec Grimison; U. S. US Pat. 13, 150, 137 (1964); Chem. Abstr., 1963; 59: 7539c.
- 7. J. M. Cox, C. D. Snowling and M. C. Shepard; German Often, 2, 812, 367 (1978); Chem. Abstr., 1978; 90: 82129u.
- 8. Z. H. Khalil, A. I. M. Koraiem and R. M. Abu-El-Hammed; J. Chem. Technol., Biotechnol., 1986; 36: 473.
- 9. Y. K. Gupta, K. P. Bhargava, K. Shanker and J. C. Agarwal; Indian J. Chem., 1981; 20B: 714.
- 10. J. C. Agarwal, Y. K. Gupta, P. Kumar, C. Nath, K. P. Bhargava and K. Shanker; Indian J. Chem., 1983; 22B: 955.
- 11. G. P. Gupta, Sharda Singh and K. Shanker; Indian J. Chem., 1985; 24B: 1094.
- 12. Y. Furukawa; European Patent Appl. EP. 88 413 (1983); Chem. Abstr., 1983; 100: 22688.
- 13. A. L. Barry; The antimicrobial susceptibility test: Principle and practices, edited by Illuslea & Febiger, (Philadelphia), USA, 180; Biol. Abstr., 1977; 64: 25183
- 14. Panda J. Srinivas S. V., Rao M. E.; J. Indian Chem. Soc., 79(9), 770-1 (2002); Chem. Abstr., 2003; 138: 153499n.