

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.074

Volume 7, Issue 4, 1066-1075. <u>R</u>

Research Article

ISSN 2277-7105

TRANSFER VOLUMES OF GLYCINE FROM WATER TO AQUEOUS ELECTROLYTE AND NON-ELECTROLYTE SOLUTIONS AT 298.15 K

A. D. Arsule^{1*}, A. R. Ban¹ and B. D. Ridhorkar²

¹School of Chemical Sciences, S.R.T.M. University, Nanded (MS) India.

²Hutatma Rashtriya Arts and Science College, Asthi, Dist. Wardha (MS) India.

Article Received on 24 Dec. 2017,

Revised on 13 Jan. 2018, Accepted on 03 Feb. 2018,

DOI: 10.20959/wjpr20184-11064

*Corresponding Author

A. D. Arsule

School of Chemical Sciences, S.R.T.M. University, Nanded (MS) India.

ABSTRACT

Partial molar volumes φ^0_v) of glycine (c=0.02-0.22 mol·dm⁻³) in aqueous electrolyte solutions (NaCl and KCl, c=0.15, 0.45 and 0.60 mol·dm⁻³) and non-electrolyte solutions (sucrose, c=0.15, 0.45 and 0.60 mol·dm⁻³) were determined at 298.15 K. Partial molar volume of transfer ($\Delta_{tr}\varphi^0_v$) of glycine from aqueous to aqueous electrolyte and non-electrolyte solutions has been calculated and interpreted in terms of different interactions in studied solutions.

KEYWORDS: Density, Apparent molar volume, Ion–hydrophilic interactions, Hydrophilic–hydrophilic group interactions.

INTRODUCTION

Most biochemical processes take place in aqueous solutions and all the biological systems are aqueous solutions of salts, proteins, carbohydrates and lipids. [1] Number of workers has studied aqueous glycine system and hydration structure of glycine in different environments. [2-6] Densities, partial molar volumes and heat capacities of glycine in aqueous magnesium chloride solutions at different temperatures have been studied by B. S. Lark *et al* [7], transfer volumes of glycine, from water to 1,2- butanediol-water mixtures at 298.15 K were studied by L. Xu *et al* [8] and influence of hydrotropic agents on the solute-solvent interactions in aqueous solutions of glycine at different temperatures were studied by S. Pattnaik *et al*. [9] Viscosity behavior of α -amino acids in acetate salt solutions at 303.15 to 323.15 K was studied by J. A. Siddique *et al*. [10] Extensive studies of solute-solute and solute-solvent interactions have been carried out by many workers. [11-17]

Interactions of glycine in aqueous electrolytes and sucrose solution plays a vital role in understanding the nature of action of bioactive molecules or the thermodynamic behavior of biochemical processes in the body system.^[18] Important information regarding ion-ion and ion-solvent interactions in solutions can be obtained from partial molar volumes of solution.^[19-21] Structure making and breaking properties of solutes can be understood form the physicochemical investigations of solutions.^[22]

Studies of volumetric properties and molecular interaction of glycine with electrolytes and sucrose solutions are interesting due to the existence of interactions between them and to understand the effect of these co-solutes on volumetric and viscometric behaviour of glycine. The ion—ion, zwitterion—water dipole, and ion—water dipole interactions in these systems are interesting to study. In continuation with our earlier studies^[23-29], here, in view of physicochemical applications and research interests, the effect of electrolytes/ionic salts (NaCl and KCl) and non-electrolyte/sugar (sucrose) on volumetric behaviour of aqueous glycine solutions has been studied.

MATERIALS AND METHODS

Glycine (*sd fine*, AR Grade, purity>99%) was used. NaCl, KCl (Qualigens, >99.5) and sucrose (*sd fine*) solids were used as received. The HPLC grade deionized distilled water obtained from Millipore prefiltration kit (Direct-QTM system series) was used for preparation of solutions. Solutions of glycine having different concentrations were prepared in distilled water in calibrated volumetric flasks by dissolving accurately weighed glycine in different media. All the glassware used during experiments was of Borosil make and calibrated before use. Measurement of density was carried out using three different single capillary pycnometers and average values were considered for the calculation of density of solution. Weighing was done on electronic balance.

RESULTS AND DISCUSSION

The density data of ternary systems containing glycine in aqueous salts and sucrose solutions are reported in Table 1. It has been observed from density data that the densities of solutions increased with concentration of glycine in each system of aqueous 0.15, 0.45 and 0.60 mol·dm⁻³ NaCl, KCl and sucrose. Further the densities of glycine in aqueous salts and sucrose solutions increase with concentration of salts and sucrose which may be attributed to enhanced structure of solvent due to added glycine in NaCl, KCl and sucrose solutions. Variation in the density of studied solutions with concentration indicates changes in the

structural arrangements and existence of molecular interactions between the components of the system at 298.15 K and atmospheric pressure.

Table 1: Molar concentrations (c), densities (ρ) and apparent molar volumes (φ_v) of glycine in aqueous NaCl/KCl/Sucrose solutions at 298.15 K.

a (Clv)	ρ	$arphi_{ ext{ iny V}}$	ρ	$arphi_{ ext{ iny V}}$	ρ	$arphi_{ m v}$
c (Gly)	0.151 mol·dm ⁻³ NaCl		0.151 mol·dm ⁻³ KCl		0.156 mol·dm ⁻³ sucrose	
0.02	1.0038	47.96	1.0046	47.70	1.0165	44.35
0.06	1.0050	46.29	1.0057	46.20	1.0177	44.22
0.10	1.0062	45.92	1.0069	45.86	1.0190	43.98
0.14	1.0076	44.44	1.0083	44.39	1.0202	43.72
0.18	1.0088	44.09	1.0096	44.06	1.0215	43.65
0.22	1.0101	43.85	1.0110	43.00	1.0227	43.46
	0.455 mol·c	lm ⁻³ NaCl	0.457 mol·dm ⁻³ KCl		0.502 mol·dm ⁻³ sucrose	
0.02	1.0162	49.94	1.0182	51.65	1.0505	46.65
0.06	1.0173	48.29	1.0192	50.29	1.0516	46.57
0.10	1.0185	46.59	1.0203	48.22	1.0527	46.44
0.14	1.0197	45.84	1.0216	46.68	1.0538	46.35
0.18	1.0211	44.66	1.0231	44.83	1.0550	46.14
0.22	1.0223	44.29	1.0243	44.42	1.0561	45.81
	0.608 mol·dm ⁻³ NaCl		0.612 mol·dm ⁻³ KCl		0.698 mol·dm ⁻³ sucrose	
0.02	1.0223	50.77	1.0247	56.02	1.0658	47.39
0.06	1.0233	48.77	1.0256	53.08	1.0669	47.14
0.10	1.0245	47.28	1.0268	49.86	1.0679	46.90
0.14	1.0257	46.62	1.0280	47.83	1.0690	46.76
0.18	1.0270	45.74	1.0294	46.19	1.0701	46.58
0.22	1.0281	45.56	1.0308	45.13	1.0712	46.41

^{*}Foot note: $c = \text{mol·dm}^{-3}$; $\rho \text{ g·cm } \varphi_v = \text{cm}^3 \cdot \text{mol}^{-1}$.

The apparent molar volume (φ_v) of glycine in aqueous NaCl, KCl and sucrose solutions were calculated from the density of solvent, density of solution, molality of glycine and molar mass of glycine using following Equation:

$$\varphi_{v} = \frac{M_{2}}{\rho} + \frac{1000}{c\rho\rho_{0}}(\rho_{0} - \rho) \tag{1}$$

Where, ρ_0 = density of pure solvent/solution in which experimental solutions were prepared (g·cm⁻³), ρ density of experimental solution (g·cm⁻³), M_2 = molar mass of solute (g·mol⁻¹) and c= concentration of solution (mol·dm⁻³). The calculated φ_v values are reported in Table 1. The values of glycine in aqueous solutions of salts and sucrose are higher than the values in water. It is seen that φ_v values of glycine decreased with increase in concentration of glycine increased with increase in concentrations of NaCl, KCl and sucrose for given glycine concentration. An increase in φ_v with electrolyte and sucrose concentration is a result of

increased interaction between polar ends of glycine and ions of the electrolytes or polar groups of sucrose which shields the polar terminal groups of glycine^[30] and increased solute-solvent interactions.

The φ_v data of glycine was fitted to the Massons linear relation, $\varphi_v = \varphi^0_v + S_v \times \sqrt{c}$, [31,23] and from the plots of φ_v vs. \sqrt{c} , the apparent molar volume at infinite dilution (partial molar volume, φ^0_v) of glycine in these aqueous systems was determined (Figure 1-3) as intercept and S_v , the experimental slope was determined as slope. The φ^0_v and S_v values are reported in Table 2.

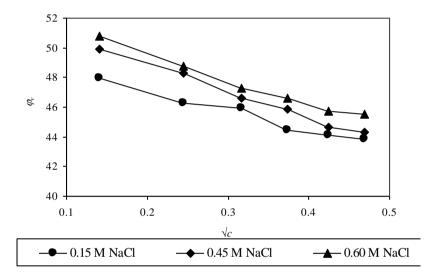


Figure 1. Graphical determination of φ^0_v and S_v for glycine in aqueous NaCl solutions from φ_v vs. \sqrt{c} plot using Masson's relation.

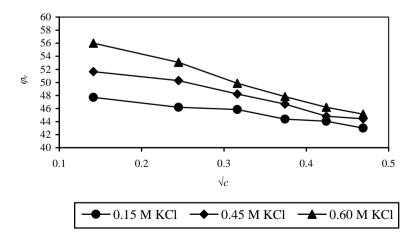


Figure 2: Graphical determination of φ^0_v and S_v for glycine in aqueous KCl solutions from φ_v vs. \sqrt{c} plot using Masson's relation.

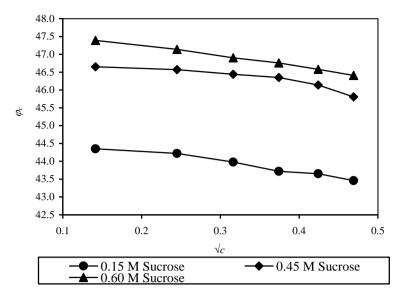


Figure 3: Graphical determination of φ^0_v and S_v for glycine in aqueous sucrose solutions from φ_v vs. \sqrt{c} plot using Masson's relation.

Table 2: Partial molar volumes (\square^{\square}_v), experimental slope (S_v) and volumes transfer of glycine in aqueous NaCl/KCl/sucrose solutions at 298.15 K.

c (mol·kg ⁻¹)	$\varphi^{\theta}_{\mathbf{v}}(\mathbf{cm}^{3}\cdot\mathbf{mol}^{\square})$	$\varphi_{v}^{0 \text{ and }} \Delta_{tr} \varphi_{v}^{0} (\text{cm}^{3} \cdot \text{mol}^{\square})$	$S_{\rm v}$ (cm ² ·dm ^{1/2} ·mol ^{-3/2})				
NaCl							
0.60	52.83	9.67	-16.36				
0.45	52.49	9.33	-17.93				
0.15	49.68	6.52	-12.95				
KCl							
0.60	61.05	17.89	-34.60				
0.45	55.51	12.35	-23.85				
0.15	49.76	6.60	-13.87				
Sucrose							
0.60	47.84	4.68	-2.98				
0.45	47.10	3.94	-2.35				
0.15	44.82	1.66	-2.82				

The φ_{v}^{0} for glycine in water obtained in present work=43.16 cm³·mol^{\square}.

The partial molar volume (φ^0_v) reflects solute-solvent interaction and magnitude of the slope (S_v) reflects solute-solute interaction.^[32] The φ^0_v increased with increase in the concentration of salts and sucrose which may be attributed to increase in the solvation of glycine at higher concentration of salts and sucrose. The observed positive values of φ^0_v indicate existence of solute-solvent interactions in all the solutions and presence of strong ion-solvent interactions in solution due to solvation of ions.

Further, the values of φ^0_v increased with increase in the concentration of salt and sucrose due to disruption of side group hydration by charged end.^[33] The S_v values represent volumetric and energetic effects for the solute molecule and sign of S_v values can be related with the nature of interaction between the solvated solute molecules.^[34] The graphical parameter S_v has negative values for all the studied systems due to weak solute-solute interactions.

In order to understand interactions between solute and co-solute, the partial molar volume of transfer (standard transfer volume of glycine, φ^0_v and $\Delta_{tr}\varphi^0_v$) at infinite dilution from pure water to aqueous salts/sucrose solutions are studied. The \Box^0_v value obtained for glycine in water is 43.14 cm³· mol⁻¹. The φ^0_v and $\Delta_{tr}\varphi^0_v$ values were calculated and reported in Table 2. Variation in the φ^0_v and $\Delta_{tr}\varphi^0_v$ with salt concentration is presented in Figure 4. It is seen that φ^0_v and φ^0_v values are positive for all the systems which is attributed to decrease in volume of shrinkage because of direct electrostatic interactions between salts/sucrose and charged centers of glycine which leads to the electrostriction of water.

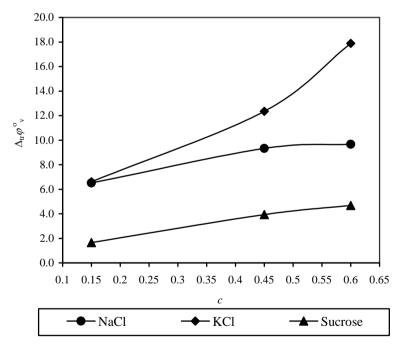


Figure 4. Variation in the $\Delta_{\rm tr} \varphi^0_{\rm v}$ with concentration of salts and sucrose at 298.15 K.

The positive values of $\Delta_{tr} \varphi^0_v$ also indicate dominating ion-hydrophilic and hydrophilic-hydrophilic interactions. This also suggests existence of ion-hydrophilic or ion-polar interactions. Glycine gets less hydrated in presence of salts and sucrose as ions in salts (through solvation) and sucrose molecules (through hydrogen bonding) takes water molecule

to hydrate and glycine will leave with less water molecules (overall enhancement of water structure). Therefore, hydration number of glycine decreases on addition of salts and sucrose and further decreases with concentration of salts and sucrose due to existence of solute-cosolute interactions. Dominating hydrophilic-hydrophilic or ion-hydrophilic interactions are observed in present systems and these interactions strengthen with increase in concentration of salts and sucrose. The terminal zwitter ionic groups of glycine ($-NH_3^+$ and $-COO^-$) are hydrated in electrostatic manner and the electrostriction of $-NH_3^+$ group is greater than $-COO^-$. The increase of φ^0_v and $\Delta_{tr}\varphi^0_v$ suggests that electrostriction effect is decreased in salts + water and sucrose + water than in pure water which brings about increase in the volume of solvent. Due to molecular interactions, around each solute molecule there is a region of water where the properties of these water molecules differ from those of bulk water.

CONCLUSION

Densities of glycine + aqueous-{NaCl/KCl/sucrose} solutions at 298.15 K have been measured. Apparent molar volumes (φ_v) , partial molar volumes (φ_v) and partial molar volumes of transfer $(\Delta_{tr}\varphi_v^0)$ of glycine at infinite dilution from pure water to aqueous NaCl/KCl/sucrose solutions were calculated. It is concluded from the $\Delta_{tr}\varphi_v^0$ values that, the ion-hydrophilic and hydrophilic-hydrophilic group interactions are predominant over hydrophilic-hydrophobic group interactions. Magnitude of $\Delta_{tr}\varphi_v^0$ indicates the more interactions between glycine and sucrose compared to glycine and salts, whereas, the order of electrostriction of water are more in salts than in sucrose solution. The hydrophilic-ionic group interactions are weak in glycine + sucrose solution and are strongest in glycine + KCl solution. Further, increase in the infinite dilution partial molar volume is due to dehydration of zwitterionic center of amino acids which is because of hydrophilic-ionic group interaction between the ion (from dissociation of salts) and water molecules. The increase of φ_v and $\Delta_{tr}\varphi_v^0$ suggests that electrostriction effect is decreased in salts + water and sucrose + water than in pure water which brings about increase in the volume of solvent.

REFERENCES

- 1. Collins KG, Neilson, Enderb J. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophy. Chem., 2007; 128: 95-4.
- 2. Sasaki M, Kameda Y, Yaegashi M, Usuki T. Hydration structure around the methylene group of glycine molecule, Bull. Chem. Soc. Jpn., 2003; 76: 2293-9.

- 3. Kameda Y, Ebata H, Usuki T, Uemura O, Misawa. Hydration structure of glycine molecules in concentrated aqueous solutions. Bull. Chem. Soc. Jpn., 1994; 67: 3159-7.
- 4. Alonso JL, Cocinero EJ, Lesarri A, Sanz ME, Lopez JC. The glycine-water complex. Angew Chem. Int. Ed., 2006; 45: 3471-7.
- 5. Jensen JH, Gordon MS. On the number of water molecules necessary to stabilize the glycine zwitterion. J. Am. Chem. Soc., 1995; 117: 8159-8170.
- 6. Basch H, Stevens WJ. The structure of glycine water H-bonded complexes, Chem. Phys. Lett., 1990; 169: 275-280.
- 7. Lark BS, Patyar P, Banipal TS, Kishore N. Densities, partial molar volumes, and heat capacities of glycine, L-alanine and L-leucine in aqueous magnesium chloride solutions at different temperatures. J. Chem. Eng. Data, 2004; 49: 553-565.
- 8. Xu L, Ding CR, Lin RS. Transfer volumes of glycine, L-alanine, and L-serine from water to 1, 2- butanediol-water mixtures at 298.15 K. J. Solution Chem., 2006; 35: 191-200.
- 9. Pattnaik S, Dash UN. Influence of hydrotropic agents on the solute-solvent interactions in aqueous solutions of glycine at different temperatures. J. Chem. Pharm. Res., 2012; 4(9): 4364-9.
- 10. Siddique JA, Naqvi S. Viscosity behavior of α-amino acids in acetate salt solutions at temperatures (303.15 to 323.15) K. Int. J. Thermophys, 2012; 33: 47-7.
- 11. Kharat SJ. Density, viscosity and ultrasonic velocity studies of aqueous solutions of sodium acetate at different temperatures. J. Mol. Liq, 2008; 140: 10-4.
- 12. Roy MN, Banerjee A, Roy PK. Partial molar volumes and viscosity B-coefficients of nicotinamide in aqueous resorcinol solutions at T = (298.15, 308.15, and 318.15) K, Int. J. Thermophys, 2009; 30: 515-528.
- 13. Dey PC, Motin MA, Biswas TK, Huque EM. Apparent molar volume and viscosity studies on some carbohydrates in solutions, Monatsh Chem., 2003; 134: 797-809.
- 14. Sinha B, Dakua VK, Roy MN. Apparent molar volumes and viscosity B-coefficients of some amino acids in aqueous tetramethylammonium iodide solutions at 298.15 K. J. Chem. Eng. Data, 2007; 52: 1768-1772.
- 15. Iqbal MJ, Chaudhry MA. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures, J. Chem. Thermodyn, 2009; 41: 221-6.
- 16. Fucaloro FA, Pu Y, Cha K, Williams A, Conrad K. Partial molar volumes and refractions of aqueous solutions of fructose, glucose, mannose, and sucrose at 15.00, 20.00, and 25.00 0 C. J. Solut. Chem., 2007; 36: 61-7

- 17. Gulwade DP, Narwade ML, Wadodkar KN. Ultrasonic behaviour and study of molecular interactions of substituted azole in N, N-dimethylformamide at different temperatures and concentrations. Ind. J. Chem. A., 2004; 43(10): 2102-4.
- 18. Mirikar SA, Pawar PP, Bichile GK. Studies in thermodynamic properties of glycine in aqueous solutions of mono and divalent electrolytes at different temperatures. Arch. Appl. Sci. Res., 2011; 3(5): 233.
- 19. Parmar ML, Banyal DS. Effect of temperature on partial molar volumes of some bivalent transition metal nitrates and magnesium nitrate in DMF + water mixtures. Ind. J. Chem. A., 2005; 44: 1582-8.
- Krakowiak J, Koziel H, Grzybkowski W. Apparent molar volumes of divalent transition metal perchlorates and chlorides in N,N-dimethylacetamide. J. Mol. Liq, 2005; 118: 57-65.
- 21. Nikam PS, Shewale RP, Sawant AB, Hasan M. Limiting ionic partial molar volumes and viscosities of Cs⁺, Na⁺, (C₄H₉)₄N⁺, Cl⁻, Br⁻, I,⁻, and BPh₄⁻ in aqueous acetone at 308.15 K. J. Chem. Eng. Data, 2005; 50(2): 487-491.
- 22. Kannappan AN, Palani R. Ultrasonic investigations in amino acids with aqueous dimethyl formamide. Ind. J. Chem. A, 2007; 46: 54-9.
- 23. Deosarkar SD, Mendkudle MS. Physicochemical Properties and Ion–Solvent Interactions in Aqueous Sodium, Ammonium, and Lead Acetate Solution. Russ. J. Phy. Chem. A, 2014; 88(9): 1527–1532.
- 24. Deosarkar, SD, Wanale SG, Shelke MP. Apparent Molar and Partial Molar Volumes of Aqueous Ceric Ammonium Nitrate Solutions at 20, 25, 30, and 35°C. Russ. J. Phy. Chem. A, 2014; 88(7): 1124–1128.
- 25. Deosarkar SD, Puyad AL, Shaikh UB, Solanke SS. Volumetric, Rheological and Optical Properties of Hydroxylamine Hydrochloride in Aqueous NaCl, KCl and NH₄Cl Solutions at 30°C. Russ. J. Phy. Chem. A, 2014; 88(4): 596-600.
- 26. Deosarkar SD, Shaikh UB. Physico-Chemical Properties and Components Interaction in the Solutions of para-Substituted Benzoic Acids in Aqueous Ethanol. Russ. J. Phy. Chem A, 2013; 83(12): 2392–2394.
- 27. Deosarkar SD, Narwade ML, Pandhare VV. Characterization of molecular interactions in ethanol-water mixtures in presence of potassium salts, Chem. Sci. Trans, 2013; 2(3): 37-42.

- 28. Deosarkar SD, Pandhare VV, Kattekar PS. Densities and Refractive Indices of Potassium Salt Solutions in Binary {Ethanol + Water} Mixture of Different Compositions. J. Eng, 2013; 2013: 1-4.
- 29. Deosarkar SD, Kalyankar TM. Structural Properties of Aqueous Metoprolol Succinate Solutions. Density, Viscosity, and Refractive Index at 311 K. Russ. J. Phy. Chem. A, 2013; 87: 1060–1062.
- 30. Akhtar Y, Ibrahim SF. Ultrasonic and thermodynamic studies of glycine in aqueous electrolytes solutions at 303 K. Arab. J. Chem., 2011; 4: 487-0.
- 31. Delgado DR, Jiménez-Kairuz AF, Manzo RH, Vargas EF Martínez F. Apparent molar volumes of the anesthetic drugs procaine-HCl and lidocaine-HCl in water at temperatures from 278.15 to 313.15 K. Rev. Colomb. Cienc. Quím. Farm, 2010; 39(1): 57-7.
- 32. Pal A, Kumar S. Volumetric and viscometric studies of glycine in binary aqueous solutions of sucrose at different temperatures. Ind. J. Chem., 2005; 44: 469-475.
- 33. Nikumbh AB, Kulkarni GK. Volumetric and Thermodynamic parameters of L-leucine in ethanol+ water mixtures at different temperatures. Comm. Appl. Sci., 2013; 1(1): 106-134
- 34. Iqbal MJ, Malik QM. Partial molar volume of paracetamol in water, 0.1 M HCl and 0.154 M NaCl at T = (298.15, 303.15, 308.15 and 310.65) K and at 101.325 kPa. J. Chem. Thermodyn, 2005; 37: 1347-0.