

# WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.074

Volume 7, Issue 8, 266-276. Resea

Research Article

ISSN 2277-7105

# DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-HPLC METHOD FOR DETERMINATION OF VORICONAZOLE AND ITS RELATED SUBSTANCE IN PARENTERAL DOSAGE FORM

Nitika V. Arrawatia\*<sup>1</sup>, Dr. Chirag J. Patel<sup>2</sup> and Dr. M. M. Patel<sup>3</sup>

<sup>1</sup>Department of Pharmaceutical Quality Assurance, Shree Swaminarayan Sanskar Pharmacy College, Ahmedabad, Gujarat, India.

<sup>2</sup>Professor, Department of Pharmaceutical Quality Assurance, Shree Swaminarayan Sanskar Pharmacy College, Gandhinagar, Gujarat, India.

Article Received on 20 Feb. 2018,

Revised on 14 March 2018, Accepted on 03 April 2018,

DOI: 10.20959/wjpr20188-11819

# \*Corresponding Author Nitika V. Arrawatia

Department of
Pharmaceutical Quality
Assurance, Shree
Swaminarayan Sanskar
Pharmacy College,
Ahmedabad, Gujarat, India.

### **ABSTRACT**

Isocratic Reversed-Phase High Performance Liquid An Chromatographic (RP-HPLC) method has been developed and validated for the determination of Voriconazole and its related substance in parenteral dosage form. The method is simple, accurate, precise and capable of separating known impurities and degradant impurities from Voriconazole. Chromatographic separation has been achieved on Inertsil  $C_{18}$  (250\*4.6mm, 5 $\mu$ m) column, mobile phase consisting of Ammonium phosphate dibasic buffer (6.6 gm of Ammonium phosphate dibasic into 1000ml water, adjust pH 6.0 with dilute ortho phosphoric acid): Acetonitrile (55:45% w/v), delivered at flow rate of 1.0ml/min with detection wavelength at 256nm. The drug was subjected to stress condition such as Acid, Base and Oxidative.

The Degradation product was well resolved from the main peak and its Impurities and the mass balance was found close to 100.5%. The procedure was validated for Linearity (Correlation Co-efficient = 0.9999), % Recovery was found within the range of 98.60-105.9%. The percentage RSD for precision and accuracy of the method was found to be less than 5%. The method was found to be Robust. This method can be successfully employed for the quantitative analysis of Voriconazole in its parenteral dosage form.

**KEYWORDS:** Voriconazole, RP-HPLC, Forced Degradation Study, Validation.

<sup>&</sup>lt;sup>3</sup>Principal, Shree Swaminarayan Sanskar Pharmacy College, Gandhinagar, Gujarat, India.

# **INTRODUCTION**

Voriconazole is chemically (2R, 3S)-2-(2, 4-difluorophenyl)-3-(5-fluoropyrimidin-4-yl)-1-(1H-1, 2, 4-triazol-1-yl) butan-2-ol, chemical formula C<sub>16</sub>H<sub>14</sub>F<sub>3</sub>N<sub>5</sub>O, molecular weight 349.31 g/mol.<sup>[1,2]</sup> Voriconazole is triazole antifungal agent used to treat serious fungal infection such as aspergillosis, candidemia, esophageal candidiasis or other fungal infections.<sup>[3]</sup> The primary mode of action of Voriconazole is the inhibition of cytochrome P<sub>450</sub> dependent enzyme 14-alpha-sterol demethylase, thereby disrupting the cell membrane and halting fungal growth.<sup>[4]</sup> Voriconazole in its active dosage form is official in United State Pharmacopoeia but unofficial in its parenteral dosage form.<sup>[5]</sup> There is several process or degraded impurities associated with the synthesis of Voriconazole.<sup>[6]</sup> Three of the known Voriconazole related substances have been mentioned here; chemical structures for Voriconazole and its related out and validation parameters provide valuable information on linearity, accuracy, precision and robustness of related substances.<sup>[8-9]</sup>

The analytical method which has been reported are very few for the determination of Voriconazole in parenteral dosage form.<sup>[10-13]</sup> The present work deals with development and validation of simple, precise and accurate stability indicating RP-HPLC method for determination of Voriconazole and its related substance in Parenteral dosage form.

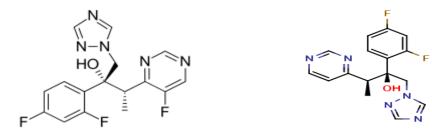



Fig. 1: Voriconazole

Fig. 2: Voriconazole related compound B

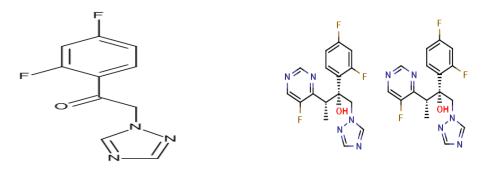



Fig. 3: Voriconazole related compound C. Fig. 4: Voriconazole related compound D.

### MATERIALS AND METHODS

# **Chemicals and Reagents**

Acetonitrile and ortho Phosphoric acid of HPLC grade produced by Merck Life science, Mumbai were used and Ammonium Phosphate Dibasic and other reagents used in the study were of analytical reagent grade. Working standard and sample (Voriconazole for Injection 200mg/vial) was provided by Zydus Cadila, Moraiya, Gujarat, India.

### Instrumentation

The separation was carried out on Agilent-1200 Series HPLC using Chromeleon software. The column used in development is Inertsil  $C_{18}$  (250\*4.6mm, 5 $\mu$ m). The mobile phase consists of Ammonium phosphate dibasic buffer (6.6 gm of Ammonium phosphate dibasic into 1000ml water, adjust pH 6.0 with dilute ortho phosphoric acid): Acetonitrile (55:45% w/v), with flow rate of 1.0ml/min, column oven temperature of 25°C, injection volume of 20 $\mu$ l, with isocratic elution at 256nm detection and the run time was of 30 min.

Table 1: Chromatographic parameters and condition.

| Mobile phase: | Buffer (6.6 gm of Ammonium phosphate dibasic into 1000ml water,      |  |  |  |  |  |  |
|---------------|----------------------------------------------------------------------|--|--|--|--|--|--|
|               | adjust the pH 6.0 with dilute Orthophosphoric acid): ACN (55:45%v/v) |  |  |  |  |  |  |
| Column:       | Column: Inertsil $C_{18}$ (250mm*4.6mm) 5 $\mu$ m                    |  |  |  |  |  |  |
| Wavelength:   | 256nm                                                                |  |  |  |  |  |  |
| Flow rate:    | 1.0 ml/min                                                           |  |  |  |  |  |  |
| Injection     | 201                                                                  |  |  |  |  |  |  |
| volume:       | 20μl                                                                 |  |  |  |  |  |  |
| Column        | 25°C                                                                 |  |  |  |  |  |  |
| temperature:  | 25 C                                                                 |  |  |  |  |  |  |

# **Preparation of Solution**

# **Preparation of diluent**

Mobile Phase is used as diluent.

# **Preparation of standard stock solution (100ppm)**

Transfer an accurately weighed quantity of 25mg of Voriconazole API to a 50ml volumetric flask, add about 20ml of diluent and sonicate to dissolve. Make up the volume upto the mark with diluent and mix dilute 5.0ml of above solution to 25ml with diluent and mix.

# Preparation of impurities stock solution

**Voriconazole Related Compound** C (**25ppm**): Weigh 1.25mg of Voriconazole Related Compound C impurity into 50ml volumetric flask, add 30ml diluent and sonicate to dissolve.

Make up volume with diluent (25ppm). Further dilute 2ml of above solution into 25ml volumetric flask and make up the volume with diluent (2.0ppm).

**Voriconazole Related Compound D** (**25ppm**): Weigh 1.25mg of Voriconazole Related Compound D impurity into 50ml volumetric flask, add 30ml diluent and sonicate to dissolve. Make up volume with diluents (25ppm). Further dilute 2ml of above solution into 25ml volumetric flask and make up the volume with diluents (2.0ppm).

# Spiked impurities mixture

Weigh 25mg of Voriconazole API to a 50ml volumetric flask, spike 2ml of impurity stock solution of Voriconazole Related Compound C (25ppm) and 2ml of Voriconazole Related Compound D (25ppm) into it and make up the volume with diluent.

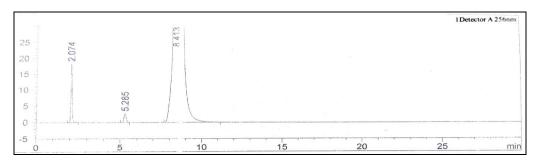



Fig. 5: Impurity Mixture + API.

Table 2: System suitability parameters in optimized condition.

| Retention<br>Time (min) | RRT* | Peak names                         | Plate | Tailing | Resolution |
|-------------------------|------|------------------------------------|-------|---------|------------|
| 2.074                   | 0.25 | Voriconazole Related<br>Compound C | 22812 | 1.230   | -          |
| 5.285                   | 0.63 | Voriconazole Related<br>Compound D | 40707 | 1.098   | 4.165      |
| 8.413                   | 1.0  | Voriconazole                       | 60832 | 1.111   | 9.443      |

**Note:** RRT- Relative Retention Time

# Forced degradation study

# **Acid degradation**

# **Preparation of Sample solution**

20ml reconstituted solution transfer into 100ml volumetric flask. Add approx 50ml of diluent and sonicate for 10 minute add 5ml of 5N HCl and heat for 30 minute in water bath at 80°C for acid hydrolysis. Then the solution was neutralized with 5N NaOH and made volume upto

mark with diluent. Then pipette out 5ml of solution in 50ml volumetric flask and make volume upto mark with diluent.

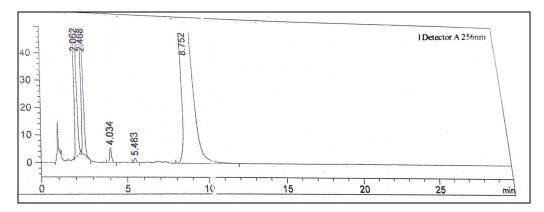



Fig. 6: Sample Acid degradation (5 N HCl\_5 ml\_80°C\_30min).

# **Base Degradation**

# **Preparation of Sample solution**

20ml reconstituted solution transfer into 100ml volumetric flask. Add approx 50ml of diluent and sonicate for 10 minute add 5ml of 5N NaOH and heat for 10 minute at Critical Room Temperature (CRT) for base hydrolysis. Then the solution was neutralized with 5N HCl and make volume upto mark with diluent. Then pipette out 5ml of solution in 50ml volumetric flask and make volume upto mark with diluent.

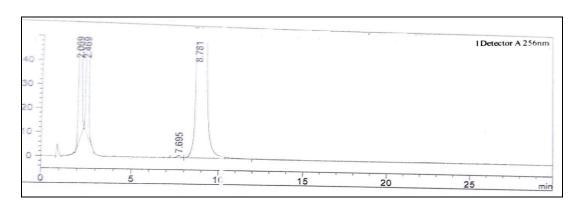



Fig. 7: Base degradation (5N NaOH\_5 ml\_ CRT\_10min).

# **Oxidation Degradation**

# **Preparation of Sample solution**

20ml reconstituted solution transfer in 100ml volumetric flask. Add approx 50ml of diluent and sonicate for 10 minute and 5ml of 30%  $H_2O_2$  was added and kept for 60 minute at critical room temperature. Then pipette out 5ml of solution in 50ml volumetric flask and make volume upto mark with diluent.

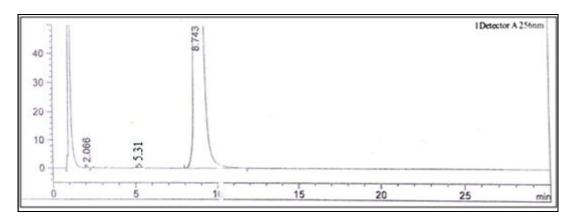



Fig. 8: Oxidation Degradation (30% H<sub>2</sub>O<sub>2</sub>\_CRT\_5 ml\_60 min).

**Table 3: Degradation summary.** 

| <b>Stress Condition</b>                                         | Duration       | Area after<br>Degradation | % Degradation | % Mass<br>Balance |
|-----------------------------------------------------------------|----------------|---------------------------|---------------|-------------------|
| Acid Hydrolysis<br>(5 N HCl_5 ml)                               | 80°C_30min     | 233020                    | 7.21          | 100.57            |
| Base Hydrolysis<br>(5 N NaOH_5 ml)                              | CRT*_10<br>min | 201583                    | 19.7          | 111.0             |
| Oxidation Degradation (30% H <sub>2</sub> O <sub>2</sub> _5 ml) | CRT*_60<br>min | 250130                    | 0.39          | 99.19             |

**Note:** CRT-Critical Room Temperature

# **Method Validation**

# **Related Compound C Impurity** - Specification Limit (Not More Than 0.20%)

# Linearity

According to specification limit, impurity should not be present more than 0.20%, so solutions of linearity of impurity prepared as following in which 0.20% of sample concentration is considered as 100% that is 2ppm (1000 ppm is sample concentration). From that consideration LOQ, 50%, 80%, 100%, 120% and 150% level solution are prepared.

Table 4: Linearity result of voriconazole related compound C.

| Level | Concentration (ppm)* | Area   |
|-------|----------------------|--------|
| LOQ   | 0.5029               | 16924  |
| 50%   | 1.0058               | 34618  |
| 80%   | 1.6093               | 55242  |
| 100%  | 2.0117               | 69092  |
| 120%  | 2.4140               | 83615  |
| 150%  | 3.0175               | 105306 |

**Note:** *ppm-parts per million.* 

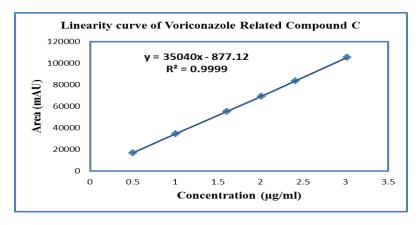



Fig. 9: Linearity curve of Voriconazole Related Compound C.

# **ACCURACY**

According to specification limit of impurity which is not more than 0.20%, amount of individual impurities will be 2.0ppm which is 0.20% of 1000ppm (sample concentration). Accuracy is performed in sample at 4 levels are LOQ, 50%, 100% and 150% in three sets.

Table 5: Recovery result of voriconazole related compound C

| Set | ml<br>Ad-ded | mg<br>Add-ed | Area   | mg<br>Found | mg<br>Recov-ered | %<br>Recov-ery | %<br>Mean<br>Recov-ery | SD    | %<br>RSD |
|-----|--------------|--------------|--------|-------------|------------------|----------------|------------------------|-------|----------|
|     |              |              |        |             | LOQ Level        |                |                        |       |          |
| 1   | 0.5          | 0.0127       | 20589  | 0.0160      | 0.0131           | 103.1%         |                        |       |          |
| 2   | 0.5          | 0.0127       | 20987  | 0.0161      | 0.0132           | 103.9%         | 103.9                  | 160.0 | 0.76     |
| 3   | 0.5          | 0.0127       | 21177  | 0.0162      | 0.0133           | 104.7%         |                        |       |          |
|     |              |              |        |             | 50% Level        |                |                        |       |          |
| 1   | 1.0          | 0.0254       | 36193  | 0.0277      | 0.0248           | 97.6%          | 98.6                   | 379.7 |          |
| 2   | 1.0          | 0.0254       | 36419  | 0.0279      | 0.0250           | 98.4%          |                        |       | 1.04     |
| 3   | 1.0          | 0.0254       | 36934  | 0.0283      | 0.0254           | 100.0%         |                        |       |          |
|     |              |              |        |             | 100% Level       |                |                        |       |          |
| 1   | 2.0          | 0.0508       | 70386  | 0.0539      | 0.0510           | 100.3%         |                        |       |          |
| 2   | 2.0          | 0.0508       | 70872  | 0.0543      | 0.0514           | 101.1%         | 100.7                  | 243.9 | 0.34     |
| 3   | 2.0          | 0.0508       | 70591  | 0.0541      | 0.0512           | 100.7%         |                        |       |          |
|     | 150% Level   |              |        |             |                  |                |                        |       |          |
| 1   | 3.0          | 0.0760       | 108579 | 0.0833      | 0.0804           | 105.8%         |                        |       |          |
| 2   | 3.0          | 0.0760       | 108751 | 0.0834      | 0.0805           | 105.9%         | 105.9                  | 132.6 | 0.12     |
| 3   | 3.0          | 0.0760       | 108840 | 0.0835      | 0.0806           | 106.1%         |                        |       |          |

Note: SD-Standard Deviation, RSD- Relative Standard Deviation

# **Precision**

# **Repeatability**

According to specification limit of impurity which is not more than 0.20%, amount of individual impurity will be 2.0ppm which is 0.20% of 1000ppm (sample concentration). For

Repeatability sample containing impurity at 100% level injected for six times. Calculate RSD for response of impurity.

Table 6: Repeatability result of voriconazole related compound C.

| Area  | Mean     | SD*    | % RSD* |  |
|-------|----------|--------|--------|--|
| 68549 |          |        |        |  |
| 69091 | 68894.33 | 251.04 | 0.364  |  |
| 69003 |          |        | 0.304  |  |
| 68793 |          |        |        |  |
| 68872 |          |        |        |  |
| 69148 |          |        |        |  |

Note: SD-Standard Deviation, RSD- Relative Standard Deviation.

# **Intermediate Precision**

# **Intraday Precision**

According to specification limit of impurity which is not more than 0.20%, amount of individual impurity will be 2.0ppm which is 0.20% of 1000ppm (sample concentration). Intermediate Precision sample containing impurity at 50%, 100% and 150% level injected for Intraday in three sets at Morning and Evening.

Table 7: Intraday precision result of voriconazole related compound C.

| Set | Level     | Morning | Evening | Mean     | SD*    | %RSD* |  |  |  |  |
|-----|-----------|---------|---------|----------|--------|-------|--|--|--|--|
|     | 50% Level |         |         |          |        |       |  |  |  |  |
| 1   | 50%       | 34765   | 34689   | 34727    | 53.74  | 0.154 |  |  |  |  |
| 2   | 50%       | 35093   | 35269   | 35131    | 124.45 | 0.353 |  |  |  |  |
| 3   | 50%       | 34917   | 35126   | 35021.5  | 147.78 | 0.421 |  |  |  |  |
|     |           |         | 100% L  | evel     |        |       |  |  |  |  |
| 1   | 100%      | 69084   | 69729   | 69406.5  | 456.08 | 0.657 |  |  |  |  |
| 2   | 100%      | 68893   | 69145   | 69019    | 178.19 | 0.258 |  |  |  |  |
| 3   | 100%      | 68994   | 69117   | 69055.5  | 86.97  | 0.125 |  |  |  |  |
|     |           |         | 150% L  | evel     |        |       |  |  |  |  |
| 1   | 150%      | 105913  | 105728  | 105820.5 | 130.81 | 0.123 |  |  |  |  |
| 2   | 150%      | 106193  | 106553  | 106373   | 254.55 | 0.239 |  |  |  |  |
| 3   | 150%      | 106199  | 106871  | 106535   | 475.17 | 0.446 |  |  |  |  |

Note: SD-Standard Deviation, RSD- Relative Standard Deviation

# **Interday Precision**

According to specification limit of impurity which is not more than 0.20%, amount of individual impurity will be 2.0ppm which is 0.20% of 1000ppm (sample concentration). Intermediate Precision sample containing impurity at 50%, 100% and 150% level injected for Interday in three sets at Day-1 and Day-2.

Table 8: Interday precision result of voriconazole related compound C.

| Set | Level     | Day 1  | Day 2  | Mean     | SD*    | %RSD* |  |  |  |  |  |
|-----|-----------|--------|--------|----------|--------|-------|--|--|--|--|--|
|     | 50% Level |        |        |          |        |       |  |  |  |  |  |
| 1   | 50%       | 34765  | 35278  | 35021.5  | 362.74 | 1.035 |  |  |  |  |  |
| 2   | 50%       | 35093  | 35914  | 35503.5  | 580.53 | 1.635 |  |  |  |  |  |
| 3   | 50%       | 34917  | 35461  | 35189    | 384.66 | 1.093 |  |  |  |  |  |
|     |           |        | 100%   | Level    |        |       |  |  |  |  |  |
| 1   | 100%      | 69084  | 69913  | 69498.5  | 586.19 | 0.843 |  |  |  |  |  |
| 2   | 100%      | 68893  | 69472  | 69182.5  | 409.41 | 0.591 |  |  |  |  |  |
| 3   | 100%      | 68994  | 69551  | 69272.5  | 393.85 | 0.568 |  |  |  |  |  |
|     |           |        | 150%   | Level    |        |       |  |  |  |  |  |
| 1   | 150%      | 105913 | 106283 | 106098   | 261.62 | 0.246 |  |  |  |  |  |
| 2   | 150%      | 106193 | 106924 | 106558.5 | 516.89 | 0.485 |  |  |  |  |  |
| 3   | 150%      | 106199 | 107119 | 106659   | 650.53 | 0.609 |  |  |  |  |  |

**Note:** *SD-Standard Deviation, RSD- Relative Standard Deviation.* 

# **Robustness**

According to robustness, there is minor deliberate change made in chromatographic parameter with reference of Flow rate and Column temperature. To observe robustness, 100% level solution is used.

# Change in flow rate

Inject the solution of 100% level of impurity at flow rate of 1.9 ml/min and 2.1 ml/min and calculate RSD for all responses of all impurities individually.

# **Change in Column Temperature**

Inject the solution of 100% level of impurity at Column Temperature of 20°C and 30°C and calculate RSD for all responses of all impurities individually.

Table 9: Robustness result of voriconazole related compound C.

| Parameter          | Change | Area  | Mean Area | SD*    | %RSD* |
|--------------------|--------|-------|-----------|--------|-------|
|                    | 0.9    | 68762 |           |        |       |
|                    | 0.9    | 67998 |           |        |       |
|                    | 0.9    | 68493 |           |        |       |
|                    | 1.0    | 69072 |           |        |       |
| Flow Rate (ml/min) | 1.0    | 69118 | 68834.78  | 400.21 | 0.581 |
|                    | 1.0    | 68947 |           |        |       |
|                    | 1.1    | 69384 |           |        |       |
|                    | 1.1    | 68815 |           |        |       |
|                    | 1.1    | 68924 |           |        |       |
|                    | 20°C   | 68519 |           |        |       |
|                    | 20°C   | 68583 |           |        |       |
|                    | 20°C   | 68721 |           |        |       |

|                           | 25°C | 68896 |       |        |       |
|---------------------------|------|-------|-------|--------|-------|
| <b>Column Temperature</b> | 25°C | 69121 | 69158 | 551.92 | 0.798 |
|                           | 25°C | 69223 |       |        |       |
|                           | 30°C | 69918 |       |        |       |
|                           | 30°C | 70054 |       |        |       |
|                           | 30°C | 69387 |       |        |       |

Note: SD-Standard Deviation, RSD- Relative Standard Deviation.

### **CONCLUSION**

The isocratic RP-HPLC method developed for quantitative analysis of Voriconazole and related impurities in parenteral dosage form is linear, accurate, precise and robust. Satisfactory results were obtained from validation of method. The method is stability-indicating and can be used for routine analysis of production samples, and to check the stability of Voriconazole in parenteral dosage form.

# **ACKNOWLEDGEMENT**

Special thanks to Zydus Cadila, Moraiya for providing Voriconazole working standard and sample and also providing the facilities to complete the research work.

# **REFERENCES**

- Voriconazole chemical name.
   https://pubchem.ncbi.nlm.nih.gov/compound/Voriconazole#section=Top
- 2. Voriconazole Drug profile, https://www.drugbank.ca/drugs/DB00582.
- 3. Tripathi KD. Essential of Medical Pharmacology; 6<sup>th</sup> ed; Jaypeeb Rothersm Edical Publisher (Sp) Ltd, New Delhi, 2009; 757.
- 4. Sean C Sweetman. Martindale the Complete Drug Reference, 36th ed; Pharmaceutical Press, London, 1755.
- Voriconazole official in pharmacopoeia.
   http://app.uspnf.com/uspnf/pub/index?usp=40&nf=35&s=1&officialOn=August%201,%202017.
- 6. ICH Q3A (R2) "International Conference on harmonization of Technical Requirements for registration of Pharmaceuticals for human use" Impurities in New Drug Substance, 2006.
- 7. Srinivas J et al. Novel Stability indicating RP-HPLC Method for the Determination of Assay of Voriconazole in Pharmaceutical Products. Med. Pharm. Sci., 2015; 1(3): 70-79.

- 8. ICH guidelines, Q1A (R2): Stability Testing of New Drug Substances and Products (revision2), International Conference on Harmonization, 2005.
- 9. ICH, Q2 (R1) "Validation of Analytical Procedure" Methodology, International Conference on Harmonization, IFPMA, Geneva, Switzerland, 2005.
- 10. Shaikh K A., Patil A T. A Validated Stability-Indicating Liquid Chromatographic Method for Determination of Degradation Impurities and Diastereomers in Voriconazole Tablets; Sci Pharm, 2012; 80: 879–888.
- 11. Rao E B et al. Method Development Validation and Degradation studies of Voriconazole Drug by RP-HPLC Method; IJCPS, 2014; 02(9): 1149-1154.
- 12. Gu Ping and Yuru Li. Development and Validation of A Stability-Indicating HPLC Method for Determination of Voriconazole and Its Related Substance; Journal of Chromatographic Science, 2009; 47: 594-598.
- 13. Verma MV, Patel CJ, Patel MM. Development and stability indicating HPLC method for Dapagliflozin in API and pharmaceutical dosage form. International Journal of Applied Pharmaceutics, 2017; 9(5): 33-41.