

Volume 7, Issue 08, 277-291.

<u>Research Article</u>

SJIF Impact Factor 8.074 ISSN 2277-7105

DEVELOPMENT AND VALIDATION OF STABILITY INDICATING RP-HPLC METHOD FOR DETERMINATION OF LACOSAMIDE AND ITS RELATED SUBSTANCE IN PARENTERAL DOSAGE FORM

Ankita Y. Chauhan*, Dr. C. J. Patel¹ and Dr. M. M. Patel²

^{*}Department of Pharmaceutical Quality Assurance, Shree Swaminarayan Sanskar Pharmacy College, Gandhinagar, Gujarat, India.

¹Professor, Department of Pharmaceutical Quality Assurance, Shree Swaminarayan Sanskar Pharmacy College, Gandhinagar, Gujarat, India.

²Principal, Shree Swaminarayan Sanskar Pharmacy College, Gandhinagar, Gujarat, India.

Article Received on 21 Feb. 2018, Revised on 14 March 2018, Accepted on 03 April 2018 DOI: 10.20959/wjpr20188-11823

*Corresponding Author Ankita Y. Chauhan Department of Pharmaceutical Quality Assurance, Shree Swaminarayan Sanskar Pharmacy College, Gandhinagar, Gujarat, India.

ABSTRACT

A reverse phase high performance liquid chromatography method has been developed and subsequently validated for determination of lacosamide and its related substance in parenteral dosage form. Chromatographic separation was achieved in gradient mode with Ascentis express C_{18} (50 mm x 4.6mm I.D, particle size 2.7µm) column with mobile phase A containing buffer and methanol in the ratio 92:8 v/v. The buffer was prepared by diluting 1 ml of orthophosphoric acid in 1000 ml of purified water. Mobile phase B containing Acetronitrile as eluent at a flow rate of 1.0 ml/min and total elution time was 50 minutes. The UV detection was performed at 215 nm and column temperature was 30°C. The injection volume is 10µl. Lacosamide was subjected to acid and alkali hydrolysis, and peroxide

degradation. Also the degraded products were well separated from the pure drug. The linearity observed for amino impurity is in the range of 0.20-15.17 μ g/ml and for desmethoxy impurity is 0.20-3.11 μ g/ml. The recovery was found to be in the range of 100.6-101.3 % for amino impurity and 90.2-93.96 % for desmethoxy impurity. RSD % Recovery should not be more than 5. The proposed method was successfully applied for the determination of lacosamide and its related substance in routine quality control analysis in parenteral dosage form.

KEYWORDS: Lacosamide, method development, RP-HPLC, Validation.

INTRODUCTION

Lacosamide is a functionalized amino acid that has activity in the maximal electroshock seizure test, and is indicated for the adjunctive treatment of partial onset seizures and diabetic neuropathic pain.^[1] The chemical name of lacosamide is ®-2-acetamido-N-benzyl-3methoxypropionamide. Its molecular formula is $C_{13}H_{18}N_2O_3$ and its molecular weight is 250.30g/mol.^[2] Lacosamide is white to light yellow powder. It is sparingly soluble in water and slightly soluble in acetonitrile and ethanol. The drug shows electrophysiological characters that modulates some voltage gated sodium channels and binding with collapsing response mediator protein. There are several process or degraded impurities associated with synthesis of lacosamide. Five of the known lacosamide related substance have mentioned here namely, amino alcohol impurity, amino impurity, acetamide impurity, o-acetyl impurity and desmethoxy impurity.^[3] It is not official in any pharmacopoeia, few chromatographic methods have been reported for the determination of impurities in lacosamide.^[4-10] In the proposed method related impurities are well separated and eluted before 50 minutes. Hence the developed method was consequently validated in terms of linearity, accuracy, precision and robustness for the determination of lacosamide and its related substance in parenteral dosage form.^[11,12]

Fig. 1: Structure of lacosamide.

MATERIAL AND METHODS

Chemical and Reagents

Working standard and sample (Lacosamide Injection 10mg/ml) was provided by Zydus Cadila, Moraiya, Gujarat, India. Acetonitrile and Ortho-phosphoric acid are of HPLC grade manufactured by Merck life sciences Pvt. Ltd. Mumbai and other reagents used in study were of analytical grade.

Instrumentation

The analysis of drug was carried out on HPLC Agilent-1200 series with PDA detector. The column used in the development is Ascentis express C_{18} (50 mm x 4.6mm I.D, particle size 2.7 μ m). The output of signal was monitored and integrated using Chromeleon software.

Chromatographic Condition and Parameters

Buffer: Take 1 ml of ortho phosphoric acid in 1000 ml of purified water.

Mobile phase A: Buffer: MeOH (92:8) %v/v

Mobile phase B: ACN (100) %v/v

Column: Ascentis Express C₁₈ (50mm x 4.6mm, 2.7µm)

Flow rate: 1.00 ml/min

Wavelength: 215 nm

Injection Volume: 10 µl

Table 1: Gradient Program.

Time (min)	MP A % v/v	MP B % v/v
0	100	0
20	100	30
35	30	70
40	30	70
42	100	0
50	100	0

*Mobile phase- MP

Preparation of solutions

Preparation of Diluent

Distilled water is used as a diluent.

Preparation of standard solution (2 ppm)

Accurately weigh and transfer about 50 mg of lacosamide working standard into 50 ml volumetric flask, add 30 ml of diluent and sonicate to dissolve and dilute to volume with diluent, further dilute 5.0 ml of this solution to 50.0 ml with diluent. Further dilute 2.0 ml of this solution to 100.0 ml with diluent.

Placebo preparation

Transfer an accurately 5.0 ml of the placebo in 50 ml of volumetric flask. Add about 30 ml of diluent and mix. Make volume upto mark with diluent and mix.

Sample Preparation (1000ppm)

Transfer an accurately 5.0 ml of the sample in 50 ml of volumetric flask. Add about 30 ml of diluent and mix. Make volume upto mark with diluent and mix.

Individual impurity preparation

Impurity stock solution preparation (100 ppm)

Take 1 mg of amino-alcohol impurity, acetamide impurity, O-acetyl impurity and desmethoxy impurity into 10 ml of volumetric flask individually, make up the volume with the diluent and mix well.

Amino impurity stock solution preparation (500 ppm)

Take 5 mg of amino impurity in 10 ml of volumetric flask and then make up with diluent and mix well.

Amino impurity (10 ppm)

Take 0.4 ml of amino impurity from amino stock solution in 20 ml of volumetric flask, make up the volume with the diluent and mix well.

Amino alcohol impurity (2 ppm)

Take 0.4 ml of impurity solution from stock solution in 20 ml of volumetric flask, make up the volume with the diluent and mix well.

Acetamide impurity (2 ppm)

Take 0.4 ml of impurity solution from stock solution in 20 ml of volumetric flask, make up the volume with the diluent and mix well.

O-Acetyl impurity (2 ppm)

Take 0.4 ml of impurity solution from stock solution in 20 ml of volumetric flask, make up the volume with the diluent and mix well.

Desmethoxy impurity (2 ppm)

Take 0.4 ml of impurity solution from stock solution in 20 ml of volumetric flask, make up the volume with the diluent and mix well.

Spiked Impurities Mixture (Specification limit of Impurities: 1.0% and 0.2%) (1000 ppm of sample +10 ppm of amino impurity +2 ppm of other impurities)

Transfer an accurately 2 ml of lacosamide sample solution in 20 ml of volumetric flask and add 0.400 ml of amino impurity from amino stock solution and 0.400 ml of amino alcohol impurity, acetamide impurity, O-acetyl impurity and desmethoxy impurity from respective impurity stock solution. Make up with the diluent and mix well.

Fig 2: Chromatogram of impurities mixture + API.

Retention time (min)	RRT*	Peak name	Plates	Tailing	Resolution
1.65	0.11	Amino alcohol impurity	5116	1.14	-
3.79	0.26	Amino impurity	7450	0.96	9.22
6.4	0.43	Acetamide impurity	6482	1.02	7.01
14.66	1.0	Lacosamide	9226	0.96	11.69
18.23	1.24	Desmethoxyimpurity	7911	1.01	2.33
24.50	1.67	O-Acetyl impurity	6116	1.40	18.32

Table 2: System suitability parameters in optimized condition.

*Relative retention time-RRT

FORCED DEGRADATION

Sample preparation for Acid Hydrolysis

Take accurately 1 ml of prepared sample stock solution into 10 ml of volumetric flask. Add 0.5 ml of 5 N HCl and shake. Keep the sample on water bath at 80°C for 1 hour. Cool at room temperature. Then, the solution was neutralized with 5 N NaOH and and make up with diluent.

Fig. 3: Sample Acid Degradation.

Sample preparation for Base Hydrolysis

Take accurately 1 ml of prepared sample stock solution into 10 ml of volumetric flask. Add 0.5ml of 5 N NaOH and shake. Keep the sample on critical room temperature for 2 hours. Then, the solution was neutralized with 5 N HCl and make up with diluent.

Fig 4: Sample Alkali Degradation.

Sample preparation for Peroxide Oxidation

Take accurately 1 ml of prepared sample stock solution into 10 ml of volumetric flask. Add 0.5 ml of 30% H_2O_2 and shake. Keep the sample on water bath at 80°C for 1.5 hours. Cool at room temperature and make up with diluent.

Fig 5: Sample Peroxide Degradation.

Table 3:	Degradation	Summary.
----------	-------------	----------

Sr. No.	Stress Condition	Duration	Area	% Degradation	% Mass Balance
1	Acid Hydrolysis (5 N HCL_0.5ml)	80°C for 1 hour	1661450	92.8	100.6
2	Base Hydrolysis (5 N NaOH_0.5ml)	CRT for 2 hours	1444975	80.8	111.5
3	Peroxide Degradation (30% H ₂ O ₂ _0.5 ml)	80°C for 1.5 hour	1750094	97.71	97.33

METHOD VALIDATION

Specification limit of amino impurity and desmethoxy impurity (Not more than 1.0% and 0.2%).

LINEARITY

According to specification limit, impurity should not be more than 1.0% and 0.2%, so solutions of linearity of impurity prepared as following in which 1.0% and 0.2% of sample concentration is considered as 100% that is 10 ppm and 2 ppm (sample concentration 1000 ppm). And from that consideration LOQ, 50%, 80%, 100%, 120% and 150% prepared.

 Table 4: Linearity result of Amino Impurity.

Level	Concentration (µg/ml)	Area
LOQ	0.2017	2904
50	5.0578	67138
80	8.0925	110684
100	10.1156	139053
120	12.1387	165305
150	15.1734	207446

Fig 6: Linearity curve of Amino Impurity.

Table 5: Linearity result of Desinethoxy Impurity	Table 5	: Linea	arity re	esult of	Desmethox	y Im	purity.
---	---------	---------	----------	----------	-----------	------	---------

Level	Concentration (µg/ml)	Area
LOQ	0.2078	7815
50	1.039	38949
80	1.6624	62901
100	2.078	80538
120	2.4936	97308
150	3.117	122410

Fig. 7: Linearity curve of Desmethoxy Impurity

ACCURACY

According to specification limit of impurities which is not more than 1.0% and 0.2%, amount of individual impurities will be 10 ppm and 2 ppm which is 1.0% and 0.2% of 1000 ppm (sample concentration). Accuracy is performed in sample at 4 levels which are LOQ, 50%, 100% and 150% in three sets.

Set	Level	ml Added	mg Added	Area	mg found	% Recoverv	% Mean Recovery	SD*	RSD*
1		0.040	0.0042	7562	0.0039	92.9	neesverg		
2	LOQ	0.040	0.0042	7712	0.00394	93.8	93.96	1.15	1.23
3		0.040	0.0042	7763	0.0040	95.2			
1		0.200	0.0208	36527	0.0187	89.9	90.33 0.45		
2	50%	0.200	0.0208	36745	0.0188	90.3		0.45	0.49
3		0.200	0.0208	36874	0.0189	90.8			
1		0.400	0.0416	73015	0.0373	89.7			
2	100%	0.400	0.0416	73211	0.0374	90.0	90.2	0.62	0.69
3		0.400	0.0416	73387	0.0378	90.9			
1		0.600	0.0623	110719	0.0566	90.9			
2	150%	0.600	0.0623	110863	0.0567	91.0	91.06	0.20	0.22
3		0.600	0.0623	111175	0.0569	91.3			

Table 6: Recovery result of Amino Impurity.

*Standard deviation-SD, Relative standard deviation-RSD

Table 7: Recovery result of Desmethoxy Impurity.

Sat	Lovol	ml	mg	Aroo	mg	%	% Mean	SD*	DSD*
Set	Level	Added	Added	Alta	found	Recovery	Recovery	SD	KSD.
1		0.044	0.0045	4059	0.0060	100.0			
2	LOQ	0.044	0.0045	4120	0.00608	100.0	100.73	1.27	1.26
3		0.044	0.0045	4144	0.00612	102.2			
1		0.220	0.1011	69819	0.1031	100.5	100.73	100.73 0.251	
2	50%	0.220	0.1011	69923	0.1033	100.7			0.24
3		0.220	0.1011	70147	0.1036	101.0			
1		0.440	0.2023	139634	0.2063	101.2			
2	100%	0.440	0.2023	139890	0.2066	101.4	101.3	0.152	0.15
3		0.440	0.2023	139.986	0.2068	101.5			
1		0.660	0.3035	207504	0.3065	100.5			
2	150%	0.660	0.3035	207739	0.3069	100.6	100.6	0.100	0.99
3		0.660	0.3035	207991	0.3072	100.7			

*Standard deviation-SD, Relative standard deviation-RSD.

PRECISION

According to specification limit of impurities which is not more than 1.0% and 0.2%, amount of individual impurities will be 10 ppm and 2 ppm which is 1.0% and 0.2% of 1000 ppm (sample concentration). For repeatability sample containing all impurities injected at 100% level for six times and for intermediate precision sample containing all impurities at 50%, 100% and 150% level injected for intraday precision and interday precision and it is injected in 3 sets.

Repeatability

Table 8: Repeatability result of Amino impurity.

Sr.no.	Area	Mean	SD*	RSD*
1	139053			
2	138231			
3	138664	1295247	1063.529	0.767754
4	139127	138524.7		
5	136548			
6	139525			

*Standard deviation-SD, Relative standard deviation-RSD

Table 9: Repeatability result of Desmethoxy impurity.

Sr.no.	Area	Mean	SD*	RSD*
1	80538			
2	80175			
3	79012	20752 5	1104 51	1 267755
4	81136	80753.5	1104.31	1.307733
5	82163			
6	81497			

*Standard deviation-SD, Relative standard deviation-RSD

Intermediate Precision

Intraday precision

Table 10: Intraday precision of Amino impurity.

50% level									
Set	Level	Morning	Evening	Mean	SD*	RSD*			
1	50	67138	67896	67517	535.9869	0.793855			
2	50	69465	71137	70301	1182.283	1.681744			
3	50	68971	70665	69818	1197.839	1.715659			
100% level									
Set	Level	Morning	Evening	Mean	SD	RSD			
1	100	139053	140261	139657	854.185	0.611631			
2	100	138231	139989	139110	1243.094	0.893605			
3	100	136982	139544	138263	1811.608	1.310262			
			150% le	vel					
Set	Level	Morning	Evening	Mean	SD	RSD			
1	150	207446	209613	208529.5	1532.3	0.734812			
2	150	205369	202136	203752.5	2286.076	1.121987			
3	150	209671	204764	207217.5	3469.773	1.674459			

*Standard deviation-SD, Relative standard deviation-RSD

50% level									
Set	Level	Morning	Evening	Mean	SD*	RSD*			
1	50	38949	39451	39200	354.9676	0.90553			
2	50	35436	36175	35805.5	522.5519	1.459418			
3	50	39470	40492	39981	722.6631	1.807516			
	100% level								
Set	Level	Morning	Evening	Mean	SD	RSD			
1	100	80538	79932	80235	428.5067	0.534065			
2	100	79568	81496	80532	1363.302	1.69287			
3	100	82457	84791	83624	1650.387	1.973581			
150% level									
Set	Level	Morning	Evening	Mean	SD	RSD			
1	150	122410	124113	123261.5	1204.203	0.97695			
2	150	122654	124936	123795	1613.618	1.303459			
3	150	124579	127894	126236.5	2344.059	1.856879			

Table 11: Intraday precision of Desmethoxy impurity.

*Standard deviation-SD, Relative standard deviation-RSD

Interday precision

Table 12: Interday precision of Amino impurity.

50% level								
Set	Level	Day 1	Day 2	Mean	SD*	RSD*		
1	50	67138	68165	67651.5	726.1987	1.073441		
2	50	69465	71293	70379	1292.591	1.836615		
3	50	68971	70895	69933	1360.473	1.945396		
100% level								
Set	Level	Day 1	Day 2	Mean	SD	RSD		
1	100	139053	141126	140089.5	1465.832	1.046354		
2	100	138231	140640	139435.5	1703.42	1.221655		
3	100	136982	139156	138069	1537.25	1.113393		
150% level								
Set	Level	Day 1	Day 2	Mean	SD	RSD		
1	150	207446	209975	208710.5	1788.273	0.85682		
2	150	205369	208361	206865	2115.663	1.022727		
3	150	209671	205015	207343	3292.289	1.587847		

*Standard deviation-SD, Relative standard deviation-RSD

50% level									
Set	Level	Day 1	Day 2	Mean	SD*	RSD*			
1	50	38949	39973	39461	724.0773	1.834919			
2	50	35436	36321	35878.5	625.7895	1.744191			
3	50	39470	40597	40033.5	796.9093	1.990606			
	100% level								
Set	Level	Day 1	Day 2	Mean	SD	RSD			
1	100	80538	82467	81502.5	1364.009	1.673579			
2	100	79568	81686	80627	1497.652	1.857507			
3	100	82457	84807	83632	1661.701	1.98692			
	150% level								
Set	Level	Day 1	Day 2	Mean	SD	RSD			
1	150	122410	124205	123307.5	1269.257	1.029343			
2	150	122654	126038	124346	2392.849	1.924348			
3	150	124579	128149	126364	2524.371	1.997698			

Table 13: Interday precision of Desmethoxy impurity.

*Standard deviation-SD, Relative standard deviation-RSD

ROBUSTNESS

According to robustness, there is a minor deliberate change made in chromatographic parameter with reference of flow rate and column temperature.

To observe robustness, 100% level solution is used.

Change in Flow rate

Inject the solution of 100% level of all impurities at a flow rate of 0.9 ml/min and 1.1 ml/min and Calculate RSD for all the responses of all impurities individually.

Change in Column temperature

Inject the solution of 100% level of all impurities at a column temperature of 25°C and 35°C and Calculate RSD for all the responses of all impurities individually.

Parameter	Change	Area	Mean	SD*	RSD*
	0.9	129645	135809.6	2677.417	1.97145
	0.9	134944			
	0.9	136037			
	1.0	137153			
Flow Rate(ml/min)	1.0	136556			
	1.0	135570			
	1.1	136936			
	1.1	139664			
	1.1	135781			
	25°C	138456	136779	2321.608	1.697343
	25°C	135475			
	25°C	137987			
	30°C	139451			
Column temperature	30°C	136980			
	30°C	137583			
	35°C	134511			
	35°C	132145			
	35°C	138423			

Table 14: Robustness result of Amino impurity.

*Standard deviation-SD, Relative standard deviation-RSD.

Table 15: Robustness result of Desmethoxy impurity.

Parameter	Change	Area	Mean	SD*	RSD*
	0.9	80369		1542.299	1.898242
	0.9	82374			
	0.9	84561			
	1.0	81008			
Flow Rate(ml/min)	1.0	80376	81248.78		
	1.0	79163			
	1.1	81756			
	1.1	80487			
	1.1	81145			
	25°C	82365	80572.22	1414.444	1.755498
	25°C	78751			
	25°C	81012			
	30°C	80136			
Column temperature	30°C	79425			
	30°C	82456			
	35°C	81076			
	35°C	78693			
	35°C	81236			

*Standard deviation-SD, Relative standard deviation-RSD.

CONCLUSION

The proposed RP-HPLC method is linear, precise, accurate and robust for the determination of lacosamide and its related substance in parenteral dosage form and can be reliably adopted for routine quality control analysis of lacosamide and its related impurities in parenteral dosage form.

ACKNOWLEDGEMENT

The authors are thankful to Zydus Cadila, Moraiya for providing gift samples and all facilities to complete research work.

REFERENCES

- 1. "Drug Profile" http://www.drugbank.ca/drugs/DB06218.
- 2. "Chemical name of Lacosamide" http://www.pubchem.ncbi.nlm.nih.gov.
- 3. International Conference on Harmonization of Technical Requirements for registration of Pharmaceutical for Human Use, Impurities in New Drug Substance ICH Q3 R(2). 2006.
- Jayasinha N, Reddy K, Sandeep V and Goud ESK, Development and validation of RP-HPLC method for assay of lacosamide injection. World Journal of Pharmacy and Pharmaceutical Sciences, 4(2): 1067-1074.
- Shaik N, Yasaswini P, Supraja MS, Vijayalakshmi M, and Nalluri BN. Development and validation of RP-HPLC method for estimation of lacosamide in bulk and parenteral dosage form. International Journal of Research in Pharmacy and Chemistry, 2015; 5(2): 355-360.
- Chakravarthy VK and Shankar DG. HPLC method for determination of lacosamide S(-) enantiomer in bulk and pharmaceutical formulation. Rayasan Journal of Pharmaceutical Chemistry, 2011; 4(3): 666-672.
- Patel A, Suhagia BN, Patwari A. Stability indicating assay method for quantification of lacosamide in bulk and its pharmaceutical dosage form and characterization of major degradation products. International Journal of Pharmacy and Pharmaceutical Sciences, 6(1): 593-599.
- Chakravarthy VK and Sankar DG. Stability indicating HPLC method for determination of lacosamide and its degradants/impurities in bulk and pharmaceutical formulation. Rayasan Journal of Pharmaceutical Chemistry, 2012; 5(3): 293-310.

- Sreenivasulu V, Rao DR, Maheswari BN, Das SK, Krishnaiah A. Development and validation of a stability-indicating RP – HPLC method for determination of lacosamide. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2011; 2(4): 1-11.
- Patel MM, Patel CJ, Mishra S. Development and stability indicating chromatographic method for simultaneous of Sacubitril and Valsartan in pharmaceutical dosage form. International Journal of Applied Pharmaceutics, 9(5): 1-8.
- 11. Chatwal GR, and Anand SK. Instrumental Methods of Chemical Analysis. 5th Revised and Enlarged ed., Himalaya Publication House, Mumbai, 2002; 2: 630.
- ICH, Validation of Analytical Procedures; Methodology, Q2 (R1), International Conference on Harmonization, IFPMA, Geneva, 2005.