

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.074

Volume 7, Issue 9, 1048-1057.

Research Article

ISSN 2277-7105

VALIDATED HPTLC METHOD FOR SIMULTANEOUS ESTIMATION OF DICLOXACILLIN SODIUM AND CEFPODOXIME PROXETIL IN TABLET DOSAGE FORM

Dipti B. Patel*, Ravina B. Patel and Drupad R. Acharya

Department of Pharmaceutical Chemistry, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Ganpat Vidyanagar, Mehsana Dist - 384012, Gujarat, India.

Article Received on 09 March 2018,

Revised on 30 March 2018, Accepted on 20 April 2018,

DOI: 10.20959/wjpr20189-12068

*Corresponding Author Dipti B. Patel

Department of
Pharmaceutical Chemistry,
Shree S. K. Patel College of
Pharmaceutical Education
and Research, Ganpat
University, Ganpat
Vidyanagar, Mehsana Dist 384012, Gujarat, India.

ABSTRACT

This research paper describes development and validation of HPTLC layer (high performance thin chromatography) method simultaneous estimation of Cefpodoxime Proxetil (CEF) Dicloxacillin Sodium (DCX) in tablet dosage forms. Separation was achieved on aluminum plates pre-coated with 0.2 mm layers of silica gel 60F₂₅₄ using chloroform: methanol:10% trifluoroacetic acid (9:1.4:0.2, v/v/v) as mobile phase. Densitometric quantification was achieved with UV detection at 235 nm. The R_f values of Dicloxacillin and Cefpodoxime were 0.42 and 0.70, respectively. The method was validated as per ICH guidelines. The method has linear response over the concentration range 100-2000 ng/spot and 250-5000 ng/spot with mean recovery of 99.75% and 99.43%, for Dicloxacillin and Cefpodoxime, respectively. In conclusion the developed method was found to be simple, precise, accurate, specific, sensitive and applicable

for the routine simultaneous estimation of Cefpodoxime Proxetil (CEF) and Dicloxacillin Sodium (DCX) in tablets.

KEYWORDSs: High performance thin layer chromatography (HPTLC), Cefpodoxime Proxetil, Dicloxacillin Sodium.

INTRODUCTION

Cefpodoxime proxetil (CEF), chemically 1-(isopropoxy carbonyloxy) ethyl(6R,7R) -7- [2-(2-amino -4 - thiazolyl) - (z) -2 - (methoxy imino) acetamido] -3 - methoxy methyl -3 -

cephem - 4 carboxylate (fig.1B), is a third generation cephalosporin, used in infections of the respiratory tract, urinary tract, skin and soft tissues. [1-2] It is official in IP^[3] and USP^[4] which describe liquid chromatography method for its estimation. Various UV, HPTLC and HPLC methods are reported for estimation of Cefpodoxime alone. [5-9] Literature survey reveals RP-HPLC, HPTLC, UV-visible spectrophotometric methods for the simultaneous estimation of CEF in combination with other drugs. [10-14] Dicloxacillin Sodium is chemically 9(2S,5R,6R)-6- [3 - (2, 6 - dichloro phenyl) - 5 - methyl -1,2 - oxazole -4- amido]-3, 3- dimethyl -7- oxo-4-thia-1 azabicyclo heptane-2-carboxylic acid (fig. 1A), is a penicillinase resistant penicillin, used in the treatment of bacterial infections such as pneumonia and bone, ear, skin and urinary tract infection. [15-16] It is official in BP, [17] IP [18] and USP. [19] Literature survey also revealed several UV spectrophotometric methods and RP-HPLC methods estimation of DCX in combination with other drugs. [20-25] A deep literature survey indicates some UV spectrophotometric^[26-27] and RP-HPLC^[28-29] methods for simultaneous estimation of DCX and CEF both in tablet dosage form. So far no HPTLC method has been reported for simultaneous estimation of both drugs in combined dosage form. HPLTC is most flexible, reliable, and cost-efficient separation technique which is being aimed for the rapid analysis of large numbers of compounds. So the aim of the present investigation was to develop a simple, precise, accurate and specific HPTLC method for the simultaneous estimation of both drugs in pharmaceutical formulation.

Fig 1: Structure of (A) Dicloxacillin Sodium (DCX) and (B) Cefpodoxime Proxetil (CEF).

MATERIAL AND METHODS

Instruments

A Camag HPTLC system comprising of Camag Linnomate V automatic sample applicator, Hamilton syringe (100 μl), Camag TLC Scanner 3, Camag WinCATS software, Camag Twin-trough chamber (10×10 cm) and ultrasonicator were used during study.

Material and Reagents

Dicloxacillin sodium and Cefpodoxime Proxetil standard were procured as a gift samples from Indica Laboratories, Gujarat (India). Tablets containing 200 mg of CEF and 500 mg of DCX (Zedocef DXL 200, Macleods Pharma) were purchased from local pharmacy. Precoated Silica gel 60F₂₅₄ TLC plates (10×10 cm, layer thickness 0.2 mm, E. Merck, Mumbai, India) were used as a stationary phase. All reagents used were of analytical grade and purchased from s.d. Fine Chemicals, Mumbai, India.

Preparation of Standard Stock Solution

10 mg of each CEF and DCX were accurately weighed, dissolved and diluted with methanol and make up to the final concentration of 100 μg/ml of each drug.

Preparation of Sample Stock Solution

Twenty tablets were accurately weighed and finely powdered. An accurately weighed tablet powder equivalent to 10 mg of CEF and 25 mg of DCX was transferred to 100 ml conical flask and mixed with 30 ml of methanol. The solution was sonicated for 20 min. Then the solution was filtered through Whatman filter paper No. 41 and residue was washed thoroughly with methanol. The filterate and washings were combined and appropriately diluted to get $100\mu g/ml$ of CEF 250 $\mu g/ml$ of and DCX.

METHODOLOGY

The plates were previously prewashed with methanol and activated in an oven at 50° for 5 min. The chromatographic conditions used were TLC plates (10×10 cm) precoated with silica gel $60F_{254}$ as stationery phase and chloroform: methanol:10%triflouroacetic acid (9:1.4:0.2 v/v/v) as mobile phase. The chamber saturation time kept was 45 min at temperature 25°C and mobile phase is migrated to the distance of 80 mm. The source of radiation used was the deuterium lamp. Standard solutions of CEF and DCX were spotted and plate was developed. Densitometric scanning was performed using CAMAG TLC scanner 3 in reflectance mode at

235 nm with Win CATS software. The slit dimensions were length 5 mm, width 0.45 mm and the scanning rate was 10 mm/s.

Aliquots of 1, 2, 5, 10, 20, 30 μ l of standard solution (100 μ g/ml) of both CEF and DCX were applied on the TLC plate and analyzed as above mentioned chromatographic conditions. The standard calibration curves were prepared and regression equations were calculated. Sample solution was spotted on the plate and analyzed as per above chromatographic conditions. The analysis was repeated in triplicate. The content of the drug was calculated from the peak areas recorded. The developed method was validated in terms of linearity, accuracy, precision, limit of detection, limit of quantification and specificity as per ICH guidelines. [30]

RESULT AND DISCUSSION

Several mobile phase compositions were tried to accomplish good resolution between CEF and DCX. Better separation was attained for CEF and DCX with R_f values of 0.70 and 0.42, respectively using chloroform: methanol: 10% trifluoroacetic acid (9:1.4:0.2, v/v/v) as mobile phase (fig.2).

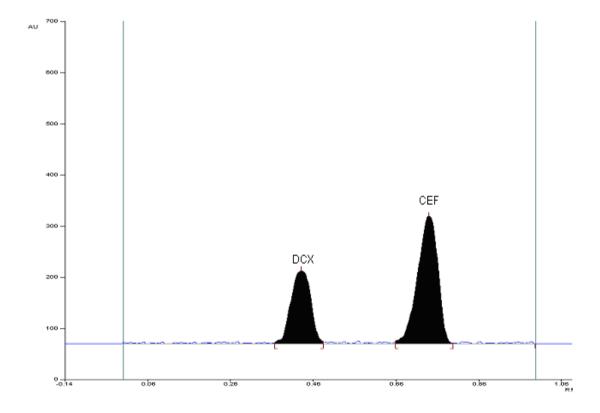


Fig. 2: Densitogram of standard spot DCX and CEF with $R_{\rm f}$ at 0.42 and 0.70, respectively by TLC at 235 nm.

The linear regression data showed that the method was linear in the range of 100-3000 ng/spot for CEF and DCX. The correlation coefficients (r^2) value obtained for CEF and DCX were 0.9989 and 0.9981, respectively suggest that the method is linear in the range 100-3000 ng/spot for both (Table 1).

The limit of detection (LOD) and limit of quantification (LOQ) were determined using the equations as per ICH. LOD and LOQ were found to be 27.08 and 82.07 ng/spot and 27.36 82.90 ng/spot for CEF and DCX, respectively. The values for LOD and LOQ showed that the proposed method is sensitive for the determination of CEF and DCX (Table 1).

Table 1: Summary of Validation Parameters by Proposed Method.

Parameter	CEF	DCX				
Retention Factor (Rf)	0.42	0.70				
Linearity & Range (ng/spot)	100 - 3000	100 - 3000				
Régression équation (Y=mx+c)	Y = 6.215X + 272.9	Y = 1.715X + 132.6				
Slope (m)	6.215	1.715				
Intercept (c)	272.9	132.6				
Correlation coefficient (r ²)	0.9989	0.9981				
Limit of detection (LOD) (ng/spot)	27.08	27.36				
Limit of Quantification (LOQ) (ng/spot)	82.07	82.90				
Repeatability (%RSD, n=6)						
Repeatability of application	0.71	0.59				
Repeatability of measurement	0.38	0.47				
Precision (%RSD)						
Interday Precision (n=3)	0.91 - 1.28	0.82 - 1.13				
Intraday Precision (n=3)	0.51 - 1.01	0.32 - 0.97				
Specificity	Specific	Specific				
$\%$ Assay \pm SD (n=3)	99.89 ± 0.90	99.69 ± 1.05				

Represents the number of replicates, ng/spot is nanogram per spot, RSD represents relative standard deviation and SD represents standard deviation

Repeatability of sample application was assessed by spotting 5 µl of drug solution 6 times on a TLC plate followed by development of plate and recording the peak area for 6 spots. The % RSD for peak area values of CEF and DCX were found to be 0.71 and 0.59, respectively. Repeatability of measurement of peak area was determined by scanning the same spot for six times without changing the position of the plate and % RSD of peak area of CEF and DCX were found to be 0.38 and 0.47, respectively. The intra-day precision was determined by analyzing three standard solutions (200, 500 and 1000 ng/spot) for 3 times on the same day while inter-day precision was determined by analyzing corresponding standards three times

daily for 3 days over a period of one week. The inter-day and intra-day coefficients of variation for CEF and DCX were found to be in the range of 0.91-1.28 % and 0.51-1.01% and 0.82-1.13% and 0.32-0.97%, respectively. The low values of % RSD indicate that the method is precise (Table 1).

The accuracy (% recovery) of the method was studied by standard addition method. The mean % recoveries with standard deviation obtained for CEF and DCX, were 99.43 % \pm 1.01 and 99.75 % \pm 0.54, respectively. The results of recovery studies shown in Table 2 revealed that there is no interference of excipients during analysis of both drugs and the method is accurate.

Table 2: Recovery Data CEF and DCX by Proposed Method.

	Level	Amount of Sample Taken (ng/spot)	Amount of Standard Added (ng/spot)	Amount of Standard Recovered (ng/spot)	Mean % Recovery ± SD (n=3)
CEF	I (50 %)	200	100	98.45	98.45 ± 0.61
	II (100 %)	200	200	199.34	99.67 ± 0.92
	III (150 %)	200	300	300.51	100.17 ± 1.49
DCX	I (50 %)	500	250	247.80	99.12 ± 0.81
	II (100 %)	500	500	501.60	100.32 ± 0.45
	III (150 %)	500	750	748.65	99.82 ± 0.36

Represents number of replicates, SD is standard deviation, ng/spot is nanogram per spot.

The specificity of the method was ascertained by analyzing standard and sample solutions of both drugs. The spots of CEF and DCX in samples were confirmed by comparing the R_f and spectra of the sample spot with that of standard. The peak purity of DCX and CEF was assessed by comparing their respective spectra at the peak start, middle and peak end position of the spot. The r (S, M) = 0.9995 & 0.9996 and r (M, E) = 0.9992 & 0.9994 for CEF and DCX indicates that the method is specific. The comparative spectrum of CEF and DCX standard and sample is shown in fig. 3 & 4.

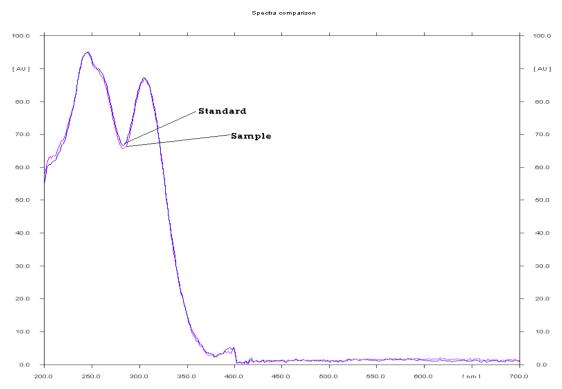


Fig. 3: Overlain spectra of standard and sample spot of CEF.

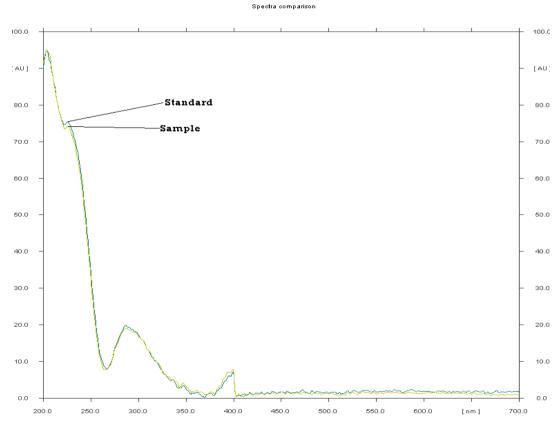


Fig. 4: Overlain spectra of standard and sample spot of DCX.

The proposed HPTLC method was successfully applied to determine CEF and DCX in their tablet dosage form. The mean % Assay with SD for CEF and DCX obtained is $99.89\% \pm 0.90$ and $99.69\% \pm 1.05$, respectively. The assay results obtained for the marketed formulation were in accondance with label claim.

A simple, accurate, precise, specific and sensitive high performance thin layer chromatography method has been developed and validated for simultaneous estimation of CEF and DCX in tablets. It does not suffer from interference from common excipients present in the pharmaceutical formulation and can be conveniently adopted for routine quality-control analysis CEF and DCX in tablet dosage form.

ACKNOWALEDGEMENT

The authors are thankful to Indica Laboratories, Gujarat for the gift sample of cefpodoxime proxetil and diclxacillin sodium. The authors are also thankful to Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University for providing facilities to carry out this work.

REFERENCES

- 1. O Neil Maryadele J, Smith A, Heckelman PE, Budavari S, editors. The Merck Index: An Encyclopedia of chemicals, drugs and biological. 14th ed. New Jersey: Published by Merk Research Laboratories, Division of Merck and Co., Inc. New Jersy, 2006; 319.
- 2. Sweetman SC, Martindale: The Complete Drug Reference. Edition 35. Pharmaceutical Press, London, 2007; 207.
- 3. Indian Pharmacopoeia. Government of India, Ministry of Health and Family Welfare, Ghaziabad Indian Pharmacopoiea commision, 7th ed., 2014; 2: 1315-1318.
- 4. USP 28, NF23 United State Pharmacopoeia. U. S. Pharmacopeia Convention, Twin brooks Parkway, Rockville, MD, 2005; 397.
- 5. Subbayamma AV, Rambabu C. Spectrophotmetric Determination of Cefpodoxime Proxetil in Tablets. Asian J Chem, 2010; 22: 3345-48.
- 6. Date AA, Nagarsenker MS. HPTLC determination of Cefpodoxime Proxetil in Formulation. Chromatographia, 2007; 66: 905-8.
- 7. Darji BH, Shah NJ, Patel AT, Patel NM. Development and Validation of a HPTLC Method for the Estimation of Cefpodoxime Proxetil. Indian J Pharm Sci, 2007; 69: 331–3.

- 8. Cao XY, Liu HL, Wei XN. HPLC Assay of Cefpodoxime Proxetil and its Pharmaceutical Preparations. Zhongguo Kangshengsu Zazhi, 2002; 27: 277-79.
- 9. Xiaohuang D, Zhaoxia L, Xuehua Z. Improvement in Assay of Cefpodoxime Proxetil by Modified HPLC. China Pharm, 2007; 19: 19-26.
- 10. Gandhi SV, Patil UP, Patil NG. Simultaneous Spectrophotometric Determination of Cefpodoxime Proxetil and Potassium clavulanate. Hindustan Antibiot Bull, 2009; 51: 24–8.
- 11. Thomas AB, Dighea SB, Nandaa RK, Kothapallia LP, Jagdalea SN, Deshpande AD. A validated stability indicating HPTLC method for simultaneous estimation of Cefpodoxime Proxetil and Potassium clavulanate in bulk and tablet dosage form. J Liq Chrom Relat Tech, 2010; 33: 1689-1703.
- 12. Malathi S, Dubey RN, Venkatnarayanan R. Simultaneous RP-HPLC Estimation of Cefpodoxime Proxetil and Clavulanic acid in Tablets. Indian J Pharm Sci, 2009; 71: 102-5.
- 13. Singh S, Dubey N, Jain D, Tyagi L, Singh M. Spectrophotometric and RP-HPLC Methods for Simultaneous Determination of Cefpodoxime Proxetil and Clavulanate Potassium in combined tablet dosage form. Am Eurasian J Sci Res, 2010; 5: 88–93.
- 14. Hinge MA, Bhavsar MM, Singh RD, Chavda RN, Patel ES, Patel DR. Spectrophotometric and high performance liquid Chromatographic determination of cefpodoxime proxetil and azithromycin dihydrate in pharmaceutical formulation. Pharm Methods, 2016; 7: 8-16.
- 15. O Neil Maryadele J, Smith A, Heckelman PE, Budavari S, editors. The Merck Index: An Encyclopedia of chemicals, drugs and biological. 14th. New Jersey: Published by Merk Research Laboratories, Division of Merck and Co., Inc. New Jersy, 2006; 523.
- 16. Sweetman SC, Martindale: The Complete Drug Reference. Edition 35. Pharmaceutical Press, London, 2007; 237.
- 17. British Pharmacopoeia. The Department of Health, Social Services and Public Safety, London Her Majesty's. Stationary office, 6th ed., 2010; I: 674-675.
- 18. Indian Pharmacopoeia. Government of India, Ministry of Health and Family Welfare, Ghaziabad Indian Pharmacopoiea commission, 7th ed., 2014; 2: 1514.
- 19. USP 28, NF23 United State Pharmacopoeia. U.S. Pharmacopeia Convention, Twin brooks Parkway, Rockville, MD, 2005; 451-2.
- 20. Nagamalleswari G, Phaneemdra D, Bhavana V, Ramarao N. Quantitative analysis of amoxicillin and dicloxacillin in combined dosage form by first derivative and

- simultaneous equation method in application to the determination of content uniformity. Int J Adv Pharm Ana, 2014; 4: 53-7.
- 21. Fattah MA, Walily EL. High-performance liquid chromatographic and derivative ultraviolet spectrophotometric determination of amoxycillin and dicloxacillin mixtures in capsules. Analyst, 1992; 117: 981-4.
- 22. Tompe PU, Dhoka1 MV, Damlel MC, Madgulkar AR. Validated HPTLC method for determination of dicloxacillin in simulated urine. J Chem Pharm Res, 2013; 5: 77-83.
- 23. Khalid A, Rshood AL. Simultaneous determination of ampicillin and dicloxacillin in pharmaceutical formulations by high-performance liquid chromatography. J liq Chrom, 1995; 18: 2457-65.
- 24. Barot T, Patidar K, Kshartri N, Vyas N. Development and validation of LC method for the determination of ampicillin and dicloxacillin in pharmaceutical formulation using an experimental design. Eur J Chem, 2009; 6: 955–64.
- 25. Kathiresan K, Murugan R, Hameed SM, Inimai GK, Kanyadhara T. Analytical method development and validation of cefixime and dicloxacillin tablets by RP-HPLC. Rasayana J Chem, 2009; 2: 588–92.
- 26. Acharya DR, Patel DB, Patel VV. Development and validation of first order derivative spectrophotometric method for simultaneous estimation dicloxacillin and cefpodoxime proxetil in tablet dosage form. J Drug Del Ther, 2012; 2: 1-5.
- 27. Patel AB, Patel MM, Suhagiya BN. Development and validation of simultaneous estimation of cefpodoxime proxetil and dicloxacillin sodium by spectroscopic method in combined tablet dosage form. Int J Chem Tech Res, 2014; 6: 2615-9.
- 28. Kumaraswamy1 G, Zeeshan Hamza MA, Suthakaran R. Development and validation of RP-HPLC for simultaneous estimation of cefpodoxime proxetil and dicloxacillin sodium tablets. Asian J Pharm Ana, 2014; 4: 151-5.
- 29. Patel HA, Vaghela JP, Shah JS, Patel PB. Development and validation of the RP-HPLC method for the estimation of cefpodoxime and dicloxacillin in their combined dosage form and its application to the dissolution study. Int J Pharm Sci Rev Res, 2012; 15: 50-6.
- 30. International Conference on Harmonization. Topic Q2B, Validation of Analytical Methods: Methodology. The Third International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), Guideline on Validation of Analytical Procedure-Methodology, Geneva, Switzerland, 2005.