

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.074

Volume 7, Issue 17, 730-744.

Research Article

ISSN 2277-7105

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR ESTIMATION OF BOSENTAN IN BULK AND PHARMACEUTICAL FORMULATION

Dr. M. Sumakanth, Y. Sai Kalyani* and A. Chaitanya

Department of Pharmaceutical Analysis and Quality Assurance R.B.V.R.R Women's College of Pharmacy, Barkatpura, Hyderabad-500027, Telangana, India.

Article Received on 24 July 2018,

Revised on 14 August 2018, Accepted on 04 Sept. 2018

DOI: 10.20959/wjpr201817-11804

*Corresponding Author Y. Sai Kalyani

Department of
Pharmaceutical Analysis
and Quality Assurance
R.B.V.R.R Women's
College of Pharmacy,
Barkatpura, Hyderabad500027, Telangana, India.

ABSTRACT

A simple, rapid and sensitive RP-HPLC method was developed and validated for estimation of Bosentan in tablet dosage form. Chromatography was carried out by using prepacked luna C18, $5\mu(250 \times 4.6)$ mm phenomex column as a stationary phase with mobile phase containing a mixture of Acetate buffer (pH 5): Acetonitrile in the ratio of 68:32 v/v. The flow rate was 1ml/min. The eluent was monitored at 268nm and the retention time of drug is 3.68mins. Calibration curve was plotted with a range of $2-6 \mu\text{g/ml}$ for Bosentan and the correlation coefficient was found to be 0.999. The developed method was validated in terms of linearity, precision, accuracy, specificity, limit of quantification and limit of detection. The accuracy range was found to be 98-102%. The % RSD value for all validation parameters was found to be less than 2 for RP-HPLC. The developed method can be used for

routine analysis of Bosentan in pharmaceutical dosage form as well as bulk was developed and validated according to ICH guidelines.

KEYWORDS: Bosentan, RP-HPLC, ICH guidelines.

INTRODUCTION

Bosentan is an dual endothelial receptor antagonist used in the treatment of pulmonary artery hypertension (PAH). Bosentan is a competitive antagonist of endothelin-1 at the endothelin - A and endothelin-B receptors. Bosentan is used to treat hypertension by blocking the action of endothelin in molecules that would otherwise promote narrowing of blood vessels and lead to high blood pressure.

This compound belongs to the class of organic compounds known as bipyrimidines and oligopyrimidines. These organic compounds contain two or more pyrimidine rings directlt linked to each other. Bosentan is chemically 4-tert-butyl-N-[6-(2-hydroxyethoxy)-5-(2-methoxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl]benzene-1-sulfonamide.

Category: Endothelial receptor antagonist.

Classification: Anti-hypertensive.

Bosentan is poorly soluble in water, solubility increases at higher pH.

MATERIALS AND METHODS

Chemicals and Reagents

Pure drug sample of Bosentan was obtained from MSN laboratories and tablet formulation (BOSENTAS) was purchased from Medplus, Hyderabad, India, with labelclaim of 62.5mg.

Acetonitrile, methanol, HPLC grade water, glacial acetic acid was procured from SD-Fine Chem-Limited and sodium acetate was procured from MERCK.

Instrumentation

The analysis was performed by using Schimazdu 20AD RP-HPLC instrument with Phenomenex Luna C18 column (250×4.6mm) 5µm, it contains Rhenodyne valve with 20µl fixed loop injector with UV –Visible detector and UV-Visible Spectrophotometry instrument i.e, Elico 210 with spectra treats software, analytical balance (Contech) are used for weighing, pH (Elico), Sonicator (Labotech) was used for degassing the mobile phase, were used during the study.

Chromatographic Conditions

RP-HPLC analysis was carried out on C18 (Phenomenex, 250×4.6 mm, particle size 5µm) with reversed phase column. The mobile phase consists of a mixture of acetonitrile :sodium acetate at pH 5(adjusted with glacial acetic acid) (68:32v/v). The flow rate of mobile phase

was 1ml/min with isocratic elution, the injection volume 20µl and run time was 10mins. The detection was carried out at 268nm.

Preparation of pH 5 Sodium acetate Buffer

Measured accurately 13.6gms og Sodium acetate was transferred into 1000ml volumetric flask and to this add 6ml of glacial acetic acid in sufficient water, adjust pH to 5 and make up the volume to 1000ml. Filter through 0.45µ membrane filter.

Preparation of Mobile phase

Add 320 volume of pH 5.0 acetate buffer and 680 volume of Acetonitrile and degas it.

Preparation of Bosentan Standard stock solution

Accurately weigh and transfer 5mg Bosentan into 5ml volumetric flask, to that mixture add 3ml diluent and sonicate to dissolve, and then make up the volume by using diluent. (1000ug/ml).

Pipette 0.5ml from 1000μg/ml into 5ml volumetric flask and make up to mark with diluent. (100ug/ml).

Preparation of Sample Solution

Accurately weighed 10 tablets and average weight was calculated, accurately weighed and transferred the sample equivalent to 5mg of Bosentan into 5ml volumetric flask. To this add 3ml of diluents and sonicate to dissolve it completely and make up to mark with diluent. Further pipette out 0.5ml from 1000µg/ml into 5ml volumetric flask and make up to the mark with diluent i.e., 100µg/ml.

Selection of Analytical Wavelength

 $5\mu g/ml$ solution was scanned in the wavelength range of 200-400nm in order to observe maximum absorbance. The λ max for Bosentan is 268nm, since it shows maximum absorbance at λ max.

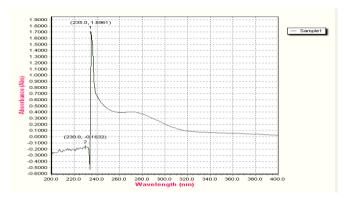


Fig. 1: Scanned spectrum of Bosentan.



Fig. 2: Scanned spectrum of Bosentan.

Optimization of proposedmethod

Trail 1:

Diluents : Mobile phase

Column : C18 phenomenex

Mobile phase : pH 5.0 Citrophosphate Buffer: Acetonitrile (70:30)

Injection volume : 20µl

Flow rate : 1ml/min

Detection wavelength : 268nm

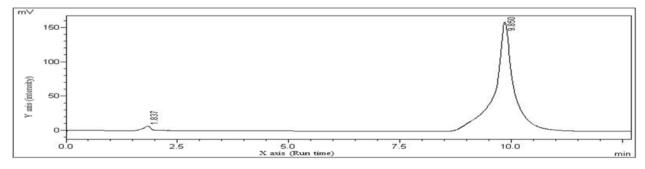


Fig. 3: Chromatogram of trail 1.

Name	RT (mins)	Area	Theoretical plates	Tailing factor	Resolution	
Bosentan	9.8	4392591	5951.228	0.85	20.6	

Trail 2:

Diluents : Mobile phase

Column : C18 phenomenex

Mobile phase : pH 3.7, Acetate Buffer : Acetonitrile (50:50)

Injection volume : 20µl

Flow rate : 1ml/min

Detection wavelength : 268nm

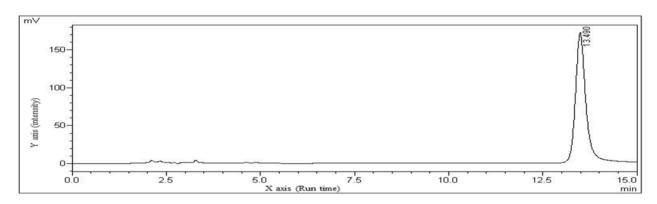


Fig. 4: Chromatogram of trail 2.

Name	RT (mins)	Area	Theoretical plates	Tailing factor	Resolution
Bosentan	13.49	3008599	13517.054	1.1	9.8

Trail 3:

Diluents : Mobile phase

Column : C18 phenomenex

Mobile phase : pH 3.7, Acetate Buffer : Acetonitrile (40:60)

Injection volume : 20µl

Flow rate : 1ml/min

Detection wavelength : 268nm

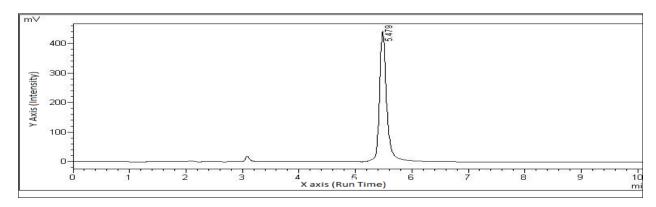


Fig. 5: Chromatogram of trail 3.

Name	RT (mins)	Area	Theoretical plates		Resolution
Bosentan	5.47	377530	1889	1.33	20.2

Trail 4:

Diluents : Mobile phase

Column : C18 phenomenex

Mobile phase : pH 3.7, Acetate Buffer : Acetonitrile (30:70)

Injection volume : 20µl

Flow rate : 1ml/min

Detection wavelength : 268nm

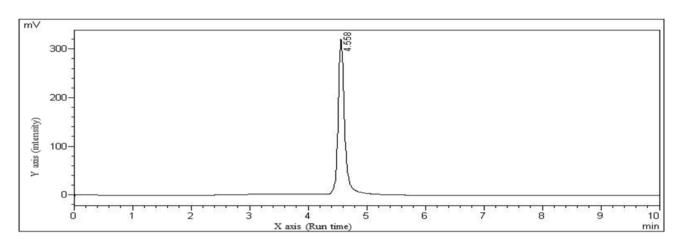


Fig. 6: Chromatogram of trail 4.

Name	RT (mins)	Area	Theoretical plates	Tailing factor	Resolution
Bosentan	4.56	224948	1876	1.23	20.2

Trail 5:

Diluents : Mobile phase

Column : C18 phenomenex

Mobile phase : pH 5, Acetate Buffer : Acetonitrile (50:50)

Injection volume : 20µl

Flow rate : 1ml/min

Detection wavelength : 268nm

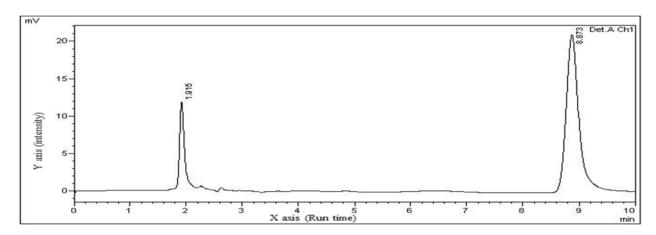


Fig. 7: Chromatogram of trail 5.

Name	RT (mins)	Area	Theoretical plates	Tailing factor	Resolution
Bosentan	8.8	320716	8269.1	1.33	20.2

Trail 6:

Diluents : Mobile phase

Column : C18 phenomenex

Mobile phase : pH 5, Acetate Buffer : Acetonitrile (40:60)

Injection volume : 20µl

Flow rate : 1ml/min

Detection wavelength : 268nm

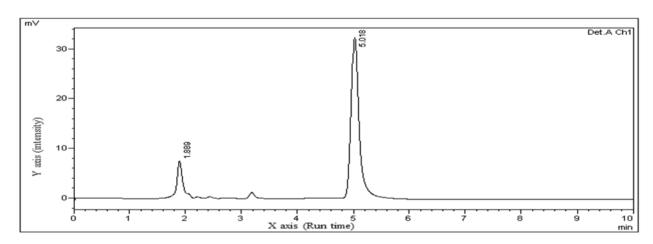


Fig. 8: Chromatogram of trail 6.

Name	RT (mins)	Area	Theoretical plates	Tailing factor	Resolution
Bosentan	5.01	306936	6551.4	1.4	16.5

CONCLUSION

Trail 1: More column wash is required for the column to get stabilized

Trail 2: Here the drug is eluted slowly

Trail 3: Theoretical plate count is below 2000

Trail 4: Theoretical plate count is below 2000

Trail 5: Here the drug is eluted slowly

Trail 6: To decrease the retention time

Trail 7: Optimized method

Optimized method

Diluent : Mobile phase

Column : Phenomenex $(250 \times 4.6 \text{mm}) 5 \mu$

Mobile phase : (pH 5)acetate buffer: acetonitrile (32:68)

Injection Volume : 20µl

Flow rate : 1.0ml/min

Detection wavelength : 271nm

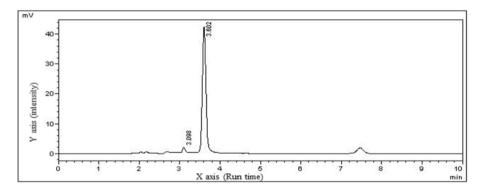


Fig. Chromatogram of trial 7.

Name	RT(mins)	Area	Theoretical plate	eoretical plate Tailing factor	
Bosentan	3.69	340264	6872.5	1.2	10.3

Conclusion: Peak shape is symmetrical and retention time is less and all parameters are within limits.

Method Validation

RP-HPLC method was developed and validated by using following parameters such as linearity, precision. Accuracy, robustness, LOD, LOQ.

737

System Suitability

In HPLC, it is an integral part of method development and to ensure the performance of HPLC system. The parameters such as retention time (RT), number of theoretical plates (N), and tailing factor (T) were evaluated for six replicate injections at a concentration of $3\mu g/ml$.

Linearity

Linearity of an analytical procedure is its "ability (within a given range) to obtain test results which are directly proportional the concentration (amount) of analyte in the sample".

Accuracy

ICH defines the accuracy of an analytical procedure as "the closeness of agreement between the conventional true value or an accepted reference value and the value found".

A study of recovery was conducted from about 80%, 100% and 120% of the initial assay concentration.

Precision

The precision of an analytical procedure "expresses the closeness of agreement between a series of measurement obtained from multiple sampling from the same homogenous sample under the prescribed conditions". Precision of an analytical procedure is usually expressed the variance standard deviation of coefficient of variation of a series of measurement.

• Intraday Precision

Repeatability expresses "the precision under the same operating conditions over a short interval of time". Repeatability is also termed intra-assay precision.

Interday Precision

The same sample prepared is checked on the next day.

Limit of Detection (LOD) and Limit of Quantification (LOQ)

Limit of detection is the "lowest concentration of analyte in a sample which can be detected, but not necessarily quantitated, as an exact value under the stated".

N be quantitatively determined with Limit of quantification is the "lowest concentration of analyte in a sample which can be determined with suitable precision and accuracy"

LOD and LOQ of drug were calculated using the following equations designated by international Conference on Harmonization (ICH)guidelines.

LOD =
$$3.3 \times \sigma/S$$

$$LOQ = 10 \times \sigma/S$$

Where σ is the standard deviation of response

S is slope of the calibration curve

Robustness

The robustness of an analytical procedure is a measure of its capacity to remain unaffected by small, but deliberate variations in method parameters and provides an indication of its reliability during normal usage.

RESULTS AND DISCUSSION

Results of RP-HPLC

System Suitability

The six replicates of injections at a concentration of $3\mu g/ml$ were prepared separately and injected and all the parameters were calculated.

Table 1: Results of System Suitability.

S.NO	CONC (ug/ml)	R.T (mins)	AREA	Theoretical Plates	Tailing Factor
1	3	3.61	121245	7550.1	1.177
2	3	3.61	122453	7533.25	1.185
3	3	3.61	121527	7554.35	1.177
4	3	3.61	122144	7539.27	1.182
5	3	3.61	122530	7879.92	1.168
6	3	3.61	122068	7900.25	1.157

Specificity

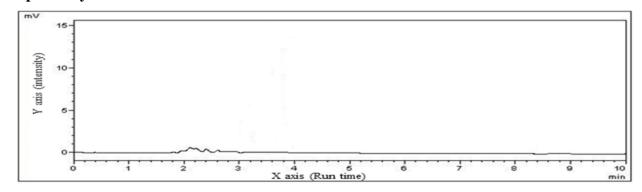


Fig. Chromatogram of Blank.

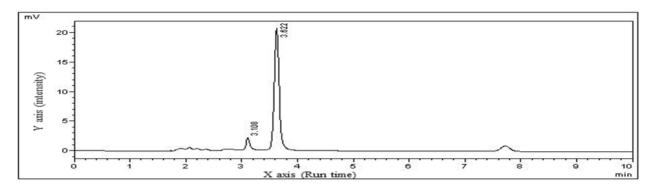


Fig. Chromatogram of Standard 3µg/ml.

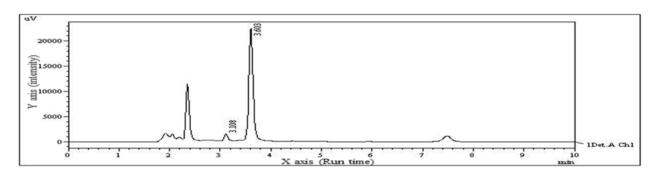


Fig. Chromatogram of Sample 3µg/ml.

Linearity

The linearity was determined using standard solution, to establish linearity following concentration range of 2, 3, 4, 5, $6\mu g/ml$.

Table 2: Results of Linearity.

CONC (µg/ml)	RT (mins)	PEAK AREA
2	3.68	84910
3	3.68	121527
4	3.69	159843
5	3.68	195189
6	3.69	229548

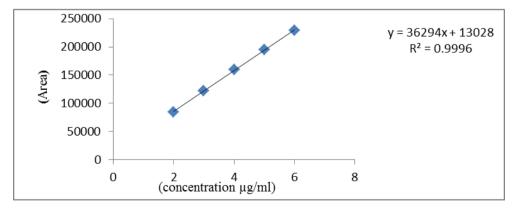


Fig. Linearity graph of RP-HPLC.

Accuracy

The accuracy was developed by recovery studies which were carried out at three different spiked levels i.e., 80%, 100%, 120%.

Table 3: Results of Accuracy.

Accuracy level %	Amount pure added (µg/ml)	Amount of sample added (µg/ml)	Total concent ration (µg/ml)	Area	% Recovery	Avg % Recovery	Mean	S.D	%RSD
	1.2	1.5	2.7	109880	100.4				
80	1.2	1.5	2.7	109086	99.7	100.03	97648.7	489.8	0.5
	1.2	1.5	2.7	109570	100.2				
	1.5	1.5	3.0	121475	99.9				
100	1.5	1.5	3.0	121041	99.6	99.8	121638.7	350.4	0.29
	1.5	1.5	3.0	121400	99.9				
	1.8	1.5	3.3	133422	99.8				
120	1.8	1.5	3.3	134083	100.3	99.5	145160.3	777.2	0.54
	1.8	1.5	3.3	134843	100.8				

Precision

Table 4: Intraday Precision.

S.NO	RETENTION TIME(mins)	AREA	%ASSAY
1	3.648	122895	99.5
2	3.603	122963	99.5
3	3.645	122898	99.5
4	3.603	122842	99.5
5	3.643	123140	99.7
	3.648	122804	99.4
6	MEAN	122923	99.5
O	S.D	119.01	0.09
	%RSD	0.1	0.1

Table 5: Inter Day Precision.

S.NO	RETENTION TIME(mins)	AREA	%ASSAY
1	3.648	123052	99.6
2	3.642	122996	99.6
3	3.645	123075	99.7
4	3.645	123236	99.8
5	3.643	123253	99.8
	3.642	122729	99.4
6	MEAN	123056.83	99.65
	S.D	174.22	0.15
	%RSD	0.14	0.15

Robustness

Change in Flow rate (\pm 0.2ml/min)

Table 6: Results of Change in Flow rate.

Parameter	Flow Rate-0.8ml/min				Flow Rate-1.2ml/min			
	Conc	R.T	Area	% Assay	Conc	R.T	Area	%Assay
1	3µg/ml	3.8mins	123086	99.7	3µg/ml	3.5mins	123032	99.6
2	3µg/ml	3.7mins	122993	99.6	3µg/ml	3.5mins	123229	99.8
3	3µg/ml	3.8mins	123090	99.7	3µg/ml	3.5mins	123182	99.8
Mean			123056.33	99.66			123148	99.7
S.D			44.81	0.06			84.01	0.115
%RSD			0.04	0.06			0.07	0.12

Change in Mobile phase ratio (± 2)

Table 7: Results of Change in Mobile phase.

Parameter	Ratio-Buffer : ACN (34:66)				Ratio-Buffer : ACN (30:70)			
	Conc	R.T	Area	%Assay	Conc	R.T	Area	%Assay
1	3µg/ml	3.74mins	122739	99.4	3µg/ml	3.5mins	123299	99.8
2	3µg/ml	3.74mins	123002	99.6	3µg/ml	3.5mins	123270	99.9
3	3µg/ml	3.74mins	123217	99.8	3µg/ml	3.5mins	123137	99.7
Mean			122986	99.6			123235.3	99.8
S.D			239.4	0.2			86.4	0.1
%RSD			0.19	0.2			0.07	0.1

Change in pH (± 0.2)

Table 8: Results of Change in pH.

Parameter	pH of Buffer – 4.95				pH of Buffer – 5.05			
	Conc	R.T	Area	%Assay	Conc	R.T	Area	%Assay
1	3µg/ml	3.516mins	123080	99.7	3µg/ml	3.749mins	123002	99.6
2	3µg/ml	3.516mins	122799	99.4	3µg/ml	3.749mins	122739	99.4
3	3µg/ml	3.516mins	122713	99.4	3µg/ml	3.749mins	123217	99.8
Mean			122864	99.5			122986	99.6
S.D			191.94	0.173			239.4	0.2
%RSD			0.16	0.17			0.19	0.2

LOD & LOQ

Table 9: Results of LOD & LOQ.

S.NO	SAMPLE	INTERCEPT	SLOPE	LOD	LOQ
1		13237	36597		
2	3µg/ml	15446	36007	$3.3 \times \sigma/S$	10× σ/S
3		13028	36294	=3.3 × 1339.79/36299	=10 ×1339.79/36299
	MEAN	13903.67	36299	=0.12	=0.37
	SD	1339.79	295.04		

Assay of Marketed Formulation

Table 10: Results of Assay.

Dosage form	Labeled claim	Amount found	% Recovery	% RSD
		62.7mg	100.3	
Tablet Bosentas	62.5mg	62.9mg	100.7	0.26%
		62.6mg	100.2	

CONCLUSION

The method was successfully developed for estimation of Bosentan in pharmaceutical dosage form by using RP-HPLC and the validated parameters results have proved that the method is selective, precise, accurate and linear.

The developed method was validated as per the International Conference On Harmonization ICH(Q2B)guidelines, and was found to be applicable for routine quantitative analysis of Bosentan by RP-HPLC in tablet dosage forms.

This method is more sensitive than previously reported methods, due to its high sensitivity. Hence ablove method can be used in quality control for routine analysis of tablets of Bosentan without any interference.

We can extend this work by performing degradation studies and simultaneous method. we can still reduce the retention time. With high sensitive instrument we can reduce concentration to ngs. Even LC-MS analysis can also be done with same buffer since the buffer is suitable for LC-MS.

ACKNOWLEDGEMENT

The authors would like to thankful the management of RBVRR women's college of pharmacy (RBVRRWCOP), Hyderabad, for providing the necessary facilities to carry out this research work.

REFERENCES

- 1. https://pubchem.ncbi.nlm.nih.gov/compound/Bosentan
- 2. Chatwal.R.G; Anand K. S, (2010), High Performance Liquid Chromatograph. Instrumental Methods Of Chemical Analysis, 5th edition; Himalaya Publishers. Mumbai, 2.570-2.629.

- 3. International Conference on Harmonization (ICH) of Technical Requirements for Registration of Pharmaceuticals for Human use. 1994, Validation of Analytical Procedures: Methodology. ICH-Q2B, Geneva.
- 4. L.R. Snyder, J.J.Kirkland, 1979, Introduction to modern liquid chromatography, 2nd edition, A Wiley Interscience Publication, New York.
- 5. Michael W. Dong, 2006, Modern HPLC for practicising scientist, chapter 3, 6, 8. John Wiley & sons, New York.
- 6. Patel.D.S,. CaptainA.D, Prajapati P.P., Shah H.G, (jan-mar 2013)Department of quality assurance, *International journal of pharmtech research* coden (USA) iiprif issn: 0974-4304vol.5, no.1, pp 147-154.
- 7. Patel H.H et al; International journal of Pharmamedix India, 2013; I(2): 306-316.
- 8. Sethi P.D., HPLC-Quantitative analysis of pharmaceutical formulations; 3rd edition, CBS publishers & distributors, 1997, Pg: 182.
- 9. Sharma B.K., Instrumental Methods of Chemical Analysis, GOEL Publication House, Meerut, Pg. 133-161, 68-80, 114-165, 286-320.
- 10. Snyder.R, J. Kirkland, L. Glajch, Practical HPLC method development, 1997, II edition, A Wiley International publication, Pg: 235, 266-268, 351-353, 653-600, 686-695.
- 11. Satinder Ahuja, Michael W. Dong, 2005, Handbook of Pharmaceutical analysis by HPLC, Elsevier Academic Press, pp:146-187.
- 12. Shoog, *Principles of instrumental analysis*, 5TH edition, Thomson Asia Pvt Ltd, HPLC page no:312-317.
- 13. Shoog, *Principles of instrumental analysis*, 5TH edition, Thomson Asia Pvt Ltd, HPLC page no:725-728.
- 14. Sethi P.D, 2001, High performance liquid chromatography: Quantitative analysis of pharmaceutical formulations, 1st edition: pp5-11,141.
- 15. Vogel's, 2013, Text book of Quantitative chemical analysis, 6th edition, Dorlink Kindersley (India) Pvt.Ltd, pp:244-269.
- 16. www.spectroscopy.wikipedia.com
- 17. Winslow A. and r. F. Meyer, (1997), Defining a master plan for the validation of analytical methods, j. Validation technology, pp. 361–367.