

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.074

Volume 7, Issue 19, 419-430.

Review Article

ISSN 2277-7105

A REVIEW ON ESTIMATION OF EMPAGLIFLOZIN AND METFORMIN HYDROCHLORIDE IN PHARMACEUTICAL DOSAGE FORM

Jyoti J. Vikhe*, N. S. Dighe, Prof. G. S. Shinde, Rutuja B. Tambe and Shubhangi P. Pulate

Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy, Pravaranagar.

Tal-Rahata, Dist-Ahmednagar.

Article Received on 07 October 2018,

Revised on 28 October 2018, Accepted on 18 Nov. 2018

DOI: 10.20959/wjpr201819-13730

*Corresponding Author Dr. Jyoti J. Vikhe

Department of
Pharmaceutical Chemistry,
Pravara Rural College of
Pharmacy, Pravaranagar.
Tal-Rahata, DistAhmednagar.

ABSTRACT

The aim of this review to focus on comprehensive update of different analytical methods for determination of oral anti-diabetic drugs like Empagliflozin and Metformin hydrochloride for the treatment of type 2 diabetes mellitus (T2DM), such as biguanides and sodium /glucose co –transportaer 2 inhibitors in their bulk materials and in pharmaceutical dosage forms. The review entails about analytical procedures like RP-HPLC, HPLC, UPLC, LC/MS/MS, Spectrophotometric (UV) methods taken from the literature. This review provides detailed information of development and validation for Empagliflozin and Metformin hydrochloride in bulk and in pharmaceutical preparations either alone or in combination with other hypoglycemic agent.

KEYWORDS: Metformin HCL, Empagliflozin, analytical methods, antidiabetic.

INTRODUCTION

Diabetes mellitus (DM) is a chronic condition characterized by high levels of blood glucose due to a defect in insulin production or activity. This disease has been a struggle for many generations. The prevalence of diabetes is expeditiously escalating. Accordingly, the awareness of its treatment has been of a tremendous interest among recent population. Type 1(Insulin dependent Diabetes Mellitus – (IDDM), occur mostly in juvenile and when secretion of insulin is diminished. Management of type 1DMis achieved throught intake of exogenous insulin. Type 2(Non – insulin dependent Diabetes Mellitus –NIDDM) is more common in order adults however its incidence among teenagers have boosted in the current

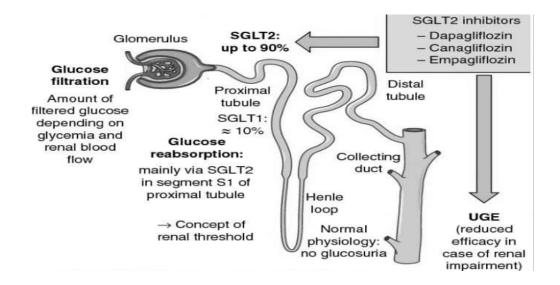
year mainly due to unhealthy lifestyle. Oral anti-diabetic drugs are initiated in case of type 2 DM that had inadequate response toward lifestyle change including calorie restriction and increase in physical activity.^[3]

Empagliflozin and metformin hydrochloride are oral diabetes medicine that help control blood sugar levels. Empagliflozin and metformin is a combination medicine used with diet and exercise to improve blood sugar control in adult with type 2 diabetes mellitus.^[6] empagliflozin and metformin is not for treating type 1 diabetes. empagliflozin and metformin is also used to lower the risk of death from heart attack, stroke, or heart failure in adults with type 2 diabetes who also heart disease.

Synjardy and Synjardy XR is the combination of empagliflozin and metformin, two medicines with complementary mechanisms of action. Empagliflozin, a sodium glucose cotransporter-2(SGLT2) inhibitor, removes excess glucose throught the urine by blocking glucose re-absorbtion in kidney. Metformin lowers glucose production by the liver and its its absorption in the intestine. [8]

Syjardy and Synjardy XR is specifically indicated an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus who are not adequately controlled on a regimen containing empagliflozin or metformin, or in patients already being treated with both empagliflozin and metformin.^[10]

Drug Profile Metformin hydrochloride


Structure	H ₃ C N NH NH • HCI
Chemical name	1-carbamimidamido-N, N-dimethylmethanimidamide
Molecular formula	$C_4H_{11}N5.HCL$
Molecular weight	165.6g/mol
Appearance	A white, crystalline powder, hygroscopic
Category	Hypoglycaemic
Melting point	222 ⁰ C-226 ⁰ C
Solublility	Freely soluble in water, slightly soluble in alcohol and acetonitrile; practically insoluble in acetone, ether and chloroform

Empagliflozin

Structure	OH OH OH
Chemical name	D-Glucitol,1,5-anhydro-1-c-[4-chloro-3-[[4-[[(3s)-tetrahydro-3-furanyl]oxy]phenyl]methyl]phenyl]-,(1S)
Molecular formula	C ₂₃ H ₂₇ CLO
Molecular weight:	450.91g/mol
Appearance	White to yellowish powder
Category	Hypoglycemic
Melting point:	150°C
Solubility	Very slightly soluble in water, slightly soluble in acetonitrile & ethanol sparingly soluble in methanol;

Mechanism of Action

Empagliflozin: Sodium –glucose co-transporter 2(SGLT2) is the predominant transporter responsible for reabsorption of glucose from the glomerular filtrate back into the circulation. Empagliflozin is an inhibitor of SGLT2. By inhibiting SGLT2, empagliflozin reduces renal reabsorption of filtered glucose and lowers the renal threshold for glucose, and thereby increases urinary glucose excretion. Metformin hydrochloride: Metformin is an antihyperglycemic agent which improves glucose tolerance in patient with type 2 diabetes mellitus, lowering both basal and postprandial plasma glucose. It is not chemically or pharmacologically related to any other classes of oral antihyperglycemic agents. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose, and improves insulin sensitivity by increasing peripheral glucose uptake and utilization. UnlikeSUs, metformin does not produce hypoglycemia in either patients with type 2 diabetes mellitus or normal subjects (except in special circumstances) and does not cause hyperinsulinemia. with metformin therapy, insulin secretion remains unchanged while fasting insulin levels and day-long plasma insulin response may actually decrease.

Reported Analytical Methods

Chromatographic Methods

Title	Method	Description	Detection Mode
[1]Development and validation of RP-HPLC method for empagliflozin and metformin HCL	RP- HPLC	Mobile Phase - Methanol: Water (80:20,v/v) Column: Grace C ₁₈ column (250 × 4.6mm. 5μm) Flow Rate: 0.8ml/min Retention Time: EMPA – 5.133 min MET - 2.630 min	UV at 227nm
[2]Method development and validation of metformin and empagliflozin in Pharmaceutical dosage form in RP-HPLC	RP- HPLC	Klow Rate ml/min	
[3]Development and validation of stability indicating RP-HPLC method for the simultaneous estimation of metformin hydrochloride and empagliflozin in bulk and in synthetic mixture	RP-HPLC Mobile Phase – OPA buffer: Acetonitrile (45: 55, v/v) Column: Kromosil (250 × 4.6mm,5µm, Flow Rate: 0.8 ml/min Retention Time: EMPA – 3.413 min MET -2.270 min		PDA at 233nm
[4]Development and validation for the simultaneous estimation of metformin and empagliflozin in drug product by RP-HPLC	RP- HPLC	Mobile Phase – Water: Acetonitrile: Methanol (200:200:600,v/v) Column: Inertsil ODS 3v(250×4.6mm) Flow Rate: 0.8ml/min Retention Time: EMPA –3.848min MET-2.626min	UV at 265nm

[5]Stability indicating RP-HPLC method development and validation for estimation of empagliflozin and metformin HCL	RP- HPLC	Mobile Phase – Phosphate buffer: Acetonitrile (50: 50 ,v/v) Column: Inertsil ODS – 2 (250 × 4.6 mm, 5μm) Flow Rate: 1.0ml/min Retention Time: EMPA – 4.388 min MET- 2.635 min	PDA at 227nm
^[6] A New validated RP-HPLC method for determination of metformin HCL and empagliflozin in its bulk and pharmaceutical dosage forms	RP- HPLC	Mobile Phase – Methanol: Phosphate buffer (70:30 v/v) Column: Inertsil C ₁₈ (4.6 × 150mm) 5μms Flow Rate: 1ml/min Retention Time: EMPA – 3.907 min MET -2.403 min	PDA at 240nm
[7]Development and validation of stability indicating RP-HPLC method for simultaneous estimation of metformin and empagliflozin in bulk and tablet dosage form	RP- HPLC	Mobile Phase - Phosphate buffer: Acetonitrile: Methanol (15: 80: 5 v/v) Column: C ₁₈ (4.6mm ×250mm ,5μm) Flow Rate: 1ml/min Retention Time: EMPA – 4.140min MET- 2.528 min	UV at 227nm
[8]Stability indicating RP-HPLC analytical method development and validation for the metformin and empagliflozin in pharmaceutical dosage form	RP- HPLC	Mobile Phase – Methanol: Acetonitrile: 0.025M potassium hydrogen phosphate buffer (45:30:25v/v) Column: Thermosil C ₁₈ (4.6mm ×250mm, 5μm) UV Wavelength: 225 nm Flow Rate: 1.2ml/min Retention Time: EMPA – 3.118 min MET- 2.836 min	PDA at 225nm
^[9] Development and validation of stability indicating RP-HPLC method for empagliflozin	RP- HPLC	Mobile Phase – Methanol: Water (70: 30 ,v/v) Column: Phenomenex C ₁₈ (25 x 4.6mm, 5 μm) Flow Rate: 1.0.ml/min Retention Time: EMPA –4.808	UV at 224nm
[10]Stability indicating simultaneous estimation of metformin and empagliflozin in pharmaceutical tablet dosage form by RP-HPLC	RP- HPLC	Mobile Phase - 0.1% OPA buffer: Acetonitrile (45:55 ,v/v) Column: Kromasil C ₁₈ column (250mm×4.6mm,5μm) Flow Rate:1.1ml/min Retention Time: EMPA:2.908min MET:2.182min	UV at 226nm
[11]Validation RP-HPLC method for simultaneous determination of	RP- HPLC	Mobile Phase -Acetonitrile: 0.05M Potassium dihydrogen phosphate buffer	UV at 212nm

World Journal of Pharmaceutical Research

canagliflozin, Dapagliflozin,		(PH4) (65:35,v/v)	
Emagliflozin and metformin		Column: C_{18} (250 ×4.6mm µm)	
Emagimoziii and metioriiiii		Flow Rate: 1ml/min	
		Retention Time:	
		EMPA:3.004min	
		MET:1.898min	
[12]Stress degradation studies and		Mobile Phase - Buffer: Methanol (30:70	
development of validation		v/v)	
stability indicating assay method	D.D.	Column: Inertsil ODS $(4.6 \times 150 \text{mm}, 5)$	
by RP-HPLC for simultaneous	RP-	μm)	UV at 220nm
estimation of metformin and	HPLC	Flow Rate: 1.0ml/min	
empagliflozin in presences of		Retention Time:	
degradation product as per ICH		EMPA –2.606 min	
guidelines		MET-1.788 min	
5103		Mobile Phase –Acetonitrile:0.1% Ortho	
[13]New validated stability		phosphate acid (50:50,v/v)	
indicating RP-HPLC method for		Column: Kromosil C ₁₈ Column	
simultaneous estimation of	RP-	(50×4.6mm; 5µm)	UV at 260nm
metformin HCL and	HPLC	Flow Rate: 1 ml/min	U v at 200mm
empagliflozin in tablet dosage		Retention Time:	
forms		EMPA:3.200min	
		MET:2.192min	
		Mobile Phase – Buffer: Acetonitrile:	
[14]RP-HPLC method		Methanol	
development and validation for		Column – ODS (250mm × 4.6, 5 μm)	
the simultaneous estimation of	RP-	Flw Rate:1ml/min	PDA at 233nm
metformin and empagliflozin in	HPLC	Retention Time:	
tablet dosage form		EMPA –4.592 min	
the set the suger service		MET-2.211 min	
		Mobile Phase – 1.01M Acetate buffer:	
[15]Method development and		Methanol (50: 70,v/v)	
validation of RP-HPLC method	RP	Column: Inertsil column (150 xz	
for the estimation of	HPLC	40mm, 5µm)	PDA at 260nm
empagliflozin in API	III LC	Flow Rate: 2ml/min	
empagimozii iii 74i 1		Retention Time: 1.223min	
		Mobile Phase – Methanol: Acetonitrile	
[16] Development and validation		(50:50v/v)	
novel stability indicating RP –		` '	
HPLC method for the	RP-	Column: Inertsil (150 x 4.6mm, 5µm)	PDA at 265nm
determination of empagliflozin in	HPLC	UV Wavelength: 265 nm	PDA at 2031111
bulk and pharmaceutical dosage		Flow Rate: 20 µl/min	
form		Retention Time:	
[17]Validata -4-1:114		EMPA – 2.184 min	
[17] Validate stability indicating	DD	Mobile Phase-0.1% OPA: Acetonitrile	
RP-HPLC method for	RP-	(70:30v/v)	UV at 233nm
determination of empagliflozin	HPLC	Column: Hypersil BDS	
		Flow Rate: 1 ml/min	
A New stability indicating	DD	Mobile Phase - Water: Acetonitrile:	T 177 /
RP-HPLC method for the	RP-	Methanol (200:200:600,v/v)	UV at
simultaneous estimation of	HPLC	Column: Inertsil ODS 3v (250×4.6)	265nm
empagliflozin and metformin in		mm)	

its nurs and pharmacoutical		Flow Rate: 0.8ml/min		
its pure and pharmaceutical				
dosage form		Retention Time:		
		EMPA – 3.848 min		
		MET – 2.626 min		
[19]Validated stability indicating	HPLC	Mobile Phase – 0.1% OPA: Acetonitrile		
HPLC method for determination		(30:70,v/v)		
of process related impurities in		Column: Inertsil C ₈ (250 mm x4.6mm,	UV at 230nm	
empagliflozin drug substance		5 μm)		
empagimoziii drug substance		Flow Rate: 1.2 ml/min		
		Mobile Phase-Potassium dihydrogen		
[20]UPLC Simultaneous		phosphate buffer(PH4): Methanol		
determination of empagliflozin	UPLC	(50:50v/v)	UV at 225nm	
linagliptin and metformin	OLC	Column: RSLC 120 C ₁₈ Column	O V at 2231111	
imagnipum and metrorium		(100mmx2.1mm,2.2µm		
		Flow Rate: 0.4ml/min		
		Mobile phase -0.1% OPA buffer		
[21] A N		(PH3.4) with 0.1 N NAOH solution:		
[21] A Novel stability indicating		Methanol (40:60v/v)		
RP-UPLC Dad method for	LIDI G	Column: C18 BEH (Ethylene Bridged	DD 4 . 254	
determination of metformin and	UPLC	Hybrid)UPLC (100mmx2.1mm,1.7µm	PDA at 254nm	
empagliflozin in bulk and tablet		Flow Rate: 0.25ml/min		
dosage form		Retention Time: EMPA-3.471min		
		MET-0.882min		
[22]		Mobile phase – Acetonitrile: Phosphate		
[22] Method development and	UPLC	buffer (PH3)(70:30 v/v)		
validation for the determination		Column: BEH C18 Column		
of metformin HCL and		2.5x50mm)3µm		
empagliflozin in its bulk and		Flow Rate: 0.3ml/min	UV at 220nm	
pharmaceutical Dosage Forms by		Retention time:		
RP-ULTRA performance		EMPA – 1.294min		
chromatography method		MET -0.879min		
		Mobile Phase –Phosphate buffer		
^[23] A Validated stability		(PH3):Methanol (30:70v/v)		
indicating UPLC Method for		Column: Dikma C18		
simultaneous determination of		(50x2.1mm,1.8µm)		
Metformin HCL and	UPLC	Flow Rate: 1.0mi/min	PDA at240nm	
Empagliflozin in bulk Drug and		Retention Time:		
tablet dosage form		EMPA-1.189min		
tablet dosage form		MET-1.712min		
		Mobile phase - 0.1% aq formic acid:		
[24]LC/MS /MS Determination of	LC/MS/	Acetonitrile (75:25v/v)		
Empagliflozin and Metformin	MS	Column: BEH C18 column	-	
		(50mmx2.1mm,1.7μm)		
		Flow Rate: 0.2 ml/min		

Spectrophotometric Methods

Title	Method	Description	Detection Mode
[25]Development and validation of UV spectrophotometric method for Simultaneous estimation of Empagliflozin and metformin hydrochloride in bulk drugs.	Simultaneous equation method	Solvent: Methanol Linearity: EMPA-1-3µg/ml MET-2-10µg/ml %Recovery: EMPA-99.44% MET-93.27% LOD: EMPA-0.036µg/ml MET-0.04µg/ml LOQ: EMPA-0.111µg/ml MET-0.1402µg/ml	224nm and 230nm
[26]Development and validation of UV spectrophotometric method for Simultaneous estimation of Empagliflozin and Metformin hydrochloride in bulk ,drugs and combined dosage forms	A) Simultaneous Equation method. B) Absorbance ratio method	Solvent: Methanol Linearity: EMPA-5-25µg/ml MET-2-12µg/ml %Recovery: EMPA-98.99% MET-101.12%	A)272 and 234nm B)254nms and 226nm
^[27] Novel UV and Visible	M1)Direct UV	Solvent: Distil water Linearity: M1)2-12µg/ml M2)5-30µg/ml M3)10-60µg/ml %Recovery:	M1)247nm
Spectrophotometric Method for the analysis of Empagliflozin a type 2 diabetic drug in bulk and pharmaceutical formulations	M2)Phenothroline reaction M3) K Ferricyanide reaction	M1) 98.15-100.68% M2)98.68-101.25% M3)98.25-101.03% LOD: M1)0.02μg/ml M2)0.03μg/ml M3)0.30μg/ml LOQ: M1)0.07μg/ml M2)0.10μg/ml	M2)438nm M3)782nm
[28] Development and Validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation	Simultaneous equation	M3)1.00μg/ml Solvent: Methanol % Recovery: EMPA-99.86% MET-100.48% LOD: EMPA-0.20μg/ml MET-0.19μg/ml LOQ: EMPA-0.59μg/ml	225 nm and237nm

		MET-0.58µg/ml	
Development of Economic UV Spectrophotometric Method for Determination of Linagliptin in its Ternary Mixture with Empagliflozin and Metformin: Comparison to Economic pharmaceutical Analysis Literature.	First Derivative	Solvent: Methanol Linearity:2- 25µg/ml %Recovery:97.88- 102.11%	296nm
[30]Development and Validation of Analytical Method for the Simultaneous Estimation of	A)Simultaneous equation method	Solvent: Methanol Linearity: EMPA-5-25µg/ml MET-2-14µg/ml	A)268nm and232nm
Metformin Hydrochloride and Empagliflozin	B)Dissolution in vitro analysis	% Recovery: EMPA-98.99% MET-101.12%	B)238nm and 268nm
[31]Development and validation of Simple UV –Spectrophotometeric Method for the Determination of Empagliflozin	Direct UV	Solvent: Water: Methanol (9.0:1.0) Linearity: EMPA-1-3μg/ml %Recovery: EMPA-99.44% LOD:0.036μg/m LOQ:0.111μg/ml	224nm

CONCLUSION

The above study presents analytical method for analysis of Empagliflozin and Metformin hydrochloride in bulk materials and pharmaceutical dosage forms by RP-HPLC and UV Spectrophotometry. The various parameters like accuracy, precision, reliability, repeatability, analysis time and sensitivity are performed These methods are adequate to analyse the drugs in single component formulation as well as combination preparation. Literature survey suggested that various RP-HPLC, HPLC, UPLC, LC/MS/MS, UV methods were developed and reported. The published methods were validated for various parameters as per ICH guidelines.

REFERENCES

- 1. Sushil D. Patil, Sunil V. Amurutkar, Chatapalliwar V.A, Chandrashekhar D.Upasani. Development and validation of RP-HPLC method for empagliflozin and metformin HCL. Journal of innovation in Pharmaceutical and biological science, 2017; 4(4): 185-189.
- 2. B. Jaffar Hussian, C. Karuppasamy, Y. Suresh. G. Somasekhar et.al. Method development and validation of metformin and empagliflozin in pharmaceutical dosage form in RP-HPLC. Asian Journal of Research in chemistry and pharmaceutical Sciences, 2016; 4(3): 91-100.

- 3. C.Rupasi Pratyusha, M. Bhagavan Raju. Development and validation of stability indicating RP-HPLC method for simultaneous estimation of metformin HCL and empagliflozin in bulk and synthetic mixture. International Journal of Pharmacy, 2016; 6(4): 138-147.
- 4. M.Srinivasa Rao, Dr. K. rambhau. Development and validation for the simultaneous estimation in of metformin and empagliflozin in drug product by RP-HPLC. European journal of biomedical and pharmaceutical sciences, 2018; 5(2): 404-410.
- 5. Avani M. Patel, Ankit B Chaudhary. Stability indicating Rp-HPLC method development and validation for estimation of empagliflozin and metformin HCL. World Journal of Pharmacy & Pharmaceutical Sciences, 2017; 6(9): 872-835.
- S. K. Godasu, A. Sreenivas. A new validated RP-HPL Cmethod for determination of Metformin HCL and Empagliflozin in its bulk and pharmaceutical dosage forms. International Journal of Pharmaceutical Sciences and Research, 2017; 8(5): 2223-2232.
- 7. Geetha swarupa p, Lakshmana Rao k, Prasad Krs et.al Development and validation of stability indicating Rp-Hplc method for simultaneous estimation of metformin and empagliflozin in bulk and tablet dosage form. Asian Journal of Pharmaceutical and Clinical Research, 2016; 9(1): 126-135.
- 8. N. Padmaja, Mulagiri Sharath babu, et.al Stability indicating R-HPLC analytical method development and validation for the metformin and empagliflozin in pharmaceutical dosage form Journal de -Afrikana, 2016; 3(5): 314-328.
- 9. Sushil D.Patil et al. Development and validation of stability indicating RP-HPLC method for Empagliflozin Asian Journal of Pharmaceutical Analysis, 2016; 6(4): 201-206.
- 10. Syed Irfan Ali et. al. stability indicating simultaneous estimation of metformin and empagliflozin in pharmaceutical dosage form by RP-HPLC. Asian Journal of Research in Chemistry, 2017; 10(6): 783 -788.
- 11. Ghadir A Khalil, Ismil Salama et. al. validated RP-HPLC method for simultaneous determination of Canagliflozin, Dapagliflozin, Empagliflozin and Metformin. International Journal of Pharmaceutical, Chemical and biological sciences, 2018; 8(1): 1-13.
- 12. M. Madan Mohan reddy, D.Gowri Sankar et al. Stress degredation studies and development of validation stability indicating assay method by RP-HPLC for simultaneous estimation of metformin and empagliflozin in presence of degradation products as per ICH guidelines. Journal of scientific research in pharmacy, 2017; (2): 20-33.

- 13. Vinay Kumar D, J. V. L. N. Seshagiri Rao. A New validated stability indicating RP-HPLC method for simultaneous estimation of metformin HCL and empagliflozin in tablet dosage forms. International Research Journal of Pharmacy and Medical Sciences, 2018; 1(5): 16-22.
- 14. Shaik Mahammad Noorulla Sadath Ali. RP-HPLC method development and validation for the simultaneous estimation of metformin and empagliflozin in tablet dosage form. International Journal on engineering technology and sciences, 2015; 2(11): 66-69.
- 15. N. Padmaja G.veerabhadram. Method development and validation of RP_HPLC method for the estimation of empagliflozin in API. International Journal of Pharmaceutical Science and Research, 2016; 7(2): 724-727.
- 16. N. Padmaja G. Veerabhadram. Development and validation of novel stability indicating RP-HPLC method for the determination of Empagliflozin in bulk and pharmaceutical dosage form. International journal of pharmaceutical science and research, 2016; 7(11): 4523-4530.
- 17. Shyamala, K. Nirmala, J. Maunika et.al .validate stability indicating RP-HPLC method for determination of Empagliflozin. Scholars Research Library, 2018.
- 18. MD. Sadiq Ali, Dr. Gampa Vijaya Kumar. A new stability indicating RP-HPLC method for the simultaneous estimation of empagliflozine and metformin in its pure and pharmaceutical dosage form. International Journal of Research in Pharmacy and Life Science, 2016; 4(2): 86-93.
- 19. Sushil.H.Jaiswal et al. Validated stability indicating HPLC method for determination of process related impurites in empagliflozin drug substances Worlds journal of pharmaceutical research, 2017; 6(7): 1025-1037.
- 20. Bassam M. Ayoub. UPLC Simultaneous determination of Empagliflozin, Linagliflozin and Metformin Royal society of chemistry, 2015; 1-21.
- 21. Nenavath padmaja and Guttena Veerabhadram. A Novel Stability indicating RP-UPLC Dad method for determination of Metformin and Empagliflozin in bulk and tablet dosage form. Oriental Journal of Chemistry, 2017; 33(4): 1949-1958.
- 22. B. Surendra babu, K. S. Nataraj, A. K. M. Pawar, K. Gnanath. Method development and validation for the determination of Metformin HCL and Empagliflozin in bulk Drug and tablet dosage form by RP-ULTRA performance chromatography method. International Journal of Pharma and bio sciences, 2017; 8(4): 253-258.

- 23. N. Madan Gopal, C. Sridhar. A Validated stability indicating UPLC method for simultaneous determination of Metformin HCL and Empagliflozin in bulk Drug and tablet dosage form. International Journal of Applied Pharmaceutics, 2017; 9(3): 45-50.
- 24. Bassam. M. Ayoub, Shereen Mowaka.LC/MS/MS Determination of Empagliflozin and Metformin .Journal of chromatographic science, 2017; 55(7): 742-747.
- 25. Shushil D. Patil, Sayali K. Chaure, Sanjay Kshirsagar. Development and validation of uv spectrophotometric method for simultaneous estimation of Empagliflozin and Metformin hydrochloride in bulk drug. Asian Journal of Pharmaceutical Analysis, 2017; 7(2): 117-123.
- 26. N. Padmaja, Mulagiri Sharath baba, Veerbhadram. Development and Validation of UV spectrophotometric method for simultaneous estimation of Empagliflozin and Metformin hydrochloride in bulk, drugs and combined dosage forms Scholar Research Library, 2016; 8(13): 207-213.
- 27. Jyothirmai N, Nagaraju B, Anil Kumar M. Novel UV and visible spectrophotometric method for the analysis of Empagliflozin a type 2 diabetic drug in bulk and pharmaceutical formulations. Journal de Afrikana, 2016; 3(1): 177-187.
- 28. Bassam M. Ayoub Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of Empagliflozin and Metformin: Applied to recently approved pharmaceutical formulation. Spectrochimica Acta-part-A: Molecular and biomolecular Spectroscopy, 2016; 168: 118-122.
- 29. Lilian Shaker. Development of Economic UV Spectrophotometric method for Determination of Linagliptin in its Tertiary Mixture with Empagliflozin and Metformin: Comparision to Economic pharmaceutical Analysis Literature. Scholars Research Library, 2016; 8(13): 267-269.
- 30. Ashwini T. kadam, Mohammand Zameeruddin, Vilas Arsul. Development and Validation of Analytical method for the Simultaneous Estimation of Metformin hydrochloride and Empagliflozin. Journal of Medical and Pharmaceutical Innovation, 2017; 4(21): 21-27.
- 31. Shushil D. Patil, et.al. Development and validation of simple UV-Spectrophotometric method for the Determination of Empagliflozin. Asian Journal of Pharmaceutical Analysis, 2017; 7(1): 18-22.