

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.074

Volume 8, Issue 2, 1232-1252.

Research Article

ISSN 2277-7105

COMPUTATIONAL BIOLOGY AND GENE INTERPRETATION OF PSORIATIC ARTHRITIS THROUGH IN SILICO ANALYSIS

Krishna Kumar Das¹, Sudeepa Rout², Santosh Kumar Behera²* and Yagyan Prasad Nath Sharma³

^{1,2,3}Department of Bioinformatics, C.P.G.S., O.U.A.T., Bhubaneswar.

²ICMR-Regional Medical Research Centre, Bhubaneswar-751003.

Article Received on 10 December 2018.

Revised on 31 Dec. 2018, Accepted on 21 Jan. 2018

DOI: 10.20959/wjpr20192-14161

*Corresponding Author Santosh Kumar Behera

Department of Bioinformatics, C.P.G.S., O.U.A.T., Bhubaneswar.

ABSTRACT

Human autoimmune diseases (AD) occur frequently (affecting in aggregate more than 5% of the population worldwide), and impose a significant burden of morbidity and mortality on the human population. Psoriasis being one of those typeis a chronic condition characterized by sharply demarcated skin lesions and increased risk of arthritis and cardiovascular disease. Lesion development is associated with excessive keratinocyte (KC) proliferation, altered KC differentiation, and an inflammatory infiltrate that includes innate and adaptive immune cells (e.g., neutrophils and T-cells). Psoriatic arthritis is a form

of arthritis (joint inflammation) that can occur in people who have the skin disease psoriasis. Psoriasis is a common condition characterized by scaly red and white skin patches. Psoriatic arthritis can affect any joint in the body, including the spine. In this study an attempt was made to study the find the key hub gene associated with Psoriasis Arthritis and how these genes interact among themselves along with their important gene ontology. Further step was taken to generate 3D structures of the gene products whose structure is not available in Protein Data bank and study the interaction of these genes along with different drug molecule for the treatment of the same. The Drug association analysis of Web Gestalt has reported 17 drugs interacted with 33 genes or its corresponding proteins out of which docking was performed for 17 drugs and 33 potential targets as they are found to be key regulators in PsA disease. The molecular docking studies have reported the drug-target interactions of teicoplanin was -12.12 Kcal/mol, cyclosparine was -13.86 Kcal/Mol, hyaluronan was -9.69 Kcal/Mol, sulfasalazine Interaction of dinoprostone with VEGFA has the highest docking scores of -13.86 Kcal/mol with energy minimization. Interaction of cyclosparine with IL10

has the lowest docking scores of -2.85 Kcal/mol with energy minimization. From this report it is clear that PsA differs from person to person based on their genes and genetic interactions and expressions which recommend the clinicians to go for personalized medicine rather that generalized medicine for the patients with PsA. These gene product and drug may act as potential future target for the treatment of Psoriasis arthritis.

KEYWORDS: Autoimmune diseases; keratinocyte; Psoriasis arthritis; Protein Data bank.

INTRODUCTION

Psoriatic arthritis (PsA) is an inflammatory arthropathy, which is associated with psoriasis in approximately 25% of patients. It is characterized by stiffness, pain, swelling, and tenderness of the joints as well as the surrounding ligaments and tendons.^[1,2] It affects men and women equally and typically presents at the age of 30 to 50 years. [2] Psoriasis is a relapsing inflammatory skin disease that occurs in 1-3% of the world's population. In Poland, the prevalence of psoriasis is estimated at 2% of the general population.^[3] The authors defined PsA as an inflammatory arthritis associated with psoriasis and negative for serum rheumatoid factor." There are two types of psoriasis: type I with early onset (before 40 years of age) and type II with late onset of symptoms (after the age of 40). Type I is diagnosed in approximately 85% of patients with a peak incidence at the age of 18–22 years. [4] The course of the disease is more severe and often complicated by arthritis. Type I often (85%) coexists with HLA-Cw * 0602 alleles and PSORS1 locus (35–50%). [5] The contribution of genetic factors is clearly apparent in this type of disease. Type II is a milder form of PsA with a peak incidence at the age of 57–60 years. The correlation with genetic factors is not that evident as in type I. HLA-Cw * 0602 alleles are found only in 15% of cases. Similar results were reported by other authors. [6,7] Although different loci have been identified by genome-wide scans the cause of psoriasis is still unknown. A functional contribution of T cells in the aetiology of psoriasis is strongly inferred from the presence of T cells in lesioned skin and the beneficial response to immunosuppressive drugs. However, recent results indicate that T cells are perhaps not essential in inducing the chemokine/ cytokine profile seen in psoriasis (Gudjonsson and Elder, 2006). This motivates for searching functional alterations of keratinocytes. Jun proteins (c-Jun, JunB and JunD), together with the Fos, ATF and CREB proteins are main components of theactivator protein 1 (AP-1) transcription factor. The balance of Jun proteins determines whether cells progress through the cell cycle. In psoriasis, JunB is downregulated throughout the tissue, while c-Jun is upregulated in the lower regions of the epidermis. Using an epidermis-specific double knock-out mouse model, it was shown that the epidermis-specific downregulation of JunB induces cytokine/chemokines, which are known to recruit inflammatory cells, thereby contributing to the establishment of the clinical and molecular features observed in psoriasis and psoriatic arthritis (Zenz et al. 2005). Nevertheless, as the mRNA level of JunB is reported to be unchanged in psoriasis, the cause of the expression change of JunB and c-Jun proteins remains unclear. [8]

PsA is a highly heritable, polygenic disease. The recurrence risk (l) ratio, defined as the ratio of a disease manifestation in family members to the affected individual compared with the prevalence in the general population, is significantly higher in PsA than RA and psoriasis. [9-^{11]} This high ratio underscores the strong familial component of this disease; the genetic risk factors are discussed in the article in this issue. In contrast to RA, which shows an association with specific MHC class II alleles, psoriasis and PsA are associated with MHC class I alleles. In particular, HLA-C*06 (previously called HLA-Cu06) is the genetic risk factor most strongly linked to psoriasis. [12] Interestingly, this MHC I allele does not track with joint and nail disease. [13] HLA-B*08, B*27, B*38 are found in increased frequency in PsA, and a recent study showed that the presence of glutamine in the HLA-B27 gene at amino acid position 45 significantly increased the risk for PsA, but not psoriasis. [14] Immunochip genotype array case-controlled analysisalso identified HLA-C*0602, amino acid position 67 of HLA-B, and HLA-A*0201 as independently associated with PsA in a study that included nearly 2000 PsA patients and 9000 controls. [15] The presence of HLA-B*27 correlates with the severity of axial involvement on MRI studies^[16] as well as a shortened interval between the development of skin and joint disease. [17]

Evidence for a strong genetic contribution in PsA comes from family studies (Moll et al. 1973; Gladman et al. 2003). Just as in psoriasis, association in PsA has also been found with the HLA loci on chromosome 6. The strongest associated allele in psoriasis, Cw6, is reported to be more strongly associated with psoriasis than with PsA. The situation in PsA is considerably more complex and genetic studies have shown associations with several HLA antigens including HLA-B13, B17, -b27, B38, B39, Cw6, DR4, DR7 and DQ3 (Murray et al. 1980; Gladman et al. 1986; McHugh et al. 1987; Salvarani et al. 1989; Torre Alonso et al. 1991). Association with PsA has also been found with the MICA-A9 triplet repeat polymorphism and with polymorphisms in the TNF-α region (Gonzalez et al. 2001; Hohler et al. 2002). To the best of our knowledge only one genome-wide scan has been completed in

PsA (Karason et al. 2003). This study was performed on 39 Icelandic families using 1000 microsatellite markers. A LOD score of 2.17 was reported on chromosome 16q and when conditioning the analysis on paternal transmission, the LOD score increased to 4.19. Addition of markers to this region further increased the LOD score to 5.69 also when analysis was conditioned on paternal inheritance (Karason et al. 2005). The susceptibility gene for Chrohns disease, CARD15(Hugot et al. 2001; Ogura et al. 2001), overlaps with this region. Association with this gene has also been reported in a study on PsA patients (Rahman et al. 2003), although other studies have failed to confirm this association (Giardina et al. 2004; Lascorz et al. 2005). [18]

MATERIALS AND METHODS

Mining of genes associated with PSA from GWAS Catalog, MALACARD, Diseases. Jensenlab

The National Human Genome Research Institute (NHGRI) Catalog of Published Genome-Wide Association Studies (GWAS) Catalog which provides a publicly available manually curated collection of published GWAS assaying at least 1,00,000 single nucleotide polymorphisms (SNPs) and all SNP-trait associations with P <1X10⁻⁵, was used to mine the genes pertaining to RH. Disease search for "**Psoriaticarthritis**" with a p-value threshold of p<10⁻⁵ was performed to retrieve GWAS studies on PSA from GWAS Catalog (http://www.genome.gov/gwastudies/ currently https://www.ebi.ac.uk/gwas/).^[19]

Functional annotation and GO association of PSA genes

The functional annotation genes was performed through Gene Ontology (GO) analysis which describes the functions along the three categories *viz.*, molecular functions (MF), biological processes (BP) and the cellular components (CC). The Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/) was used for GO term annotation (i.e., the common vocabulary for the functional description of genes and gene products) annotation. Finally to find the statistically significant GO terms of the genes, GO term enrichment analysis was performed. The DAVID parameters were filtered to reduce the false positives and the output was taken into account after applying multiple testing correction (p-values <0.05), fold change and False Discovery Rate (FDR). Genes from significantly enriched biological processes were termed as key genes and were used for network construction. [20-21]

Generation of gene network and its interactions

Gene networks present a graphical view at the level of gene activities and genetic functions and help us to understand complex interactions in a meaningful manner. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein networks covering >1100 organisms.^[22-23]

Gene-disease association study

Web Gestalt (WEB-based Gene SeTAnaLysis Toolkit), one of the first software applications that integrate functional enrichment analysis and information visualization for the management, information retrieval, organization, visualization and statistical analysis of large sets of genes. Web Gestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for further functional categorisation of 235 BP genes including gene–phenotype association, gene–disease association and Drug association analysis. Further interactive phenotype ontology associated with PSA genes was elucidated. Organism Homo sapiens was selected against select organism of interest column, hsapiens_gene symbol was selected at Select gene ID type, and outcome of DAVID functional analysis BP gene list consisting of 235 genes was uploaded in the Upload gene list column. The following entries such as Statistical Method/test: hypergeometric, Multiple Test Adjustment: BH, Significance Level: Top 10 and .05, Minimum Number of Genes for a Category: 2 was selected. [24-25]

UniProt

The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and annotation data. The corresponding protein sequences encoded by these genes were retrieved from UniProtKB database.^[26-28]

Retrieval of Drugs and proteins

The Structure Data Format (SDF) 3D structure of the reported drugs were retrieved from the NCBI PubChem. [29-30] database (http://www.ncbi.nlm.nih.gov/pccompound/) along with its PubChem ID, Molecular weight and Molecular formula. The compounds were converted into pdb format structure using the PyMol^[31] (academic version) tool, Discovery Studio v4.1 visulizer tools^[32] and online SMILES translator web server (https://cactus.nci.nih.gov/translate/) as per requirement.

The structures of the corresponding proteins of reported genes were retrieved from PDB Protein Data Bank (PDB).^[33] The unknown structures were predicted using various tools like Modeller 9.15 tool,^[34] LOMETS^[35] (A local meta-threading-server for protein structure prediction) and RaptorX^[36-37] web servers due to unavailability at PDB Protein Data Bank (PDB).

Prediction of binding site

Structural and active site studies prediction of the proteins were done by using CASTP [38] (Computed Atlas of Surface Topography of Proteins) at http://cast.engr.uic.edu and GHECOM 1.0: Grid-based HECOMi finder. [39-40]

Docking approach

AutoDock 4.2 (autodock.scripps.edu/) was used for docking studies which is widely distributed public domain molecular docking software. The docking analysis was carried out for the reported drugs (can be said as ligands) with their corresponding targets (proteins) using AutoDock4.2 tool. The interactions of ligand and proteins were studied using LigPlot, Discovery Studio Visulizer and PyMol. The various bonding interactions of ligand and proteins were explored using the above tools.^[41-43]

RESULTS AND DISCUSSION

The GWAS studies reported 3 studies of **Psoriatic arthritis** with a total of 239 unique genes mapped to discrete genomic locations of human genome. The list of 239 unique genes is represented at **Table.1**.

Table 1: The GWAS studies with 3 studies of rheumatoid arthritis with a total of 239 unique genes.

IL12B	SPRTN	UBE2D1	C7orf49
TRAF3IP2	SERPINA11	MCAM	SST
REL	CD68	SERPINA1	MMP2
HLA-C	IL1F10	CSF1	NCAM1
COG6	ARPC4	CD163	JAK3
LTA	ITGAL	RPTOR	SLC22A5
NOD2	ADAD1	CD55	MMP9
CELIAC2	LCE3A	CD2	NDUFA6
TNF	SLC12A8	MAP4K5	STIP1
MICA	C3	IL1RL2	PHF11
HLA-B	C21orf62	STARD13	IGJ
TNFRSF1B	HLA-G	BGLAP	S100A7
CRP	CXCL10	MAP4K3	IRAK1

TNIP1	IL22	DHODH	CXCR3
IL13	NFKBIA	MSLNL	IL33
HLA-DRB1	RAB8A	NAT9	AGK
IL23R	TNFRSF10A	ACAN	TRAF5
TNFRSF1A	USP8	CCL20	PTTG1
COMP	VEGFA	SDC1	MAP3K3
MMP3	CRTAC1	ICAM1	KLK6
TNFSF11	PLCL2	ITGAM	SDC3
PTPN22	SFTPA1	FOXP3	HIST1H1A
CARD14	MEG8	KLK8	MNDA
S100A12	RNF39	HLA-S	POMC
IL1B	PDE4B	MTX3	KLRB1
SELE	MIA	LRRC25	ATG16L1
CD58	EBI3	MAP4K2	CCL4
TNFRSF11B	SFTPA2	KIR2DL1	ONECUT3
IL1A	PPIA	IFNA1	NOD1
ANGPT2	CTLA4	MATN3	TNFSF12
MMP1	IL34	STAT3	SIGIRR
IL15	DYNLT1	VCAM1	UST
IL17A	IFNG	ELOVL6	GJB2
LCE3C	ZNF395	GPC4	KIAA1109
LCE3B	SPPL2A	TARS	CD80
PIPOX	LHFP	CHRNA6	SNRNP40
MRAP	S100A9	RNASE7	RBM38
PHB2	AFF3	KLK1	CCL2
IL36RN	SAA1	SLC22A4	PSAT1
FBXL19	SERPINB8	JAK1	MAP4K1
IL17RA	RAN	HLA-DRB5	IL17F
AGBL2	TLR4	FN1	IL10
ERAP1	ASPA	PRL	KRT78
HLA-A	RARRES2	FLG	CCHCR1
IL1RN	IFIH1	NUP62	CCR6
CD4	IL25	VSIG4	FGF1
TNFAIP3	LYZ	CD8B	CSF1R
ZNF816	PRTN3	HLA-DMA	TLR2
IL6	IL12RB1	CHRNB3	TRAF6
RNF114	FBN3	KYNU	IL37
PDE4A	IL17RC	JAK2	NRAP
CD8A	PSME4	IL1R1	HCP5
CD40LG	TYK2	RORA	SLC9A3R1
CD79A	IL4	HP	IL28RA
LCE3D	CXCL9	HPR	IL2
NOD2	CRISP2	CCL21	DKK1
AGBL3	MT4	IL23A	IARS
IL8	IL36B	MEFV	TIMP1
PROS1	CHI3L1	OAS2	ITIH1
TNFAIP8L3	BCKDHA	KLK13	

The DAVID bioinformatics functional enrichment analysis report of 235 genes is depicted.

A total of 235 genes obtained from significantly enriched biological processes are termed as key genes and were used for network construction of PsA were analyzed through STRING database. The result of the string is represented in **Fig.1**. The PsA network of STRING database reported the genes namely IL8, TNF, VEGFA, TNFRSF11B, IL8, IL6, TNF, IL10, TNF, TNF, IL6, TLR4, TNF, IL6, IL10, VEGFA, IL1B, TNFSF11, IL10, CD55, TNF, TNFRSF11B, IL8, IL6, IL1B, TNF, IL4 and IL8 at the core region of the network. These genes may be said to play a key in PsA as well as can be differentially expressed in PsA disease.

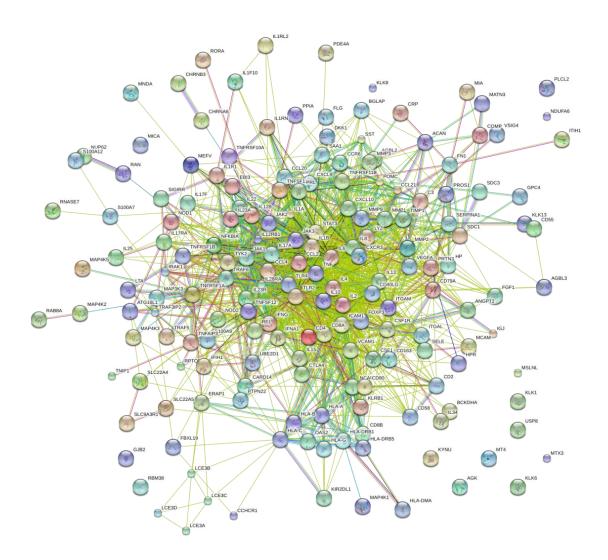


Fig. 1: Network construction of PsA analyzed through STRING database.

The Drug association analysis of WebGestalt has reported 17 drugs interacted with 38genes or its corresponding proteins. The results of WebGestalt pertaining drugs against PsA and its

corresponding genes/proteins were cross checked by literature survey, substantially presented in Table.2.

Table 2: PSA Drugs and their corresponding target genes/proteins from WebGestalt at significance level .05, Significance test Hypergeometric, MTC: BH.

S.	D	PubChem	Molecular	Molecular	T4
no.	Drug name	CID	formula	weight	Target
1	immune	119	C ₄ H ₉ NO ₂	103.11976 g/mol	FOXP3 TNF IFNG ITGAL CD4 CD55 CTLA4 CD40LG IL4 CD80 PTPN22 IL10 ICAM1 CD2 TNFRSF1B HLADRB1 TLR2 MICA IL8 TNFRSF1A TLR4
2	anakinra	90470007	$C_{20}H_{23}N_5O_7S_2$	509.55592 g/mol	TNF IL4 IL10 IL1B IL1R1 IL6 IL8 TNFRSF1A
3	dinoprostone	5280360	$C_{20}H_{32}O_5$	352.46508 g/mol	TNF IL10 VEGFA IL1B TNFSF11 IL6 IL8 TLR4
4	cyclosporine	5284373	$C_{62}H_{111}N_{11}O_{12}$	1202.61124 g/mol	FOXP3 TNF IFNG

					CDCC
					CD55
					IL10
					TNF
					IFNG
5	Nitric oxide	145068	NO	30.0061 g/mol	VEGFA
	TVILLIC OXIGE	1 .2 0 0 0		covocol gillor	IL1B
					NFKBIA
					VCAM1
				224.21328	TNF
6	stavudine	18283	$C_{10}H_{12}N_2O_4$		CCHCR1
				g/mol	HLADRB1
				278.30702	TNF
7	pentoxifylline	4740	$C_{13}H_{18}N_4O_3$		IL6
				g/mol	IL8
0	1 .	1.6150170	C II CINO	1564.25312	IL6
8	teicoplanin	16152170	$C_{72}H_{68}Cl_2N_8O_{28}$	g/mol	TLR4
9	tiotnomium	5487427	C ₁₉ H ₂₂ NO ₄ S ₂ ⁺	392.51228	IL8
9	tiotropium	3481421	$C_{19}\Pi_{22}NO_4S_2$	g/mol	SLC22A4
		5280453	C ₂₇ H ₄₄ O ₃	416 62646	BGLAP
	calcitriol			416.63646 g/mol	IL1B
					TNFRSF11B
1.1		4462	C II N O	266.29786	CCHCR1
11	nevirapine	4463	$C_{15}H_{14}N_4O$	g/mol	
10	10 1 '	5250476	C II N O C	398.39256	TNF
12	sulfasalazine	5359476	$C_{18}H_{14}N_4O_5S$	g/mol	IL8
10	.1 1:1 :1	5.406	C II N O		TNF
13	thalidomide	5426	$C_{13}H_{10}N_2O_4$	258.2295 g/mol	VEGFA
1.4	1 .	5065	CHO	358.42814	TNF
14	prednisone	5865	$C_{21}H_{26}O_5$	g/mol	IL10
1.7		2715	C II CDIO	357.78764	CD2
15	indomethacin	3715	$C_{19}H_{16}CINO_4$	g/mol	IL6
1.0		6012	C II O	288.42442	BGLAP
16	testosterone	6013	$C_{19}H_{28}O_2$	g/mol	TNFRSF11B
					TLR2
17	hyaluronan	24759	C ₂₈ H ₄₄ N ₂ O ₂₃	776.64856	IL8
	nyaiuionan		20 11 2 - 23	g/mol	TLR4

The Structure Data Format (SDF) 3D structure of the reported drugs were retrieved from the NCBI PubChem database (http://www.ncbi.nlm.nih.gov/ pccompound/) along with its PubChem ID, Molecular weight and Molecular formula. The compounds were converted into pdb format structure using the PyMol (academic version) tool, Discovery Studio v4.1 visulizer tools and online SMILES translator web server (https://cactus.nci.nih.gov/translate/) as per requirement. The detail about the drugs, DRUG Name, PubChem CID, Molecular Formula, Molecular Weight and its corresponding Target is reported in **Table.3**.

The structures of the corresponding proteins of reported 33 genes that are found to be the key factor were retrieved from PDB Protein Data Bank (PDB). The details about the structure of these 29 genes are reported at **Table.3**.

Table 3: Potential targets of PSA disease with their PDB ID and region of interest.

S. No.	Target	Uniprot ID	Pdb ID	Short name of target	Full name of target	Region
1	FOXP3	Q9BZS1	4WK8	FOXP3	Forkhead box protein P3	336-417
2	TNF	P01375	4TSV	TNF-a	Tumor necrosis factor	84-233
3	IFNG	P01579	3BES	IFN-gamma	Interferon gamma	24-161
4	ITGAL	P20701	1MJN	LFA-1A	Integrin alpha-L	153-331
5	CD4	P01730	3S5L	CD4	T-cell surface glycoprotein CD4	397-458
6	CD55	P08174	1H03	CD55	Complement decay-accelerating factor	161-285
7	CTLA4	P16410	3OSK	CTLA-4	Cytotoxic T-lymphocyte protein 4	36-161
8	CD40LG	P29965	1ALY	CD40-L	CD40 ligand	116-261
9	IL4	P05112	2B8U	IL-4	Interleukin-4	25-153
10	CD80	P33681	1DR9	CD80	T-lymphocyte activation antigen CD80	35-233
11	PTPN22	Q9Y2R2	2P6X	PEP	Tyrosine-protein phosphatase non-receptor type 22	1-302
12	IL10	P22301	2ILK	IL-10	Interleukin-10	19-178
13	ICAM1	P05362	1IC1	ICAM-1	Intercellular adhesion molecule 1	28-217
14	CD2	P06729	2J6O	CD2	T-cell surface antigen CD2	324-333
15	TNFRSF1B	P20333	3ALQ	TNF-RII	Tumor necrosis factor receptor superfamily member 1B	420-428
16	TLR2	O60603	1FYW	TLR2	Toll-like receptor 2	636-784
17	MICA	Q29983	1HYR	MIC-A	MHC class I polypeptide-related sequence A	24-297
18	IL8	P10145	5D14	IL-8	Interleukin-8	30-99
19	TNFRSF1A	P19438	1FT4	TNF-R1	Tumor necrosis factor receptor superfamily member 1A	41-201
20	TLR4	O00206	4G8A	TLR4	Toll-like receptor 4	27-228
21	IL1B	P01584	1I1B	IL-1 beta	Interleukin-1 beta	117-269
22	IL1R1	P14778	1ITB	IL-1R-1	Interleukin-1 receptor type 1	21-332
23	IL6	P05231	1ALU	IL-6	Interleukin-6	28-212
24	VEGFA	P15692	2VPF	VEGF-A	Vascular endothelial growth factor A	34-135
25	TNFSF11	O14788	3URF	TNFSF11	Tumor necrosis factor ligand superfamily member 11	162-317
26	FOXP3	Q9BZS1	3QRF	FOXP3	Forkhead box protein P3	336-417
27	NFKBIA	P25963	1IKN	NFKBIA	NF-kappa-B inhibitor alpha	67-302
28	VCAM1	P19320	1VSC	VCAM-1	Vascular cell adhesion protein 1	25-220
29	TNFRSF11B	O00300	3URF	TNFRSF11B	Tumor necrosis factor receptor superfamily member 11B	22-186

The amino acid sequences of corresponding proteins encoded by the reported 4 genes against PsAdrugs were retrieved from UniProtKB database. The 3D structure of all the 4proteins, namelyBGLAP, CCHCR1, HLADRB1 and SLC22A4 was predicted by *LOMETS* (Local Meta-Threading-Server) and threading tool due to unavailability of information at Protein data Bank. The detail of the structure predictions about each protein is reported at **Table.4**.

Table 4: Targets/Proteins and their protein sequences for structure prediction.

S. No	Target	Tool For Structure Prediction	Protein Sequence
1	BGLAP	Lomets	>sp P02818 OSTCN_HUMAN Osteocalcin OS=Homo sapiens GN=BGLAP PE=1 SV=2 MRALTLLALLALAALCIAGQAGAKPSGAESSKGA AFVSKQEGSEVVKRPRRYLYQWLGAPVPYPDPLEP RREVCELNPDCDELADHIGFQEAYRRFYGPV
2	CCHCR1	Lomets	>sp Q8TD31 CCHCR_HUMAN Coiled-coil alphahelical rod protein 1 OS=Homo sapiens GN=CCHCR1 PE=1 SV=2 MFPPSGSTGLIPPSHFQARPLSTLPRMAPTWLSDIPL VQPPGHQDVSERRLDTQRPQVTMWERDVSSDRQE PGRRGRSWGLEGSQALSQQAEVIVRQLQELRRLEE EVRLLRETSLQQKMRLEAQAMELEALARAEKAGR AEAEGLRAALAGAEVVRKNLEEGSQRELEEVQRL HQEQLSSLTQAHEEALSSLTSKAEGLEKSLSSLETR RAGEAKELAEAQREAELLRKQLSKTQEDLEAQVT LVENLRKYVGEQVPSEVHSQTWELERQKLLETMQ HLQEDRDSLHATAELLQVRVQSLTHILALQEEELT RKVQPSDSLEPEFTRKCQSLLNRWREKVFALMVQL KAQELEHSDSVKQLKGQVASLQEKVTSQSQEQAIL QRSLQDKAAEVEVERMGAKGLQLELSRAQEARRR WQQTASAEEQLRLVVNAVSSSQIWLETTMAKVE GAAAQLPSLNNRLSYAVRKVHTIRGLIARKLALAQ LRQESCPLPPPVTDVSLELQQLREERNRLDAELQLS ARLIQQEVGRAREQGEAERQQLSKVAQQLEQELQ QTQESLASLGLQLEVARQGQQESTEEAASLRQELT QQQELYGQALQEKVAEVETRLREQLSDTERRLNE ARREHAKAVVSLRQIQRRAAQEKERSQELRRLQEE ARKEEGQRLARRLQELERDKNLMLATLQQEGLLS RYKQQRLLTVLPSLLDKKKSVVSSPRPPECSASAPV AAAVPTRESIKGSLSVLLDDLQDLSEAISKEEAVCQ GDNLDRCSSSNPQMSS
3	Hladrb1	Lomets	>tr Q07493 Q07493_HUMAN HLA-DR beta chain (Fragment) OS=Homo sapiens GN=HLADRB1 PE=4 SV=1 LEYSTSECHFFNGTERVRFLDRYFYNQEEYVRFDS DVGEFRAVTELGRPDEEYWNSQKDLLEQKRGRVD NYCRHNYGVVESFTVQ

4	SLC22A4	Lomets	>sp Q9H015 S22A4_HUMAN Solute carrier family 22 member 4 OS=Homo sapiens GN=SLC22A4 PE=1 SV=3 MRDYDEVIAFLGEWGPFQRLIFFLLSASIIPNGFNG MSVVFLAGTPEHRCRVPDAANLSSAWRNNSVPLR LRDGREVPHSCSRYRLATIANFSALGLEPGRDVDL GQLEQESCLDGWEFSQDVYLSTVVTEWNLVCEDN WKVPLTTSLFFVGVLLGSFVSGQLSDRFGRKNVLF ATMAVQTGFSFLQIFSISWEMFTVLFVIVGMGQISN YVVAFILGTEILGKSVRIIFSTLGVCTFFAVGYMLLP LFAYFIRDWRMLLLALTVPGVLCVPLWWFIPESPR WLISQRRFREAEDIIQKAAKMNNIAVPAVIFDSVEE
4	SLC22A4	Lomets	
			LNPLKQQKAFILDLFRTRNIAIMTIMSLLLWMLTSV
			GYFALSLDAPNLHGDAYLNCFLSALIEIPAYITAWL
			LLRTLPRRYIIAAVLFWGGGVLLFIQLVPVDYYFLSI
			GLVMLGKFGITSAFSMLYVFTAELYPTLVRNMAV
			GVTSTASRVGSIIAPYFVYLGAYNRMLPYIVMGSLT
			VLIGILTLFFPESLGMTLPETLEQMQKVKWFRSGKK
			TRDSMETEENPKVLITAF

The Active/Binding site of the reported proteins/targets was predicted by CASTp (Computed Atlas of Surface Topography of proteins) and GHECOM 1.0: Grid-based HECOMi (pocket) finder represented in **Table.5**.

Table 5: Active / binding site of the proteins predicted by using CASTp.

S. No.	Name of the protein	Binding sites
1	IL8	LYS1,GLU2,LEU3,ARG4,CYS5,GLN6,ARG24,ILE26,HIS
_	TEO .	31,CYS32,ASN34,GLU36
2	TNF	GLY66,GLY68,CYS69,PRO70,THR72,HIS73,VAL74,PRO
	1111	100,CYS101,TRP114,TYR141
3	VEGFA	TYR21,SER24,TYR25,CYS60,CYS61,ASN62
4	TNFRSF11B	PHE129,SER130,ASN131,GLU132,ALA137,PRO138,ARG
7	TWINSTILD	140
5	IL6	LEU33,ILE36,SER37,ARG40,THR43,CYS44,CYS50,GLU
3	ILO	51,HIS164,LEU167,ARG168,LYS171
		LEU23,LEU26,ARG27,PHE30,VAL33,LYS34,PHE37,GLN
6	IL10	38,ASP41,LEU47,LEU48,LYS49,LEU52,LEU53,PHE56,L
	ILIO	EU65,MET68,ILE69,PHE71,TYR72,VAL76,MET77,ALA8
		0,VAL91,LEU94,LEU98,LEU101,ARG102,LEU105
		GLU31,VAL32,VAL33,PRO34,ARG382,PHE408,GLN430,
		ASP453,SER455,HIS456,LYS477,ALA479,PHE500,ASP50
7	TLR4	2,SER504,GLN505,VAL524,LEU525,ASN526,SER528,HI
/	1LK4	S529, VAL548, LEU549, ASP550, SER552, LEU553, PHE573,
		ASN575,THR577,GLN578,LEU601,VAL602,GLU603,GL
		U605,ARG606
8	IL1B	ASN7,SER43,SER45,GLY61,LEU62,LYS63,GLU64,LYS6
0	ILID	5,ASN66,TYR68,VAL85,PRO87,TYR90,PRO91
9	TNFSF11	SER179,HIS180,LYS181,GLN237,MET239,TYR241,SER2

		94
10	CD55	PRO10,ILE30,PHE32,SER46,TRP57,ASP59,LEU61
11	IL4	ILE32,PHE33,ALA35,LYS37,ASN38,THR39,GLU43,THR 44,ARG47,CYS99,PRO100,LYS102,GLU103

Out of reported 14 drugs interacted with11 genes or its corresponding proteins, docking was performed for 14drugs and 11 potential targets. The selected/screened 33 targets are found to be key regulators in PsA disease based on the existing records and network analysis. AutoDock 4.2 (autodock.scripps.edu/) that was used for docking studies revealed docking score with energy minimization values, Binding energy, Ligand Efficiency, Inhibition Constant and Electrostatic energy for 14ligands/drugs-11 potential targets interactions are represented at **Table.6**. The molecular docking studies have reported the drug-target interactions of teicoplanin was -12.12 Kcal/mol, cyclosparine was -13.86 Kcal/Mol, hyaluronan was -9.69 Kcal/Mol, sulfasalazine Interaction of dinoprostone with VEGFA has the highest docking scores of -13.86 Kcal/mol with energy minimization. Interaction of cyclosparine with IL10 has the lowest docking scores of -2.85Kcal/mol with energy minimization. From this report it is clear that PsA differs from person to person based on their genes and genetic interactions and expressions which recommend the clinicians to go for personalized medicine rather that generalized medicine for the patients with PsA.

Table 6: Molecular docking analysis of 15 drugs against 18 target proteins using Auto Dock4.2 tool.

S. No.	Target	Drug	Binding Energy	Ligand Effeciency	Hydrogen Bonding	Hydrophobic	Electrostatic
1	IL8	tiotropium	-5.13	-0.2	ARG24,VAL25,GLU2	ARG24,HIS31, ILE26	GLU2, HIS31,
2	TNF	thalidomide	-8.58	-0.45	GLN67,VAL74,TRP114, THR72, TYR141	PRO70	NO
3	VEGFA	thalidomide	-5.62	-0.3	ASN62,SER24	VAL20,TYR21	NO
4	TNFRSF11B	testosterone	-6.29	-0.3	CYS139	VAL110,LYS122, PRO125, CYS139, PHE128	NO
5	IL8	sulfasalazine	-7.25	-0.26	ARG4,ARG24,GLU46, LEU3	LEU3,ILE38, CYS48	ARG4
6	IL6	teicoplanin	-4.61	-0.04	ARG40,SER37,ASP34	NO	ARG40, ASP34,
7	TNF	sulfasalazine	-9.29	-0.33	GLN67,THR72,ARG138, TYR141, THR72, GLY66, PRO70,	GLY66,TYR141, CYS69, PRO70, VAL74	NO
8	IL10	prednisone	-7.19	-0.28	LYS49,GLU50	PHE56,LEU52, LEU65, MET68	NO
9	TNF	prednisone	-5.63	-0.22	LYS65,	PRO70,VAL74, TYR141	NO
10	TNF	stavudine	-5.31	-0.33	GLN67,TRP114,TYR141, GLY68, CYS69,	TYR141,PRO70, VAL74	NO
11	IL6	pentoxifylline	-5.36	-0.27	SER37,ARG40,LEU33	LEU33	NO
12	TLR4	teicoplanin	-12.12	-0.11	PRO28,GLU24,GLU27,GLU31	NO	GLU27,GLU31, GLU24
13	TNF	pentoxifylline	-6.39	-0.32	GLN67,TRP114,THR72, TYR141,	PRO70,CYS69, VAL74, CYS101, HIS73	NO

<u>www.wjpr.net</u> Vol 8, Issue 2, 2019.

World Journal of Pharmaceutical Research

14	IL6	indomethacin	-6.54	-0.26	ARG40	ARG30,LEU33	NO
15	IL10	dinoprostone	-4.08	-0.16	TYR72	NO	NO
16	VEGFA	dinoprostone	-2.85	-0.11	SER24,GLU64,ASN62,	PHE17	NO
17	IL1B	dinoprostone	-6	-0.24	LYS65,LEU62	PRO91,TYR68	NO
18	TNFSF11	dinoprostone	-6.12	-0.24	LYS181,GLN237,ASN295	LEU236	NO
19	IL10	cyclosparine	-13.86	-0.16	NO	MET77,LEU94, TYR72	ASP41, TYR72,
20	CD55	cyclosparine	3120	36.71	ASN9,SER31,	TRP57	GLU63, ASP19,
21	TNF	cyclosparine	-1.61	-0.02	NO	NO	ARG138
22	TNFRSF11B	calcitriol	-5.3	-0.18	ARG140,GLU132,LYS141	ARG140, PHE129	NO
23	IL8	hyaluronan	-9.69	-0.18	ARG24,GLU2,LYS1,LEU23	NO	GLU2
24	IL6	anakinra	-4.98	-0.15	ARG40,ASP34	ARG40,ILE36, LEU33	NO
25	IL1B	anakinra	-6.28	-0.18	ASN7,SER43,TYR68,SER153, SER152, LEU62, LYS63, LYS65,	NO	LYS63
26	TNF	anakinra	-4.97	-0.15	GLN67	GLY66,PRO70, LYS65	NO
27	IL4	anakinra	-7.88	-0.23	THR39,ARG47,ASN38,SER36, GLU43,	ALA35	GLU103
28	IL8	anakinra	-6.74	-0.2	LYS1,GLU2,ARG4,CYS5	LEU3,ARG4	ARG4

<u>www.wjpr.net</u> Vol 8, Issue 2, 2019.

CONCLUSION

In the present study a total 235unique genes were mined for PsA from 39 GWAS studies. The functional annotation of a total of 235 genes was performed through Gene Ontology (GO) analysis using DAVID which reported 216 genes and 238 GO terms for biological processes (BP). The STRING database reported the genes namely IL8, TNF, VEGFA, TNFRSF11B, IL8, IL6, TNF, IL10, TNF, TNF, IL6, TLR4, TNF, IL6, IL10, VEGFA, IL1B, TNFSF11, IL10, CD55, TNF, TNFRSF11B, IL8, IL6, IL1B, TNF, IL4 and IL8 at the core region of the RA network of 235 BP genes. These genes may be said to play a key in PsA as well as can be differentially expressed in PsA disease. The Drug association analysis of WebGestalt has reported 17 drugs interacted with 33 genes or its corresponding proteins out of which docking was performed for 17 drugs and 33 potential targets as they are found to be key regulators in PsA disease. The molecular docking studies have reported the drug-target interactions of teicoplanin was -12.12 Kcal/mol, cyclosparine was -13.86 Kcal/Mol, hyaluronan was -9.69 Kcal/Mol, sulfasalazine Interaction of dinoprostone with VEGFA has the highest docking scores of -13.86 Kcal/mol with energy minimization. Interaction of cyclosparine with IL10 has the lowest docking scores of -2.85 Kcal /mol with energy minimization. From this report it is clear that PsA differs from person to person based on their genes and genetic interactions and expressions which recommend the clinicians to go for personalized medicine rather that generalized medicine for the patients with PsA.

ACKNOWLEDGEMENT

The authors are thankful to the head of Dept. of Bioinformatics and the Director of ICMR-RMRC, Bhubaneswar for their cooperation.

REFERENCES

- 1. A. Gottlieb, N. J. Korman, K. B. Gordon et al., "Guidelines of care for the management of psoriasis and psoriatic arthritis: section 2. psoriatic arthritis: overview and guidelines of care for treatment with an emphasis on the biologics," Journal of the American Academy of Dermatology, 2008; 58(5): 851–864.
- 2. D. D. Gladman, C. Antoni, P.Mease, D. O. Clegg, and O. Nash, "Psoriatic arthritis: epidemiology, clinical features, course, and outcome," Annals of the Rheumatic Diseases, 2005; 64(2): ii14–ii17.
- 3. Wright V: Psoriatic arthritis. A comparative radiographic study of rheumatoid arthritis and arthritis associated with psoriasis. Ann Rheum Dis, 1961; 20: 123.

- 4. Hensler T, Christophers E: Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J Am Acad Dermatol, 1985; 13(3): 450–56.
- 5. Allen MH, Ameen H, Veal C et al: The Major Psoriasis Susceptibility Locus PSORS1 Is not a Risk Factor for Late-Onset Psoriasis. J Invest Dermatol, 2005; 124: 103–6.
- 6. Veale D, Rogers S, Fitzgerald O: Classification of Clinical Subsets in Psoriatic Arthritis. Br J Rheumatol, 1994; 33: 133–38.
- 7. Langley RGB, Krueger GG, Griffiths CE: Psoriasis: epidemiology, clinical features, and quality of life. Ann Rheum Dis, 2005; 64: 18–23.
- 8. Niels Grabe and Karsten Neuber, Simulating psoriasis by altering transit amplifying cells, 2007; 23(11): 1309–1312. doi:10.1093/bioinformatics/btm042.
- 9. Chandran V, Schentag CT, Brockbank JE, et al. Familial aggregation of psoriatic arthritis. Ann Rheum Dis., 2009; 68(5): 664–7.
- 10. Rigby AS, Voelm L, Silman AJ. Epistatic modeling in rheumatoid arthritis: an application of the Risch theory. Genet Epidemiol., 1993; 10(5): 311–20.
- 11. Karason A, Love TJ, Gudbjornsson B. A strong heritability of psoriatic arthritis over four generations—the reykjavik psoriatic arthritis study. Rheumatology, 2009; 48(11): 1424–8.
- 12. Trembath RC, Clough RL, Rosbotham JL, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet, 1997; 6(5): 813–20.
- 13. Gudjonsson JE, Karason A, Runarsdottir EH, et al. Distinct clinical differences between HLA-Cw*0602 positive and negative psoriasis patients—an analysis of 1019 HLA-C- and HLA-B-typed patients. J Invest Dermatol, 2006; 126(4): 740–5.
- 14. Okada Y, Han B, Tsoi LC, et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet. 2014; 95(2): 162–72.
- 15. Bowes J, Budu-Aggrey A, Huffmeier U, et al. Dense genotyping of immunerelated susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat Commun, 2015; 6: 6046.
- 16. Castillo-Gallego C, Aydin SZ, Emery P, et al. Magnetic resonance imaging assessment of axial psoriatic arthritis: extent of disease relates to HLA-B27. Arthritis Rheum, 2013; 65(9): 2274–8.
- 17. Winchester R, Minevich G, Steshenko V, et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum, 2012; 64(4): 1134–44.

- 18. Tiphaine Oudot1, Fabienne Lesueur1,2, Mickaeⁿ 1 Guedj3, Rafael de Cid1, Steven McGinn1, Simon Heath1, Mario Foglio1, Bernard Prum3, Mark Lathrop1, Jean-Franc, ois Prud'homme4 and Judith Fischer1, An Association Study of 22 Candidate Genes in Psoriasis Families Reveals Shared Genetic Factors with Other Autoimmune and Skin Disorders, Journal of Investigative Dermatology, 2009; 129: 2637–2645. doi:10.1038/jid.2009.157; published online 25 June 2009.
- 19. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, Junkins H, McMahon A, Milano A, Morales J, Pendlington Z, Welter D, Burdett T, Hindorff L, Flicek P, Cunningham F, and ParkinsonH. The new NHGRI-EBI Catalog of published genomewide association studies (GWASCatalog). Nucleic Acids Research, 2017; 45. (Database issue): D896-D901.
- 20. X Jiao, BT Sherman, R Stephens, MW Baseler, HC Lane, RALempicki. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 2012; 28(13): 1805-1806. doi: 10.1093/bioinformatics/bts251.
- 21. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc, 2009; 4(1): 44-57.
- 22. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017 Jan; 45: D362-68.
- 23. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C.STRING v10: protein-protein interaction networks, integrated over the tree of life.Nucleic Acids Res., 2015 Jan; 43: D447-52.
- 24. Zhang, B., Kirov, S.A., Snoddy, J.R. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res, 33(Web Server issue), 2005; 741-748.
- 25. Wang, J., Duncan, D., Shi, Z., Zhang, B. WEB-based GEneSeTAnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res, 41 (Web Server issue), 2013; W77-83.
- 26. The UniProt Consortium, UniProt: the universal protein knowledgebase, Nucleic Acids Res., 2017; 45: D158-D169.
- 27. Poux S, Arighi, CN, Magrane M, Bateman A, Wei C-H, Lu Z, Boutet E, Bye-A-Jee H, Famiglietti ML, RoechertB. On expert curation and sustainability: UniProtKB/Swiss-Prot as a case studybioRxiv, 2017.

- 28. Pundir S, Martin MJ, O'Donovan C. UniProt Protein Knowledgebase, Methods Mol. Biol., 2017; 1558: 41-55.
- 29. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. PubChem Substance and Compound databases. Nucleic Acids Res., 2016 Jan 4; 44(D1): D1202-13. Epub 2015 Sep 22 [PubMed PMID: 26400175] doi: 10.1093/nar/gkv951.
- 30. Wang Y, Bryant SH, Cheng T, Wang J, Gindulyte A, Shoemaker BA, Thiessen PA, He S, Zhang J. PubChem BioAssay: 2017 update. Nucleic Acids Res., 2017 Jan 4; 45(D1): D955-D963. [PubMed PMID: 27899599] doi: 10.1093/nar/gkw1118.
- 31. PyMOL Molecular Graphics System". SourceForge, "APBS", "PyMOL v2.0 Release Notes", Unofficial Windows Binaries for Python Extension Packages. https://en.wikipedia.org/wiki/PyMOL.
- 32. Dassault Systèmes BIOVIA, BIOVIA Workbook, Release 2017; BIOVIA Pipeline Pilot, Release, 2017. San Diego: DassaultSystèmes.http://accelrys.com/about/citations-references/.
- 33. RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education Protein Science, 2018; 27: 316–330. doi: 10.1002/pro.3331. https://www.rcsb.org/pages/publications.
- 34. Modeller (copyright © 1989-2018 Andrej Sali), Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, and California Institute for Quantitative Biomedical Research, Mission Bay Byers Hall, University of California San Francisco, San Francisco, CA 94143, USA. Any selling or distribution of the program or its parts, original or modified, is prohibited without a written permission from Andrej Sali. This file last modified: Thu Oct 12 15:13:52 PDT 2017. https://salilab.org/modeller/9.15/release.html.
- 35. Sitao Wu Yang Zhang, Nucleic Acids Research, 1 May 2007; 35(10): 3375–3382, https://doi.org/10.1093/nar/gkm251.Published:03 May 2007. https://academic.oup.com/nar/article/35/10/3375/1100889#82620642.
- 36. Morten Källberg, Haipeng Wang, Sheng Wang, Jian Peng, Zhiyong Wang, Hui Lu &Jinbo Xu. Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 2012; 7: 1511–1522.

- 37. Wang Z, Zhao F, Peng J, Xu J. Protein 8-class secondary structure prediction using conditional neural fields. Proteomics, 2011 Oct; 11(19): 3786-92. doi: 10.1002/pmic.201100196. Epub 2011 Aug 31. http://raptorx.uchicago.edu/about/.
- 38. Liang J, Edelsbrunner H, Fu P, Sudhakar PV, Subramaniam S. Analytical shape computation of macromolecules. II. Identification and computation of inaccessible cavities in proteins. Proteins: Struct. Funct. Genet., 1998; 33: 18-29. http://sts.bioe.uic.edu/castp/background.html.
- 39. Kawabata T. Detection of multi-scale pockets on protein surfaces using mathematical morphology. Proteins, 2010; 78: 1195-1121.
- 40. Kawabata T, Go N. "Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites". Proteins, 2007; 68: 516-529. http://strcomp.protein.osaka-u.ac.jp/ghecom/.
- 41. Word JM, Lovell, SC, Richardson, JS, and Richardson, DC "Asparagine and glutamine: using hydrogen atom contacts in the choice of sidechain amide orientation" J. Mol. Biol., 1999; 285: 1733-1745.
- 42. Dolinsky TJ, Nielsen JE, McCammon JA, and Baker NA PDB2PQR: an automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 2004; 32: W665-W667.
- 43. Hui Li, Andrew D. Robertson, and Jan H. Jensen Very Fast Empirical Prediction and Interpretation of Protein pKa Values. Proteins, 2005; 61: 704-721. http://autodock.scripps.edu/resources.