

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.074

Volume 8, Issue 7, 922-931.

Review Article

ISSN 2277-7105

A REVIEW ON DOLUTEGRAVIR & RILPIVIRINE IN BULK & PHARMACEUTICAL DOSAGE FORM

Bhosale Jayesh Ratnakar*, Prof. R. K. Godge¹ and Prof G. S. Shinde

Pravara Rural College of Pharmacy, Pravaranagar, Tal – Rahuri, Dist – Ahemdnagar.

Department of Pharmaceutical Chemistry.

Article Received on 12 April 2019,

Revised on 02 May 2019, Accepted on 23 May 2019

DOI: 10.20959/wjpr20197-15149

*Corresponding Author
Bhosale Jayesh Ratnakar
Pravara Rural College of
Pharmacy, Pravaranagar,
Tal - Rahuri, Dist Ahemdnagar. Department of

Pharmaceutical Chemistry.

ABSTRACT

Day by day may Antiviral and Anti retroviral drugs are emerging in markets as per etiologic and viral conditions. One of them is Dolutegravir and Rilpivirine, both the drug have different mode of action, i.e Dolutegravir is an HIV-1 antiviral agent. It inhibits HIV integrase by binding to the active site and blocking the strand transfer step of retroviral DNA integration in the host cell. The strand transfer step is essential in the HIV replication cycle and results in the inhibition of viral activity. Rilpivirine contains non-nucleoside reverse transcriptase inhibitor (NNRTI). The drug works by restraining the HIV-1 replication by non-competitive inhibition of HIV-1 reverse transcriptase. Fewer methods of analytical research has been reported

for estimation of above drugs, which are HPLC, HPTLC, UPLC- UV, RP – UPLC. The Objective behind these review work is to study the analytical work done on Dolutegravir and Rilpivirine

KEYWORDS: Dolutegravir, Rilipivrine, HPLC, HPTLC, UPLC- UV, RP – UPLC.

1. INTRODUCTION

The World is encountering with various epidemics with every coming decade, and the most common causative agent is virus. There are various types of Virus know to humans and most of the viruses don't have specific drug to cure it, one of them is Human immunodeficiency virus (HIV). These virus causes disease called Acquired Immune deficiency syndrome. (AID's). Till date there is no complete cure for the disease, but only life span of the patient can be increased. HIV is a retrovirus that infects and replicates primarily in human CD4+ T cells and macrophages.^[1]

1.1 Dolutegravir

Dolutegravir sodium chemically, (4R,12aS)-9-{[(2,4difluorophenyl)methyl]carbamoyl}-4-methyl-6,8-dioxo3,4,6,8,12,12a- Hexahydro-2H-pyrido [1',2':4,5]pyrazino[2,1-b][1,3]oxazin-7-olate, is a novel integrase stand transfer inhibitor active against Human Immunodeficiency Virus. The drug is active against HIV type 1 (HIV-1) and also has some in vitro activity against HIV type 2 (HIV-2).^[1]

Fig: Structure of Dolutegravir.

Drug Profile

Sr.No	Parameters	Description
01	Category	Anti-Retro viral
02	Chemical formula	C20H19F2N3O5
03	IUPAC Name	2,4-[difluorophenyl] methyl carbamoyl]-4-methyl - 6,8,dioxo-3,4,12,12a -tetrahydro-2H-pyrido ^[5,6] pyrazin [2,6-b] ^[1,3] oxazin -7-olate.
04	Molecular weight	419.385 g/mol
05	Characteristic	Off-White to Pale Yellow Solid
06	Solubility	Slighty Soluble in Water
07	Log P & pKa	2.2 and 8.2
08	Melting Point	$190^{0} - 193^{0} C$
09	CAS No.	1051375-16-6
10	Indication	For the treatment of HIV infection. By preventing replication of HIV

Mechanism of action

Dolutegravir is an HIV-1 antiviral agent. It inhibits HIV integrase by binding to the active site and blocking the strand transfer step of retroviral DNA integration in the host cell. The strand transfer step is essential in the HIV replication cycle and results in the inhibition of viral activity.^[2]

Pharmacokinetics

The dolutegravir pharmacokinetic profile under single dose and steady state conditions ranging from 2 to 100 mg per day has been assessed in healthy and HIV infected adults.^[3,4]

Dolutegravir exhibits rapid absorption, with a median time to maximum concentration (t_{max}) ranging from 0.5 to 2 hours. Dolutegravir also displays extensive protein binding with >99% of the dolutegravir blood plasma concentrations bound to albumin and alpha 1-acid glycoprotein (AAG).^[6,5] The terminal elimination half-life ($t_{1/2}$) of dolutegravir was 13 to 14 hours in healthy subjects and 11 to 12 hours in HIV infected subjects. Single doses of 5, 10, 25, 50 and 100 mg achieved plasma dolutegravir concentrations greater than the *in vitro*, protein-adjusted IC₉₀ of 0.064µg/ml for more than 30 hours following oral administration. Multiple daily doses ranging from 10 to 50 mg in both uninfected and infected subjects yielded trough plasma concentrations (C_{trough}) 3–25 times greater than this *in vitro* threshold.^[3,4]

DOSAGE AND ADMINISTRATION

Dolutegravir/Rilpivirine Tablet

• 50mg/25mg (equivalent to 52.6mg Dolutegravir sodium/27.5mg Rilpivirine hydrochloride).^[1]

1.2. Rilpivirine

Rilpivirine chemically 4-{[4-({4-[(1E)-2cyanoeth-1-en-1-yl]-2, known dimethylphenyl } amino) pyrimidin-2-yl] amino} benzonitrile{http://www.drugbank.ca/drugs/DB08864}. Rilpivirine is non-nucleoside reverse transcriptase inhibitor (NNRTI) which is used for the treatment of HIV-1 infections in treatment-naive patients. It is a diarylpyrimidine derivative, a class of molecules that resemble pyrimidine nucleotides found in DNA.^[8] The internal conformational flexibility of rilpivirine and the plasticity of it interacting binding site gives it a very high potency and an unlikely generation of resistance compared to other NNRTI's. [9] Rilpivirine was developed by Tilbotec, Inc. and FDA approved on May 20, 2011. [10] On November 21, 2017, Rilpivirine, in combination with dolutegravir, was approved as part of the first complete treatment regimen with only two drugs for the treatment of adults with HIV-1 named Juluca. [11,12]

Fig: Structure of Rilpivirine.

Drug Profile

Sr.No	Parameters	Description	
01	Category	Anti-Retroviral	
02	Chemical formula	C22H18N6	
03	IUPAC Name	4[4-4[(E)-2 cynoethenyl]2,6, dimethylanilino]pyrimidine-2-yl]amino]benzonitile HCl	
04	Molecular weight	366.428 g/ mol	
05	Characteristic	Slightly Yellow Crystalline powder.	
06	Solubility	Readily soluble in Dimethyl sulfoxide (DSMO), moderately soluble in PEG. Practically insoluble in water.	
07	Log P & pKa	4.86 & 5.6	
08	Melting Point	241 ⁰ -243 ⁰ C	
09	CAS No.	500287-72-9	
10	Indication	For the treatment of HIV infection. By preventing replication of HIV	

Mechanism of action

Rilpivrine is an antiviral drug that contains non-nucleoside reverse transcriptase inhibitor (NNRTI). The drug works by restraining the HIV-1 replication by non-competitive inhibition of HIV-1 reverse transcriptase.^[13] It does not inhibit the human cellular DNA polymerases alpha, beta, and gamma.^[14]

It is a diarylpyrimidine derivative, a class of molecules that resemble pyrimidine nucleotides found in DNA.^[7] The internal conformational flexibility of rilpivirine and the plasticity of it interacting binding site gives it a very high potency and an unlikely generation of resistance compared to other NNRTI's.^[15]

Pharmacokinetics

Rilpivirine is highly protein-bound, and more than 99% may be bound to human plasma proteins in a concentration-dependent manner. [16] Under fasting conditions, the maximum plasma concentration of rilpivirine (C_{max}) decreased by 46% and the area under the rilpivirine

925

plasma concentration curve (AUC) decreased by 43%. Similarly, rilpivirine C_{max} and AUC are reduced by 50% when given with a protein-rich nutritional drink.^[17]

Absorption

Peak plasma concentration: 3.67 mcg/mL (dolutegravir); 0.13 mcg/mL (rilpivirine)

Peak plasma time: 3 hr (dolutegravir); 4 hr (rilpivirine)

AUC ratio, moderate-fat meal: 1.87 (dolutegravir); 1.57 (rilpivirine) AUC ratio, high-fat meal: 1.87 (dolutegravir); 1.72 (rilpivirine). [19]

Metabolism

Dolutegravir: Primarily metabolized by UGT1A1; CYP3A (minor)

Rilpivirine: Primarily metabolized by CYP3A. [19]

Exceration

Half-life: 14 hr (dolutegravir); 50 hr (rilpivirine)

Excretion, urine: 31% (dolutegravir), <1% (unchanged dolutegravir); 6.5% (rilpivirine), <1%

(unchanged rilpivirine)

Excretion, feces: 64% (dolutegravir), 53% (unchanged dolutegravir); 85% (rilpivirine), 25%

(unchanged rilpivirine).[19]

Adverse reaction

Adverse reactions of a more intense character including epigastric, discomfort, nausea, and vomiting followed by diarrhoea, drowsiness, weakness, dizziness, malaise and headache might be seen.^[6]

2. Reported Method is categorized depending on the following considerations

Sr. no	Drug	Method	Description	Ref.
1	Dolutegravir and Rilpivirine in pharmaceutical Dosage form.	RP-HPLC	Column: Agilent C18 column (4.6×150mm)5µ, Mobile phase: (70:30 v/v) methanol: Phosphate buffer pH 3.0 Flow rate: 1.0 ml/min Wavelength: 240 nm Retention time: 4.029 (Dol) min and 2.767 min.(Ril)	[20]
2	Dolutegravir and Rilpivirine in rat plasma.	RP-HPLC	Column: Phenomenex C18 [150 x 4.6mm, 5um] Mobile phase: Ortho phosphoric Acid (0.1%): Acetonitrile 60:40 v/v Flow rate: 1.0 ml/min Wavelength: 262 nm Retention time: 4.35 (Dol) mins and 7.73 mins.(Ril)	[21]
			Column: XBridge C18 Column (150 x 4.6 mm)	[22]

World Journal of Pharmaceutical Research

3	Dolutegravir and	HPLC-	Mobile phase : Acetonitrile: Acetate Buffer pH4.5	
	Rilpivirine in human	UV	Flow rate: 1 min	
	Plasma		Wavelength: 260 (Dol), 305(Ril)	
			Run time: 25 min	
			Mobile phase: 0.1% ortho phosphoric acid: Acetontrile	
			(55:45%)	
	Dolutegravir and	RP-UPLC	Column: SB C8 column	[23]
4	Rilpivirine in human in bulk and dosage form.	111 0120	Flow rate: 1 min/ml	[23]
			Retention time: 1.25 min (dol), 1.69 (ril).	
			Wavelength: 260	
			Mobile phase : Ammonium acetate : Formic acid 50% (A)	
			Acetonitrile 100 % (B)	
5	Dolutegravir in bulk and	UPLC –	Column: EHB C8 column(2.1 x100mm	[24]
	tablet dosage form	UV	Flow Rate: 0.3 ml / min	
			Wavelength: 258 nm.	
			HPLC -	
			Column: ODS C18 column(150 x 4.6 mm)	
			Mobile phase: acetonitrile: water pH7.5 (80:20 %)	
	Dolutegravir in bulk and		Flow Rate: 1 ml / min	
6	pharmacutical dosage	HPLC &	U.V. detection range :260. nm.	[25]
U	form	HPTLC	HPTLC –	
	TOTH		Column: G 60 F ₂₅₄ column	
			Mobile phase: Methanol: Chloroform: Formic acid (8:2:0.5%)	
			U.V. detection range: 265 nm.	
			Column : ODS 2 C18 column (150 x 4.6)	
			Mobile phase : Sodium Acetate (pH4.0) : Methanol (30:70)	
7	Dolutegravir in Human		Flow Rate: 1.0 ml/min	[26]
'	Plasma	HPLC	Retention time: 2.08 min	
			Wavelength: 254 nm	
			Column: BEH C18 (50 cmX 3.0 mm)	
	Dolutegravir	RP-	Mobile phase: Dipotassium HydrogenOrthoposphate:	
8	Pharmaceutical Dosage	UPLC	Methanol (30:70)	[27]
0	Form	CLEC	Retention time: 2.857 min	
			Wavelength: 260 nm	
			Column: C18 column (4.6 cm x 250 mm)	
			Mobile phase: Acetonitrile: Phosphate Buffer (60:40)	
9	Rilipivirine in Dosage	RP-	Flow Rate: 1.0 ml/min	[28]
	form	HPLC	Retention time: 2.75 min	
			Wavelength: 282 nm	
			HPLC-	
	Rilipivirine in Bulk and Dosage form	RP- HPLC, HPTLC	Column: YMC C18 column (20 cm X 10 cm)	
10			Mobile phase : : Phosphate Buffer : Acetonitrile (60:40 % v/v)	
			Flow Rate: 1.0 ml/min	
			Wavelength: 272 nm	[29]
			HPTLC	[49]
			Column: YMC C18 column (20 cm X 10 cm)	
			Mobile phase: Ethyl Acetate: methanol: Chloroform, (8:1:1)	
			Flow Rate: 1.0 ml/min	
			Wavelength: 2 nm	
11	Rilipivirine in Dosage	RP-	Column: ODS HG 5 RP C18 column (15cm x 4.6mm)	[30]
1		1		I

<u>www.wjpr.net</u> Vol 8, Issue 7, 2019. 927

Jayesh et al. World Journal of Pharmaceutical Resea

	form	HPLC	Mobile phase : Acetonitrile : Potassium Dihydrogen Phosphate	
			(40:60)	
			Flow Rate: 1.0 ml/min	
			Retention time: 4.50 min	
			Wavelength: 282 nm	
			Column: ODS HG-5 C18 column (15cm x 4.6mm)	
12	Rilipivirine in Dosage form	RP- HPLC	Mobile phase : Acetate (pH4.0) : Acetonitrile : Acetate	
			Buffer(4 pH) (63:35% v/v)	[31]
			Flow Rate: 1.0 ml/min	
			Wavelength: 260 nm	

3. CONCLUSION

Many methods for determination of Dolutegravir and Rilpivirne have been reported. Some HPLC assay methods were used to monitor Dolutegravir and Rilpivirne. Methods for the analysis of active and inactive metabolites of Dolutegravir and Rilpivirne in Rat and Human plasma have also been reported. Some articles related to the determination of Dolutegravir and Rilpivirne alone or in combination pharmaceutical dosage forms have been mentioned. Dolutegravir and Rilpivirne are antiviral drug used to restrict the replication of virus. A sensitive UPLC -UV, method was developed for the estimation of Dolutegravir and Rilpivirne in bulk and pharmaceutical dosage form and also from single one. Along with the above technique HPTLC, RP –UPLC has been also studied for the analysis. Validation of the developed method was done as per the ICH guidelines.

4. REFERENCES

- 1. http://www.drugbank.ca/drugs/DB08930
- 2. https://www.google.com/search?q=mechanism+of+action+dolutegravir&oq=mechanism+of+action+dolutegravir&aqs=chrome..69i57.21511j1j8&sourceid=chrome&ie=UTF-8.
- 3. Min S, Song I, Borland J, et al. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. Antimicrob Agents Chemother, Jan Jan, 2010; 54(1): 254–258. [PMC free article] [PubMed] [Google Scholar]
- 4. Min S, Sloan L, DeJesus E, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. AIDS, Sep 10, 2011; 25(14): 1737–1745. [PubMed] [Google Scholar]
- 5. Song I, Borland J, Savina PM, et al. Pharmacokinetics of dolutegravir in subjects with moderate hepatic impairment. [abstract no. N-121 plus poster]. 19th Conference on Retrovirus and Opportunistic Infections, Mar 5–8, 2012; Seattle (WA). [Google Scholar]

- 6. Kobayashi M, Yoshinaga T, Seki T, et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob Agents Chemother, Feb, 2011; 55(2): 813–821. [PMC free article] [PubMed] [Google Scholar]
- 7. Putcharoen O, Ruxrungtham K: An updateon clinical utility of rilpivirine in the management of HIV infection in treatment naïve patients. HIV AIDS (Auckl), Sep 16, 2013: 5: 231-41. doi:10.2147/HIV.S25712 [PubMed:24068877]
- 8. UsachI, Melis V, Peris JE: Non nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability. J Int AIDS Soc, Sep 4, 2013; 16: 1-14. doi: 4;16: 1-14. doi: 10.7448/IAS.16.1.18567 [PubMed:24008177]
- Ford N, Lee J, Andrieux-Meyer I, Calmy A: Safety, efficacy, and pharmacokinetics of rilpivirine: systematic review with an emphasis on resource-limited settings. HIV AIDS (Auckl), 2011; 3: 35-44. doi: 10.2147/HIV.S14559. Epub 2011 Apr 28[PubMed:22096405]
- 10. J&J News [Link]
- 11. FDA News and Events [Link]
- 12. https://www.drugbank.ca/drugs/DB08864
- 13. 13.https://www.google.com/search?ei=lN_YXJvCNfPdz7sPi6OR0A4&q=rilpivirine+me chanism+of+action&oq=rilpivirine+MEACHISM+OF+ACTION&gs_l=psy-ab.1.0.35i304i39.8001.8001..10086...0.0..0.187.187.0j1......0....1..gws-wiz......0i71.4iRttFTzs6A
- 14. https://reference.medscape.com/drug/juluca-dolutegravir-rilpivirine-1000216#10
- 15. https://www.drugbank.ca/drugs/DB08864.
- 16. Janssen PA, Lewi PJ, Arnold E, et al. In search of a novel anti-HIV drug: Multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile (R278474, rilpivirine) J Med Chem., 2005; 48(6): 1901–1909. [PubMed] [Google Scholar]
- 17. Crauwels HM, van Heeswijk R, Bollen A, et al. The effect of different types of food on the bioavailability of TMC278, an investigational NNRTI. Poster presented at the Ninth International Workshop on Pharmacology of HIV Therapy; April 7–9, 2008; New Orleans, LA. [Google Scholar]
- 18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218710/
- 19. https://reference.medscape.com/drug/juluca-dolutegravir-rilpivirine-1000216#10
- 20. Jomol Joseph, N. J. R. Hepsebah and K. Deepthi, Analytical method development & Validation for the simultaneous estimation of dolutegravir and Rilpivirine using RP –

- HPLCMethod in both bulk and pharmaceutical dosage form, European Journal of Biomedical And Pharmaceutical sciences, 2016; 3(5): 237 -243.
- 21. Veeraswami B, Naveen VMK, Method development & Validation of RP –HPLC for estimation of dolutegravir and Rilpivirine in bulk and pharmaceutical dosage form and its application to Rat plsma, Asian journal of Pharmaceutical and clinical Reserch, 2019; 12(2).
- 22. Valeria Cozzi, BiolSciD, Nitin Charbe, PharmD, Sara Baldelli, ChemD, Simone Castoldi, BiotechD, Et al, Development and Validation of a Chromatographic Ultraviolet Method for the Simultaneous Quantification of Dolutegravir and Rilpivirine in Human Plasma, Ther Drug Monit, June 2016; 38.
- 23. Khaleel N and Abdul Rahaman SK, Stability-Indicating RP-UPLC Method for the Simultaneous Determination of Dolutegravir and Rilpivirine in Bulk and Pharmaceutical Dosage Form, Scholars Research Library, 2019; 11(2): 29–39.
- 24. Xinzhu Wang, Sujan Dilly Penchala, Alieu Amara, Laura Else, Myra McClure, DSc, FRCPath, and Marta Boffito, A Validated Method for Quantification of Dolutegravir Using Ultra Performance Liquid Chromatography Coupled With UV Detection, Ther Drug Monit, Volume 38, Number 3, June 2016.
- 25. Girija B. Bhavar, Sanjay S. Pekamwar, Kiran B. Aher, Ravindra S. Thorat, Sanjay R. Chaudhari, High-Performance Liquid Chromatographic and High-Performance Thin-Layer Chromatographic Method for the Quantitative Estimation of Dolutegravir Sodium in Bulk Drug and Pharmaceutical Dosage Form, Scientia Pharmaceutica, 2016; 84: 305–320.
- 26. Satyadev T. N. V. S. S., Bhargavi Ch. and B. Syam Sundar, Development and validation of high performance liquid chromatographic method for the determination of Dolutegravir in human plasma, Pelagia Research Library, 2015; 6(4): 65-72.
- 27. P.V. Murali Krishna, Rajesh Asija, M. Purushothaman, Analytical Method Development and validation by new RP –HPLC methodforthe determination of Dolutegravir Sodium in tablet dosage form, International Journal of Pharmaceutical Research & Analysis, 2018; 8(2): 22-25.
- 28. Somsubhra Ghosh, Sowjanya Bomma, V. Laxmi Prasanna, S. Vidyadhar, David Banji1, Subhadip Roy, Method development and validation of Rilpivirine in bulk and Tablet doses form by RP-HPLC method, Research J. Pharm. and Tech, March, 2013; 6(3).

- 29. T. Sudha, P. Shanmugasundram, Reverse Phase High performance and HPTLC method For the Determination of Rilipivrine Bulk andin Tablet Dosage form, World journal of Pharmaceutical Sciences, 4(1): 1183-1196.
- 30. B. Raj Kumar, Dr. K. V. Subrahmanyam, A validated Stability indicating RP HPLC Method for the determination of rilpivrine, Journal of Global Trends in Pharmaceutical Sciences, 2014; 5(3): 1822-1826.
- 31. Dr. A. Yasodha, J. Rani1, G.Venkataih, A.Sivakumar, RP –HPLC Method development and validation of Rilpivirine, International Journal of Pharmacy and analytical research, Jan–Mar, 2017; 6(1): 18 -38.