

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 8, Issue 12, 699-711.

Review Article

ISSN 2277-7105

ANTIMICROBIAL AND WOUND HEALING ACTIVITY OF JASMINUM GRANDIFLORUM LINN: A REVIEW

*1Dr. Mrunmayi Mhaskar and 2Dr. Ninad Sathe

¹PG Scholar (Rasashastra and Bhaishajya Kalpana Department),

²Professor (Rasashastra and Bhaishajya Kalpana Department), Vice Principal,

Dr. G.D. Pol Foundation's, Y.M.T. Ayurvedic Medical College, Kharghar, Navi Mumbai.

Article Received on 17 Sept. 2019, Revised on 06 Oct. 2019, Accepted on 27 Oct. 2019 DOI: 10.20959/wjpr201912-16166

*Corresponding Author Dr. Mrunmayi Mhaskar

PG Scholar (Rasashastra and Bhaishajya Kalpana Department), Dr. G.D. Pol Foundation's, Y.M.T. Ayurvedic Medical College, Kharghar, Navi Mumbai.

ABSTRACT

Wound is defined as a breach in the continuity of skin & thus no human being can escape from it in their lifetime. Patients with chronic wounds require prolonged periods of dressing & this can cause a significant financial burden to the healthcare system. Moreover, wound infections delays the process of wound healing & may cause serious health problems including disability & death. The clinical efficacy of the currently available antimicrobial drugs is being threatened by the emergence of multi drug resistant microbes as well as the toxic effects of these drugs to the host cells. Therefore, the demand for natural & herbal medications is increasing globally due to the easy availability of raw materials, cost effectiveness & paucity of reported adverse reaction. Plants used in traditional medicines that are claimed to have

antimicrobial & wound healing potential should be investigated to substantiate their potential healing effect & to better understand their properties, safety & efficacy. *Jasminum grandiflorum* is one such plant that has been used in *Ayurveda* for the treatment of wounds. In this research paper an effort was made to review the research conducted on *Jasminum grandiflorum* to better understand its antimicrobial & wound healing potential. It was found that Jasminum grandiflorum has significant antimicrobial & wound healing potential.

KEYWORDS: Jati, Jasminum grandiflorum, antimicrobial, wound healing.

INTRODUCTION

Wounds are defined as breach in the continuity of living tissues. Thus, humans cannot escape from an event of injury in their lifetime.^[1] Infection of the wound delays the process of

wound healing and has a potential for serious bacterial wound infections including gas gangrene and tetanus, and these in turn may lead to long term disabilities, chronic wound and bone infection and death. [2] The clinical efficacy of the existing antimicrobials used in the treatment of wound infections is being threatened by the emergence of multi drug resistant microbes. Moreover, many of the newly developed antimicrobials produce toxic reactions. [3] Patients with chronic wounds require prolonged period of dressings & this can cause a significant financial burden to the healthcare system.^[4] Hence it is the need of the time to look for safe & effective Ayurvedic treatment for treating wounds & wound infection. Plant extracts have a novel mechanism of action and have the ability to promote blood clotting, fight infections & accelerate the healing of wounds simultaneously. [1][5] In the Avurvedic classics, many plants have been described that are claimed to have *krimighna* (antimicrobial) & wound healing properties. Jati (Jasminum granadiflorum) is one such plant described in Ayurvedic texts in the treatment of wounds. Jati (Jasminum grandiflorum Linn.) (Family-Oleaceae); is a large climbing shrub with dark green twigs and pinnate leaves with fragrant flowers. [6] It is native to Asia & the numerous parts of this plant such as leaves, flowers, stem & roots are very beneficial & significant in pharmaceutical industry & have been reported to possess antimicrobial, cytoprotective, chemopreventive, anti-acne, anti-inflammatory, anthelmintic, antiseptic, antioxidant, antiulcer & wound healing activities. [7][8] Hence the current study was undertaken to review the research conducted on Jasminum grandiflorum to better understand its antimicrobial & wound healing potential.

Table 1: Review of Research Work on Antimicrobial Activity of *Jasminum Grandiflorum*.

Sr. no.	Title of study	Extract Used	Method of invitro study	Microbes	Proved activity
1.	Chemical Composition, Olfactory Evaluation and Antimicrobial Activities of Jasminum grandiflorum L. Absolute from India (2007) ^[9]	Jasminum grandiflora- um L. Absolute	agar diffusion disc and the agar serial tube dilution methods	Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Salmonella sp., Candida albicans.	The jasmine absolute showed medium to high activity (reference compounds: eugenol and three synthetic antibiotics) against the Gram-positive bacterium Enterococcus faecalis, against the Gramnegative bacteria Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and

2.	Antimicrobial activity of Jasminum grandiflorum & Jasminum sambac (2008) ^[10]	ethanolic extract of J. grandiflorum callus	disc diffusion method	Proteus mirabilis, staphylococcus aureus & salmonella typhii	Salmonella sp., as well as against the yeast Candida albicans. J. grandiflorum exhibited highest antibacterial activity against salmonella typhi & lowest against proteus mirabilis. The results of this study suggest that the extract of J. grandiflorum is effective against the tested pathogens.
3.	Antimicrobial Activity of Extracts of some Plants Collected from the Kingdom of Saudi Arabia (2008) [11]	Methanolic extract	agar-diffusion method	Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Staphylococcus aureus, Sarcina lutea, Bacillus subtilis, Mycobacterium phlei, Candida albicans	J. grandiflorum showed significant antimicrobial activity against all tested microorganisms.
4.	Screening of some selected medicinal plants extracts for invitro antimicrobial activity. (2009) ^[12]	n-hexane, chloroform, acetone, methanol and water extracts of jasminum grandiflorum leaves.	MIC by macro broth dilution method.	Aspergillus flavus, Aspergillus fumigatus, Aspergillus nigar, Candida albicans, Saccnaromyces creveaceae, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus, Salmonella typhi	In <i>J. grandiflorum</i> , chloroform extract was found to be active against all seven bacterial strains in the range of 1.56-6.25 mg/ml; while n-hexane, acetone, ethanol and water extract shows activity against one or more strains.
5.	Antibacterial activity of Jasminum grandiflorum Linn. Leaves. (2009) [8]	Petroleum ether, chloroform, acetone, methanol and aqueous extract of leaves of j. grandiflorum.	Disc diffusion method	Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa	Petroleum ether, methanol and aqueous extracts of J.grandiflorum showed better activity than the standard (penicillin) against all the four microorganisms. Chloroform extract was only effective against Bacillus subtilis and Pseudomonas aeruginosa. Acetone extract was most effective against Pseudomonas

		1			garuginosa and
					aeruginosa and Escherichia coli.
6.	Screening of some plant extracts against <i>Alternaria Sp.</i> isolated from foot infections in cancer patients. (2010) ^[13]	Methanolic extract of Jasminum grandiflorum leaves	Agar well diffusion method.	Alternaria sp.	Out of all the plant Extracts tested in this study, Jasminum grandiflorum showed maximum antifungal activity. Jasminum grandiflorum showed antimycotic effect and significantly retarded the growth of fungi Alternaria sp.
7.	Phytochemical, cytotoxic & antibacterial activity of two medicinal plants of Bangladesh. (2014) ^[3]	Ethanolic extract	Disc diffusion method. Minimum inhibitory concentration was determined by broth macro dilution assay with some modifications	Enterococcus faecalis, Hafnia alvei, Pseudomonas aeruginosa, Proteus vulgaris, Plesiomonas shigelloides, Staphylococcus pidermidis, Staphylococcus aureus, Staphylococcuss aprophyticus, Salmonella typhi, Staphylococcus pyogenes, Shigella boydii, Shigella flexneri, Shigella dysenteriae	The extract showed moderate zone of inhibition against most of the tested bacteria. J.grandiflorum showed highest zone of inhibition against Proteus vulgaris. J.grandiflorum was inactive against E.faecalis, H.alvei, P.vulgaris, P.shigelloides, S.typhi. The obtained MICs were between 250 and 500 µg/ml.
8.	Comparative study between percolation & ultra-sonication for the extraction of Hibiscus & Jasmine flowers utilizing antibacterial bioassay. (2014) ^[14]	Ethanolic extract of Jasminum grandiflorum flowers.	Disc diffusion method	E. coli, S. aureus	Ultrasonic extraction technique extracted more active compounds from jasmine flower responsible for the inhibition of <i>S. aureus</i> compared to the soxhlet extraction technique, but both extraction techniques failed to produce active compounds for the inhibition of <i>E. coli</i> .
9.	Anti-candidal activity of Piper betle (L.), Vitex negundo (L.) &	Water extract & ethanolic extract of Jasminum	Agar well diffusion method. MIC was	Candida albicans, Candida glabrata, Candida krusei, Candida	Water & ethanolic extracts of <i>Jasminum</i> grandiflorum leaves did not show a significant

	Jasminum grandiflorum (L). (2014) ^[15]	grandiflorum leaves	determined using both the Andrews (2001) method and the British Society for Antimicrobial Chemotherapy (BSAC) (Andrews,	parapsilosis, Candida tropicalis	anti-candidal activity.
10.	Antimicrobial effect of Jasminum grandiflorum L. & Hibiscus rosa-sinensis L. extracts against pathogenic oral microorganisms-an in-vitro comparative study. (2015) ^[16]	Aqueous and ethanol (cold and hot) extracts prepared from leaves of Jasminum grandiflorum	Agar well diffusion method. MIC using	Streptococcus mutans and Lactobacil-lus acidophilus	At lower concentrations, hot ethanol <i>Jasminum</i> grandiflorum (10 µg/ml) extract was found to have statistically significant (P < 0.05) antimicrobial activity against S. mutans and L. acidophilus with MIC values of 6.25 µg/ml and 25 µg/ml, respectively.
11.	Evaluation of antimicrobial activity of Jasminum species using solvent extracts against clinical pathogens. (2015) ^[17]	Ethanol, Methanol, Propanol, Chloroform, Diethyl ether, Hexane and aqueous extracts of leaves of J. grandiflorum	Agar well diffusion method	E.coli, Bacillus sp., Streptococcus sp., Salmonella sp., Pseudomonas sp., Serratia marcescens, Klebsiella pneumonia, Staphylococcus aureus	All the extracts of J. grandiflorum showed appreciable antimicrobial activity. The highest zone of inhibition was exhibited by the Chloroform extract against Bacillus subtilis and the second most effective extract was Ethanol which showed zone of inhibition against E. coli. The lower activity was exhibited by Diethyl ether extract (Streptococcus sp.), Ethanol extract (Pseudomonas aeruginosa and Klebsiella pneumonia).
12.	Antibacterial activity of methanolic extracts from some selected medicinal	Methanolic extract of Jasminum grandiflorum leaves	Disc diffusion method	Gram Positive Bacillus anthracis Bacillus pumilus Bacillus subtilis Corynebacterium diphtheriae	Jasminum grandiflorum extract showed strong activity against six Grampositive and one Gramnegative bacteria. (Gram positive:

plants. (2017) ^[7]	Corynebacterium	Bacillus anthracis,
piants. (2017)	hoffmanii	Bacillus pumilus,
	Corynebacterium	Corynebacterium
	xerosis	Diphtheriae,
		•
	Staphylococcus aureus	Corynebacterium
	Staphylococcus citreus	Hoffmanii,
	Staphylococcus	Corynebacterium
	epidermidis	Xerosis,
	Staphylococcus faecalis	Staphylococcus citreus,
	Staphylococcus lactis	
	Streptococcus pyogenes	Gram negative:
	Gram Negative	Branhamella catarrhalis)
	Branhamella	
	catarrhalis	
	Enterobacter aerogenes	
	Escherichia coli	
	Klebsiella ozaenae	
	Klebsiella pneumoniae	
	Proteus vulgaris	
	Pseudomonas	
	aeruginosa	
	Pseudomonas	
	fluorescens	
	Salmonella	
	schottmuelleri	
	Salmonella typhi	
	Salmonetta typni Salmonella	
	typhimurium	
	Salmonella paratyphi A	
	Serratia marcescens	
	Shigella boydii	
	Shigella dysenteriae	
	Shigella flexneri	
	Shigella sonnei	
	Vibrio cholerae	

Table 2: Review of research work on wound healing activity of Jasminum grandiflorum.

Sr. no.	Title of study	Extract used	Animal model & wound model	Route of administration / dose /duration	Proved activity
1.	Influence of ethanolic extract of <i>jasminum</i> grandiflorum Linn. Flower on wound healing activity in rats. (2007) ^[18]	Ethanolic extract of jasminum grandiflorum flowers	Excision wound & dead space wound models in male albino rats of Wistar Strain	Topical application for excision wound models & oral for dead space wound models 250 mg/kg/day	Ethanol extract of <i>J.</i> grandiflorum flower has properties of promoting wound healing activity compared with controls. Wound contraction and increased hydroxyproline

	1				
					content support the <i>J</i> .
					grandiflorum in the
					topical treatment and
					management of wounds.
					Extract treated rats exhibited
					65% reduction in the wound
	Wound healing				area when compared to
	activity of the	A	Engisian and		controls (54%). The wet and
	aqueous	Aqueous	Excision and	Omol	dry granulation tissue weight,
2.	alcoholic extract	alcoholic	dead space wound models	Oral	and hydroxyproline content in
۷.	of Jasminum	extract of leaves of <i>J</i> .	in male albino	250 mg/kg body weight.	a dead space wound model increased significantly
	grandiflorum	grandiflorum	rats of dr strain	weight.	compared to controls. Thus
	Linn. Leaves.	granatiorum	Tais of di strain		from this study it is concluded
	$(2010)^{[1]}$				that the <i>J. grandiflorum</i> leaf
					extract has a reproducible
					wound healing potential.
					Ointment from the methanolic
	Efficacy of	Ointment,			extract of J. grandiflorum leaf
	Jasminum	prepared by	Excision		improved the rate of wound
	grandiflorum L.	methanolic	wound &	Topical application,	healing by enhancing the rate
3.	leaf extract on	extract of	incision wound	twice daily for 12	of collagen synthesis and also
	dermal wound	Jasminum	models in male	days.	by improving the antioxidant
	healing in rats.	grandiflorum	albino rats.		status in the newly
	$(2012)^{[19]}$	L. leaves			synthesized healing wound
					tissue.
					Jati extract and crude drug
	Experimental				paste of leaf promotes wound
	study of Jati				contraction and epithelization.
	patra	Extract &			The extract of
	(Jasminum	crude paste	Excision	Local application	Jati patra and kalka
4.	grandiflorum	of J .	wound model	once a day for 21	application showed equipotent
	Linn.) W.S.R. to	grandiflorum	in albino rats.	days.	effect with control group
	its vrana ropana	leaves			(Betadine ointment). <i>Jati</i>
	(wound healing				patra extract and paste is
	activity). (2013)				effective, safe and well tolerated in the treatment of
					excision wound.
	Evaluation of				J. grandiflorum leaves
	the wound				promoted wound healing by
	healing effect of				improving the early
	Jasminum				inflammatory process, by
	grandiflorum by	Jasminum	Excision and		enhancing wound contraction
5.	wound	grandiflorum	incision wound	Local application	and by promoting an early
	contraction	leaf paste	models in	twice a day	epithelisation when compared
	studies &	1	albino rats		with control. The wound
	wound breaking				breaking strength was more in
	strength.				the drug treated group
	$(2014)^{[21]}$				compared to normal.
6.	Evaluation of	J.	Excision & re-	Local application	Jasminum grandiflorum

	wound healing effect of <i>Jasminum</i> grandiflorum in albino rats by histopathologica 1 studies. (2014) ^[22]	grandiflorum leaves paste	sutured incision wound models in albino rats.	Twice daily Duration of treatment varied as per wound model.	leaves promoted wound healing by improving the early inflammatory process, by enhancing wound contraction through increased fibroblast proliferation, and by promoting an early epithelisation and increased collagen formation when compared with control in albino rats.
7.	Experimental wound healing aspects of <i>Jasminum</i> grandiflorum Linn: A preclinical study. (2015) ^[23]	Successive ethanolic extract ointment of leaves of <i>J. grandiflorum</i>	Excision wound & incision wound models in albino rats.	Local application once a day starting from the wound induction till complete healing.	Successive ethanolic extract of the leaves exhibited promising wound healing, antioxidant and antimicrobial properties.
8.	Effects of ethanolic extract of <i>Jasminum</i> grandiflorum Linn. flowers on wound healing in diabetic wistar albino rats. (2017) ^[24]	Ethanolic extract of Jasminum grandiflorum Linn. flowers	Excision wound, incision wound & dead space wound models in Streptozotocin- induced diabetic Wistar albino rats	Oral 250 mg/kg daily till complete healing of the excision wounds.	This study demonstrated that <i>J. grandiflorum</i> Linn. flowers significantly enhances wound contraction, granulation tissue formation and neoangiogenesis in diabetic wounds.
9.	Effects of oil extract of <i>Jasminum</i> grandiflorum leaves on wound healing activity in albino rats. (2017) ^[25]	Oil extract of Jasminum grandiflorum fresh leaves	Excision wound & burn wound models in albino rats.	Local application	Test groups showed significant decrease in periods of epithelialization & significant increase in wound contraction rate when compared to control and vehicle control groups in excision wound and burn wound models. Oil extract of <i>J. grandiflorum</i> leaves has shown wound healing effects in burn wounds and excision wounds.
10.	Phytochemical investigation & wound healing activity of <i>Jasminum grandiflorum</i> . (2018) ^[26]	Ethanolic extracts of leaves & roots of J. grandiflorum	Excision wound model in albino rats.	Local application once a day till complete epithelisation	The leaf extract treated wounds were found to epithelise faster as compared to control group. Leaf extract treated rats exhibited 61.346% reduction in the wound area when compared to control 55.72%.

DISCUSSION AND CONCLUSION

On reviewing the available research papers on antimicrobial & wound healing activities of *Jasminum grandiflorum*, it was found that it is the leaves of this plant that exhibit the most significant antimicrobial & wound healing potential as compared to the rest of the plant parts.

Jasminum grandiflorum has significant antimicrobial activity against a wide range of microbes including many gram positive & gram negative bacteria as well as fungi. It is effective against most of the microbes responsible for wound infections such asstaphylococcus aureus, pseudomonas aeruginosa, E. coli, candida albicans, Aspergillus species, Corynebacterium species, streptococcus sp., proteus vulgaris, etc. [27][28][29][30][31] The antimicrobial activity may be due to the presence of various phytochemicals such as flavonoids, alkaloids, tannins, saponins, glycosides, salicylic acid, etc. [7][8]

Wound healing and tissue repair are complex processes that involve a dynamic series of events including clotting, inflammation, granulation tissue formation, epithelization, collagen synthesis and tissue remodeling. [1] *Jasminum grandiflorum* promotes wound healing by-

- Increasing the rate of wound contraction
- Increasing hydroxyproline content
- Enhancing granulation tissue formation
- Enhancing the rate of collagen synthesis
- Improving the antioxidant status in newly synthesized healing wound tissue
- Improving the early inflammatory process
- Promoting an early epithelization
- Enhancing wound contraction through increased fibroblast proliferation
- Antimicrobial action
- Enhancing neo-angiogenesis (in diabetic wounds).

Probable mode of action of *Jati (Ayurvedic* point of view)

Jati is having tikta, kashaya rasa, laghu guna, ushna virya and katu vipaka. Acharya Vagbhata while explaining functions of rasa, mentioned tikta rasa act as lekhana (scraping), shoshana of kleda, meda, vasa, majja and lasika (decreases/ absorbs muscle fat, bone marrow, adipose and body fluids) i.e. it act as shothahara, (decreases the exudation from the wound), vrana shodhana (wound cleansing/ purification). Kashaya rasa act as both Vrana shodhana and

707

Vrana ropana (wound purification & healing). Thus jati helps in healing of wounds by its vrana shodhana & vrana ropana properties.^[20] [32]

Thus it can be concluded that the leaf extracts of *jasminum grandiflorum* has antimicrobial & wound healing potential.

REFERENCES

- 1. Mishra SB, Mukerjee A, Vijayakumar M. Wound Healing Activity Of The Aqueous Alcoholic Extract of Jasminum Grandiflorum Linn Leaves. Pharmacologyonline, 2010; 3: 35-40.
- Prevention and management of wound infection. Guidance from WHO's department of violence & injury prevention & disability & the department of essential technologies. http://www.WHO.int/hac/techguidance/tools/guidelines_prevention_and_management_w ound infection.pdf
- 3. MahmudurRahman, Amina Khatun, S Khan, F Hossain, A AKhan. Phytochemical, cytotoxic and antibacterial activity of two medicinal plants of Bangladesh. Pharmacologyonline, 2014; 1: 3-10.
- 4. Amanda A. Dorai, Wound care with traditional, complementary & alternative medicine; Indian Journal of plastic surgery, May-Aug, 2012; 45(2): 418-424.
- 5. R. Thakur, N. Jain, R. Pathak, S. Sandhu. Practices in wound healing studies of plants. Hindawi Publishing Corporation, Evidence based complementary & alternative medicine, 2011; article ID- 438056, 17.
- 6. The Ayurvedic Pharmacopoeia of India. Government of India Ministry of Health and Family Welfare Department of Ayush. Part-I, III: 111-113.
- 7. Ali ST, Ayub A, Ali SN, Begum S, Siddiqui BS, Mahmood N, Khan KA. Antibacterial Activity of Methanolic Extracts from Some Selected Medicinal Plants. *FUUAST J. BIOL.*, 2017; 7(1): 123-125.
- 8. Sandeep, Padmaa. M. Paarakh, Usha Gavani. Antibacterial activity of *Jasminum grandiflorum* Linn leaves. Journal of Pharmacy Research, 2009; 2(7): 1206-1207.
- 9. Jirovetza L, Buchbauera G, Schweigera T, Denkovab Z, Slavchevb A, Stoyanovac A, Schmidtd E, Geisslere M. Chemical Composition, Olfactory Evaluation and Antimicrobial Activities of *Jasminum grandiflorum* L. Absolute from India. Natural Product Communications, 2007; 2(4): 407-412.

- 10. Priya Joy, Dr. D. Patric Raja. Anti-Bacterial Activity Studies of *Jasminum grandiflorum* and *Jasminum sambac*. Ethnobotanical Leaflets, 2008; 12: 481-483.
- 11. Essam Abdel-Sattar, Fathalla M. Harraz, Sabah H. El Gayed. Antimicrobial Activity of Extracts of some Plants Collected from the Kingdom of Saudi Arabia. JKAU: Med. Sci., 2008; 15(1): 25-33.
- 12. Mangesh Khond, J.D. Bhosale, Tasleem Arif, T.K. Mandal, M.M. Padhi and Rajesh Dabur. Screening of Some Selected Medicinal Plants Extracts for *In-vitro* Antimicrobial Activity. Middle-East Journal of Scientific Research, 2009; 4(4): 271-278.
- 13. Mishra Alka, Shrivastava A., Jain S.K. Screening of Some Plant Extracts against Alternaria sp. Isolated from Foot Infections in Cancer Patients. International Journal of Pharm Tech Research, 2010; 2(2): 1165-1170.
- 14. Rasha Saad, Gayathiry Murugiah, Junainah Abdulhamid, Eddy Yusuf, Mohd Fadli. Comparative Study between Percolation and Ultrasonication for the Extraction of Hibiscus and Jasmine Flowers Utilizing Antibacterial Bioassay. International Journal of Pharmacognosy and Phytochemical Research, 2014; 6(3): 472-476.
- 15. Buddhie Samanmalie Nanayakkara, Charmalie Lilanthi Abayasekara, Gehan J. Panagoda, H. M. Dinusha Kumari Kanatiwela, M. R. Dammantha M. Senanayake. Anti-candidal activity of *Piper betle* (L.), *Vitex negundo* (L.) and *Jasminum grandiflorum* (L.). African Journal of Microbiology Research, June, 2014; 8(23): 2307-2314.
- 16. Nagarajappa, Ramesh; Batra, Mehak; Sharda, Archana J.; Asawa, Kailash; Sanadhya, Sudhanshu; Daryani, Hemasha; Ramesh, Gayathri. Antimicrobial Effect of Jasminum grandiflorum L. and Hibiscus rosa-sinensis L. Extracts against Pathogenic Oral Microorganisms -- An In Vitro Comparative Study. Oral Health & Preventive Dentistry, 2015; 13(4): 341-348.
- 17. Sushant Shekhar and Prasad M.P. Evaluation of Antimicrobial Activity Of *Jasminum* Species Using Solvent Extracts Against Clinical Pathogens. World Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4(05): 1247-1256.
- 18. B. S. Nayak, Krishna Mohan. Influence of Ethanolic Extract of *Jasminum Grandflorum* Linn Flower on Wound Healing Activity in Rats. Indian J Physiol Pharmacol, 2007; 51(2): 189–194.
- 19. Chaturvedi AP, Kumar M, Tripathi YB. Efficacy of Jasminum grandiflorum L. leaf extract on dermal wound healing in rats. Int Wound J., 2013; 10: 675–682.

- 20. Mehatre Dhulappa, Wali G Ashok. Experimental Study Of Jati Patra (Jasminum Grandiflorum Linn) W. S. R. To Its Vrana Ropana (Wound Healing Activity). IAMJ, 2013; 1(6): 77-84.
- 21. Ravishankar M, Jagadeesh K, Shreenivas P. Revankar. Evaluation of the wound healing effect of *Jasminum grandiflorum* by wound contraction studies and wound breaking strength. Int J Basic Clin Pharmacol, Feb, 2014; 3(1): 66-69.
- 22. Ravishankar M, Shreenivas P. Revankar, Jagadeesh K. Evaluation of wound healing effect of *Jasminum grandiflorum* in albino rats by histopathological studies. Int J Res Med Sci., Feb, 2014; 2(1): 206-209.
- 23. Mittal Arun, Sardana Satish, Pandey Anima. Experimental Wound Healing Aspects of *Jasminum Grandiflorum* Linn: A Preclinical Study. Afr J Tradit Complement Altern Med., 2015; 12(3): 135-142.
- 24. Hirapara H, Ghori V, Anovadiya A, Baxi S, Tripathi C. Effects of ethanolic Extract of Jasminum grandiflorum Linn. Flowers on Wound Healing in Diabetic Wistar Albino Rats. Avicenna J Phytomed, 2017; 7(5): 401-408.
- 25. Almeida PMD, Mandal T, Laxminarayana Bairy K, Adiga S. Effect of oil extract of Jasminum grandiflorum leaves on wound healing activity in albino rats. Advanced Science Letters, Mar 1, 2017; 23(3): 1957-1959.
- 26. B. S. Hunasagi, M. Somashekhar, N. V. Kalyane, E. N Gaviraj. Phyto Chemical Investigation And Wound Healing Activity Of *Jasminum Grandiflorum*. IJP, 2018; 5(6): 364-368.
- 27. P. G. Bowler, B. I. Duerden, D. G. Armstrong. Wound Microbiology and Associated Approaches to Wound Management. Clinical Microbiology Reviews, 2001; 14(2): 244-269.
- 28. Lucinda J Bessa, Paolo Fazii, Mara Di Giulio, Luigina Cellini. Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. Int. wound J., feb., 2015; 12(1): 47-52.
- 29. A. Giacometti, O. Cirioni, A. M. Schimizzi, M. S. Del Prete, F. Barchiesi, M. M. D'errico, E. Petrelli, And G. Scalise. Epidemiology and Microbiology of Surgical Wound Infections. JOURNAL OF CLINICAL MICROBIOLOGY, Feb., 2000; 38(2): 918–922.
- 30. R. S. Howell-Jones, M. J. Wilson, K. E. Hill, A. J. Howard, P. E. Price and D. W. Thomas. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. Journal of Antimicrobial Chemotherapy, 2005; 55: 143–149.

- 31. Giandoni MB, Grabski WJ. Cutaneous candidiasis as a cause of delayed surgical wound healing. J Am Acad Dermatol, Jun, 1994; 30(6): 981-4.
- 32. Deshpande AP, Javalgekar RR, Ranade S. Dravyagunavigyana. Reprint 2011, Pune, Proficient publishing house, 2011.