

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

1073

Volume 9, Issue 4, 1073-1087.

Research Article

ISSN 2277-7105

DETERMINATION OF EVALUATION PARAMETERS OF ETODOLAC COMPARED WITH STANDARD BY USING UV-SPECTROPHOTOMETER

*Chintala Parimala Devi, Ameena A., Hemalatha B., Lakshmi Prasanna M., Latha Sree G., Sreelekha G. and Uma P.

Department of Pharmaceutical Analysis, Sri Lakshmi Venkateshwara Institute of Pharmaceutical Sciences, Kothapeta Proddutur, Kadapa (Dist.).

Article Received on 03 Feb. 2020,

Revised on 24 Feb. 2020, Accepted on 16 March 2020

DOI: 10.20959/wjpr20204-17081

*Corresponding Author Chintala Parimala Devi

Department of pharmaceutical Analysis, Sri Lakshmi Venkateshwara Institute of Pharmaceutical Sciences, Kothapeta Proddutur, Kadapa (Dist.).

ABSTRACT

The present study deals with the comparison of validation parameters of marketed etodolac tablets (Etova 200mg) with API, by using UV spectroscopy. We are taken the absorbance ranges from 275-279.5 nm. Here we obey the Beer's lamberts law for the calibration of UV. Here we used methanol and water in 9:1 ratio for validation of marketed formulation and API, hence this method is very accurate and simple and less time consuming. This method was validated in terms of results of analysis were validated statistically and recovery studies. From the above study we concluded that there was higher linearity to the marketed formulation when compared with API. Other than this there is no much variation in other validation parameters.

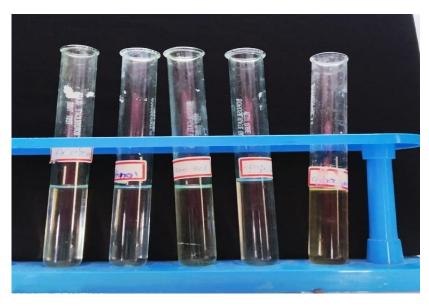
KEYWORDS: Etodolac, UV, Linearity, Precision, Accuracy, Ruggedness, Robustness, LOD, LOQ, and Assay.

INTRODUCTION

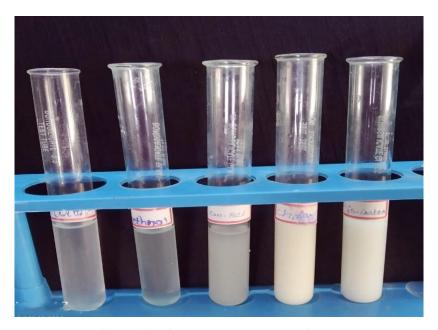
Etodolac is a non-steroidal anti-inflammatory drug with analgesic, anti-inflammatory and antipyretic properties. Its therapeutic effects are due to its ability to inhibit prostaglandin synthesis. It is indicated to relief of signs and symptoms of rheumatoid arthritis and osteo arthritis. For acute and long-term management of signs and symptoms of osteo arthritis and rheumatoid arthritis, as well as for the management of pain. Etodolac is administered as a racemate. As with other NSAID, the S form has been shown to be active while the R form is

inactive. Both enantiomers are stable and there is no evidence of R to S conversation in in vivo. Similar to other NSAIDS, the S form has shown to be active while the R form is inactive. This decreases the synthesis peripheral prostaglandins involved in mediating inflammation. Etodolac binds to the upper portion of cox enzyme active site and prevents its substrate arachidonic acid from entering the active site. Etodolac was previously thought to be a non selective cox inhibitor, but it is now known to be 5-50 times more selective for cox-2 than cox-1. Antipyresis may occur by central action on the Hypothalamus, resulting in peripheral dilation, increased cutaneous blood flow, and subsequent heat loss.

MATERIALS AND METHODS


Sl.no	Solvents used
1.	Methanol
2.	Distilled Water
3.	Chloroform
4.	Concentrated Hydrochloric acid
5.	Acetone

The instrument used for the present study was GENESIS-10 UV-Visible spectrophotometer with Quartz cell size length 10mm, Diameter-45*12.5*12.5.


MATERIALS AND METHODS

Solubility

Solubility test for the drug Etodolac was performed by using various solvents. The solvents include distilled water, Methanol, Chloroform, Con.Hcl and Acetone. But it was found that Etodolac soluble in methanol and water in the ratio of 9:1.

Solubility for Etodolac Crude form.

Solubility for Etodolac Tablet form.

DETERMINATION OF *l*max

Preparation of stock solution

The standard stock solution of Etodolac was prepared by transferring accurately weighed 30mg of drug to 50ml volumetric flask and dissolving it with water and methanol (1:9) to get a concentration of $3000\mu g/ml$. The solution was diluted accordingly to a concentration of $300\mu g/ml$ and was kept as the stock solution. The prepared stock solution was diluted with water and methanol to get working standard solution of concentration $10-70\mu g/ml$.

Preparation of sample stock solution

The standard stock solution of $(30\mu g/ml)$ was scanned in the wavelength region of 275-279.5nm and the spectrum was recorded. Solvent methanol and water (9:1) was used as a blank. It was observed that λ max was found to be 275nm by plotting a graph between absorbance vs wavelength.

VALIDATION METHODS

Linearity

The standard stock solution of various dilutions in the concentration of $10\mu g/ml$, $20\mu g/ml$, $30\mu g/ml$, $40\mu g/ml$, $50\mu g/ml$ and $60\mu g/ml$ were prepared. The solution was scanned at 275-279.5nm and the absorbance was recorded.

Accuracy

The accuracy of proposed method was tested by recovery studies at 80%, 100%, 120% according to ICH guidelines by adding a known amount of pure drug to the pre-analyzed formulation concentration of $10\mu g/ml$. The recovery results showed that the proposed method has an acceptable level of accuracy from $80-120\mu g/ml$.

Preparation of standard stock solutions

Etodolac of 10mg was weighed and and transferred into 10ml volumetric flask, 5ml of the diluents was added and sonicated for 25min, further the volume was make up with diluent and filtered by Whatman filter paper (1000µg/ml of Etodolac).

Preparation of 80% spiked solution

8mg of Etodolac is weighed and transferred into 10ml volumetric flask, 5ml of solvent was added and sonicated for 25 min, further the volume was make up with solvent and filtered by whatman filter paper ($80\mu g/ml$ of Etodolac). From this solution 0.1ml was taken into 10ml volumetric flask and make up to mark with solvent.

Preparation of 100% spiked solution

10mg of Etodolac is weighed and transferred into 10ml volumetric flask, 10ml of solvent was added and sonicated for 25 min, further the volume was made up with solvent and filtered by whatman filter paper ($100\mu g/ml$ of Etodolac). From this solution 0.1ml was taken into 10ml volumetric flask and make up to mark with solvent.

Preparation of 120% spiked solution

12mg of Etodolac is weighed and transferred into 10ml volumetric flask, 10ml of solvent was added and sonicated for 25min, further the volume was made up with solvent and filtered by whatman filter paper (120 μ g/ml of Etodolac). From this solution 0.1ml was taken into 10ml volumetric flask and make up to mark with solvent.

Precision

Precision is the method verified by precision studies like, intra-day means analysis of the Etodolac respectively on the same day. Inter-day precision was checked by repeating analysis of Etodolac on a different day. Measurement of peak area for active compound was expressed in terms of %RSD for the compound for the method.

Preparation of sample stock solution

Weighed 10mg of Etodolac powder and transferred into 10ml volumetric flask 5ml of solvent were added and sonicated for 25min, further the volume was make up with solvent.

Intra-day precision

Three working sample solution of $10\mu g/ml$, and the percentage amount and %RSD was calculated. As the limit of precision was less than "2" the system, then the precision was passed in this method.

Inter-day precision

Multiple sampling from a sample stock solution was done and three working sample solutions of $8\mu g/ml$, $10\mu g/ml$, $12\mu g/ml$ were prepared each injection from each working sample solution was given and obtained absorbance was mentioned in the table. Percentage relative standard deviation (%RSD) and were calculated for drug. As the limit of precision was less than "2", the system then precision was passed in this method.

Robustness

Robustness of the method was determined by carrying out the analysis under different temperature condition i.e. at 23°C, 25°C, and at 28°C with different wavelength conditions that is at 275nm. The respective absorbances of $10\mu g/ml$ were noted and the result was indicated as %RSD.

Ruggedness

In ruggedness study, the influence of small, deliberate variations of the analytical parameters on the absorbance of the drug was examined. The factor selected was change in the analyst. The ruggedness of the method was determined by carrying out the analysis by different analyst and the respective absorbance of $10\mu g/ml$ was noted. The result was indicated as %RSD in the table.

Assay

Weigh accurately about twenty tablets and calculate the weights of individual tablets and finally calculate weights of individual tablets and finally calculate the average weights. They were triturated to fine powder by using a mortar and pestle. The powdered tablet equivalent to 25mg of Etodolac was dissolved in 15ml of methanol with help of sonication process and the final volume was make up to the mark with the methanol in 25ml volumetric flask. The resulted solution was filtered using whatman filter paper (0.45 μ g/ml). This final solution was further diluted to obtain 10 μ g/ml concentration of the solution by using methanol used as a solvent and observed by UV analysis.

RESULTS AND DISCUSSIONS

The method followed for validation of Etodolac was found to be precise ass the percentage standard deviation (%RSD) values for intra-day and inter day precision was found to be less than 2 better recoveries that is 0.6-0.7 for first order kinetics obtained at each added concentration indicating that the method was accurate. The LOD and LOQ were found to be with the limits indicating sensitivity of the method. The validated method was also found to be robust and rugged indicating the percentage recovery studies less than 2% that is respectively. Assay results indicated that the amount of drug was in good agreement with the label claim of respective formulation. The results were discussed in the following tables.

LINEARITY FOR CRUDE

S.no	Concentration (µg/ml)	Absorbance
1	10	0.251
2	20	0.335
3	30	0.458
4	40	0.584
5	50	0.713
6	60	0.815

LINEARITY FOR TABLET

S.no	Concentration (µg/ml)	Absorbance
1	10	0.061
2	20	0.187
3	30	0.346
4	40	0.458
5	50	0.601
6	60	0.751

Table 1: Accuracy Values For Crude Drug.

Level of Recovery	Sample Conc (µG/ML)	STD. Conc (µG/ML)	Total Conc. (µG/ML)	Amount Recovery	%Recovery	Mean Recovery	%RSD
80%	8	10	18	0.00799	99.87%	0.0021613	0.21607
100%	10	10	20	0.010827	100%	0.0020791	0.225110
120%	12	10	22	0.010	100%	0.0012764	0.109659

Table 2: Accuracy Values for Tablet Form.

Level of Recovery	Sample Conc (µG/ML)	Std Conc	Total Conc.	Amount Recovery	%Recovery	Mean Recovery	% RSD
80%	8	10	18	0.0079	98.87%	0.00357960	0.356
100%	10	10	20	0.0105	100%	0.00238327	0.251
120%	12	10	22	0.010	100%	0.00127644	0.109

PRECISSION

Intraday precision for crude Drug.

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.473	
2	10	0.474	MEAN 0.475
3	10	0.476	MEAN=0.475 SD=0.0033787517
4	10	0.476	%RSD=0.71131
5	10	0.479	/0K3D=0./1131
6	10	0.479	

Intraday precision for Tablet.

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.627	
2	10	0.625	MEAN 0.625
3	10	0.624	MEAN=0.625 SD=0.00379598
4	10	0.628	%RSD=0.6063%
5	10	0.625	70 KSD=0.000570
6	10	0.630	

INTER-DAY PRECISION

CRUDE

S.no	Concentration(µg/ml)	Absorbance	Statistical Analysis
1	80	0.391	MEAN=0.3913
2	80	0.392	SD=0.000472287581
3	80	0.391	%RSD=0.12062
4	100	0.729	MEAN=0.7286
5	100	0.728	SD=0.0004753945
6	100	0.729	%RSD=0.0625
7	120	0.824	MEAN=0.825
8	120	0.825	SD=0.001824828
9	120	0.826	%RSD=0.221

TABLET

S.NO	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	80	0.365	MEAN=0.366
2	80	0.368	SD=0.001232882
3	80	0.367	%RSD=0.3363
4	100	0.468	MEAN=0.467
5	100	0.467	SD=0.00258009
6	100	0.468	%RSD=0.5524
7	120	0.781	MEAN=0.781
8	120	0.783	SD=0.000945145
9	120	0.781	%RSD=0.120924

RUGGEDNESS FOR CRUDE FORM

ANALYST-I

S.no	Concentration(µg/ml)	Absorbance	Statistical Analysis
1	10	0.626	
2	10	0.627	MEAN=0.6295
3	10	0.629	SD=0.0048527
4	10	0.630	%RSD=0.770894
5	10	0.632	70 KSD-0.7 / 0034
6	10	0.633	

ANALYST-II

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.581	
2	10	0.582	MEAN 0.594
3	10	0.583	MEAN=0.584 SD=0.0040437606
4	10	0.585	%RSD=0.69242476
5	10	0.586	70 NSD-0.09242470
6	10	0.587	

1081

ANALYST-III

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.165	
2	10	0.166	MEAN=0.1645
3	10	0.166	SD=0.0011107429
4	10	0.162	%RSD=0.67522364
5	10	0.164	70K3D-0.07322304
6	10	0.167	

RUGGEDNESS FOR TABLET

ANALYST-I

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.160	
2	10	0.161	MEAN 0 1611
3	10	0.161	MEAN=0.1611 SD=0.001600
4	10	0.162	%RSD=0.001000 %RSD=0.99025
5	10	0.162	70 K3D=0.33023
6	10	0.164	

ANALYST-II

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.581	
2	10	0.582	MEAN=0.582
3	10	0.583	SD=0.00451460
4	10	0.584	%RSD=0.775
5	10	0.587	70 K3D=0.773
6	10	0.580	

ANALYST-III

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.580	
2	10	0.580	MEAN_0 501
3	10	0.581	MEAN=0.581 SD=0.00305068
4	10	0.582	%RSD=0.525
5	10	0.583	70 K3D-0.323
6	10	0.584	

ROBUSTNESS FOR CRUDE FORM

TABLE

AT 25°C

S.NO	Concentration (µG/ML)	Absorbance	Statistical Analysis
1	10	0.160	
2	10	0.161	MEAN=0.1616
3	10	0.161	SD=0.001600
4	10	0.162	%RSD=0.99025
5	10	0.162	/0K3D=0.93023
6	10	0.164	

AT 27°C

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.581	
2	10	0.582	MEAN=0.584
3	10	0.583	SD=0.00437606
4	10	0.585	%RSD=0.69242476
5	10	0.586	%K3D=0.09242470
6	10	0.587	

AT 30°C

S.NO	Concentration (µG/ML)	Absorbance	Statistical Analysis
1	10	0.165	
2	10	0.166	MEAN 0 1645
3	10	0.166	MEAN=0.1645 SD=0.0011107429
4	10	0.162	%RSD=0.67522364
5	10	0.164	%K3D=0.07322304
6	10	0.164	

ROBUSTNESS FOR TABLET

TABLE

AT 27°C

S.NO	Concentration (µG/ML)	Absorbance	Statistical Analysis
1	10	0.626	
2	10	0.627	MEAN 0.620
3	10	0.629	MEAN=0.629 SD=0.0048527
4	10	0.630	%RSD=0.0048327 %RSD=0.770894
5	10	0.632	%K3D=0.770094
6	10	0.633	

1083

AT 29°C

S.NO	Concentration (µG/ML)	Absorbance	Statistical Analysis
1	10	0.581	
2	10	0.582	MEAN 0.592
3	10	0.583	MEAN=0.582 SD=0.00451460
4	10	0.584	%RSD=0.775
5	10	0.587	70 KSD=0.773
6	10	0.580	

AT 31℃

S.no	Concentration (µg/ml)	Absorbance	Statistical Analysis
1	10	0.580	
2	10	0.580	MEAN 0.501
3	10	0.581	MEAN=0.581 SD=0.00305068
4	10	0.582	%RSD=0.525
5	10	0.583	70 NSD-0.323
6	10	0.584	

DETERMINATION OF λ max FOR CRUDE DRUG

S.no	WAVELENGTH (nm)	ABSORBANCE
1	190	0.739
2	200	0.829
3	210	1.950
4	220	1.494
5	230	1.500
6	240	1.250
7	250	1.320
8	255	1.652
9	260	1.638
10	270	1.958
11	275	1.966
12	280	1.638
13	290	0.947
14	300	0.605

Table 1: Determination of **λ**Max For Tablet Form.

S.no	Wavelenth	Absorbance
5.110	(nm)	Absol bance
1	190	0.212
2	200	0.565
3	210	0.489
4	220	0.464
5	230	0.563
6	240	0.723
7	250	0.497
8	255	0.644
9	260	0.872
10	270	1.277
11	275	1.323
12	280	1.316
13	290	0.916
14	300	0.173

Limit of Detection For Crude Drug

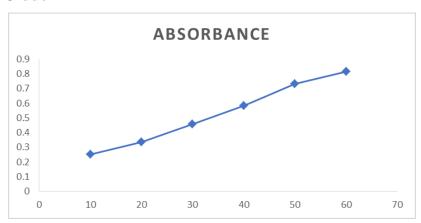
S.no	Wavelength	Absorbance	Statistical Analysis
1	275	0.092	
2	276	0.091	MEAN 0.526
3	277	0.090	MEAN=0.536 SD=0.0007332121
4	278	0.088	LOD=0.36
5	279	0.088	LOD-0.30
6	279.5	0.087	

Limit of Detection for Tablet.

S.NO	Wavelength	Absorbance	Statistical Analysis
1	275	0.086	
2	276	0.081	MEAN=0.074 SD=0.002901
3	277	0.075	
4	278	0.071	LOD=0.69
5	279	0.068	LOD=0.09
6	279.5	0.066	

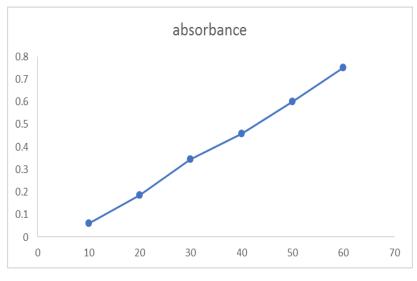
Limit of Quantification for Crude Drug

S.NO	Wavelength (nm)	Absorbance	Statistical Analysis
1	275	0.039	
2	276	0.021	MEAN 0.012
3	277	0.019	MEAN=0.013 SD=0.0038374861
4	278	0.013	LOQ=0.284
5	279	0.012	LOQ=0.204
6	279.5	0.012	


LIMIT OF QUANTIFICATION FOR TABLET

S.NO	Wavelength (nm)	Absorbance	Statistical Analysis		
1	275	0.108			
2	276	0.103	MEAN 0.007		
3	277	0.097	MEAN=0.097 SD=0.002691		
4	278	0.095	LOQ=0.356		
5	279	0.091	LOQ=0.550		
6	279.5	0.089			

Parameters and Their Ich Limits.


S.no	Parameters	Etodolac	Limits	
1	Linearity	10-60μg/ml	R<2	
2	Intraday precision for crude	0.711	R<2	
3	Intraday precision for tablet	0.606	K<2	
4	Accuracy for crude	99.87%	98-102	
5	Accuracy for tablet	99.87%	98-102	
6	LOD for crude	0.30	<3	
7	LOD for tablet	0.69	<3	
8	LOQ for crude	0.28	<10	
9	LOQ for tablet	0.35	<10	
10	Robustness for crude	0.785	R<2	
11	R0bustness for tablet	0.690	K<2	
12	Ruggedness for crude	0.712	R<2	
13	Ruggedness for tablet	0.763	K<2	
14	Assay for crude	100.00%	99=102%	
15	Assay for tablet	99.9%	77 −1U∠%	

Linearity for Crude

Concentration

Linearity for Tablet

Concentration

CONCLUSION

The bulk and dosage forms were validated in terms of Linearity, Specificity, Precision, Accuracy, LOD, LOQ, Robustness, Ruggedness and Assay. Results of the study were validated statistically and recovery studies. The validation results indicating that the linearity for the tablet shows more when compared to crude form of Etodolac. It was observed that there were no interference of impurities or excipients during the validation of drug formulation. This study thus exploits that the possibility for determining pharmacokinetic profile of Etodolac which may required in clinical study in near future. The proposed spectroscopic method was found to be simple, precise, highly accurate and less time consuming. Hence it is preferred method for analysis of Etodolac in bulk and dosage form.

REFERENCES

- 1. Skoog, Douglas A.; Holler, james; Crouch, Stanley R. Principles of instrumental analysis (6th ed.) Belmont, CA: Thomson Brooks/Cole, 2007; 169-173. ISBN 9780495012016.
- 2. Metha, Akul (13 Dec 2011). "principle pharmaexchange.info.
- 3. Metha, Akul (22 April 2012). "Deviation of Beer's lamberts law". Pharmaexchange.info.
- 4. Misra, Prabhakar: Dubunski, Mark, eds. (2000). Ultraviolet spectroscopy and UV-lasers.
- 5. Metha, Akul (May 14 2012.). "Limitations and deviations of Beer's lamberts law". Pharmaexchange.info.

- 6. Anseeel, S.; Tromp, R.H.; Neilson, G.W. "The solute and quaion structure in concentrated aqueous solution of copper (II) chloride". J. Phys.: Condens. Matter., 1995; 7(8): 15131524. Doi:10.1088/0953-8984/7/8/002.
- 7. L. Soovali; Room, E.-I.; A. Kutte; et al, "Uncertainty sources in UV-Visible Spectrophotometer measurement". Accrediatation and Quality Assurance (A and QC), 2006; 11: 246-255.
- 8. Guidelines of Forensic Fibre Examination, Scientific Working Group-materials, 1999. http://www.swgmat.org/fibre.htm
- 9. Micro spectrophotometry and colour measurement in Forensic paint Analysis Standard Guide, Scientific working group-materials, Year-1999.
- 10. UV-Visible Spectroscopic thin film thickness measurement system for semiconductor industries "M. Horie.; a N., Proceedings of instrumentations and measurement technology conference, Hamamatsu, Japan, Year-1994.
- 11. Skoog, et al. "Principles of Instrumental Analysis. 6th Edition. Thomson Boorks /Cole., 2007; 349-351.
- 12. Gouda AA, Hassan WS. Spectrophotometric determination of Etodolac in pure form and pharmaceutical formulation. Chemistry central Journal, 2008; 2: 1-8.
- 13. Sharma BK. In; Instrumental Methods of Chemicals analysis, 20th edn., Krishna Prakashan media, Ltd., Meerut, 2001; 4-6.