

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 9, Issue 11, 108-133.

Review Article

ISSN 2277-7105

MULTI-DRUG RESISTANT PATHOGENS AND FOOD SAFETY

Iyabo Christianah Oladipo*1 and Olatayo Shamsudeen Ishola1

Department of Science Laboratory Technology, Ladoke Akintola University of Technology, Ogbomoso 210214, Oyo State, Nigeria.

Article Received on 01 August 2020, Revised on 22 August 2020, Accepted on 12 Sept. 2020, DOI: 10.20959/wjpr202011-18610

*Corresponding Author

Iyabo Christianah Oladipo

Department of Science

Laboratory Technology,

Ladoke Akintola University

of Technology, Ogbomoso

210214, Oyo State, Nigeria.

ABSTRACT

RESULTS: This review has focused on the causes, effect, transmission and prevention of Multi-drug resistant pathogens. Drug resistance strains have developed in most cases through human practices which includes abuse of drugs, use of over dose and self medication. Other methods as been identified in food process through the application of pesticide, herbicides and antibiotics during farming and sometimes for storage. In animal house boundary, antibiotics is usually administered to prevent animals from getting sick in other to reduce loss of live stocks which could affect production; meat and milk. Research have shown that development of resistant strain could be traced to: **1.** *Delayed or inadequate treatment*, **2.** *Wrong diagnostic*

due to selection of antimicrobials, 3. surviving of resistant strains during treatment of other bacterial illnesses, 4. Formation of Biofilms which increases pathogenicity of resistance genes during treatment of bacteria diseases. Many pathogenic organism have been found to be resistant to their empirical antibiotics, these includes: Lactic acid bacteria; Lactobacillus acidophilus, Salmonella spp., Yersinia spp., Escherechia coli, Campylobacta spp., Plasmodium spp., Acinetobacter baumannii, Staphylococcus aureus, Enterococci spp., Clostridium difficile and some of their empirical drugs that have been resistant to include: Vancomycin, Floroquinolone, Tetracyclines, Kanamycin, Sulfonamides, Chloramphenicol, Streptomycin, Cephalosporins and Penicillins. These have caused some public health diseases and reduced effective therapy across the world with adverse economic conditions. These have challenged scientist to proffer alternative approach to curb the transmission from farm to fork through: Improved farming practices with reduce use of antibiotics, Food Biosecurity, the use of Green antibiotics like Essential oil, Nanobiotics, other approach like the use of Predatory bacteria, Lactic acid bacteria as an antibiotics and Vaccines. This review

has explored different causes of multi-drug resistant pathogens, transmission and prevention and has provided wealth of knowledge that can be of immense benefits for medical practitioners, farmers and the general public to stem the growth and spread of resistant pathogens globally. Multi-Drug resistant pathogens is the new health monster that is causing public health diseases and delay in treatments which is leading to prolong hospital stay, increased cost of therapy and in some cases, the death of people around the world. Further research and serious effort should be channeled into stemming the continuous spread of these menace through public sensitization on self medication and farming practices.

KEYWORDS: Multi-drug resistance, Food Biosecurity, Green Antibiotics; Nanobiotics, Essential oil, Vaccines.

1. INTRODUCTION

In recent times, multi drug resistant pathogens have been on the increase which is the major causes of public health problems globally. There have been increases in mortality rate due to dissemination of resistance infectious pathogens like *Enterococcus* (*E.*) faecium, Staphylococcus (*S.*) aureus, Klebsiella (*K.*) pneumoniae, Acinetobacter (*A.*) baumannii, Pseudomonas (*P.*) aeruginosa, and Enterobacter species which can evade biocidal effect of several types or classes of antibiotics both in humans and animals (Rice, 2008; Pendleton et al., 2013; Santajit and Indrawattana, 2016). The occurrence of these pathogens differs based on the bacterial species, the group of the antimicrobial and geographical location in the world. The Centers for Disease Control and Prevention (CDC) reported in 2013 that close to 23,000 people died from about 2 million cases of antibiotic-resistant bacteria each year in the USA and the etiological agents of infections were mostly found to be methicillin-resistant *S.* aureus (MRSA), vancomycin-resistant *E. faecium* (VRE), and fluoro-quinolone resistant *P. aeruginosa* (Centers for Disease Control, 2004; 2013).

The importance of antimicrobials in modern medicine for human, plant and animals cannot be overemphasized. They have been used in agriculture and veterinary for different purposes which include: to improve feed efficiency, improve growth and almost simultaneously for control, prevention and treatments of infectious diseases (O'Neill, 2015; WHO, 2015). Antibiotics are chemical substances produced through growth culturing of bacteria and can be natural, synthetic or semi-synthetic which prevent bacteria growth by reducing their metabolic activities and has been adopted in animals and humans to control or treat infection (O'Neill, 2015; WHO, 2015). In meat producing animals, the most common problems due to

antibiotics usage include *bovine pneumonia*, *shipping fever and diarrhea*,(McEwen and Fedorka-Cray, 2002) respiratory diseases, and liver abscesses (USDA, 1999). There have also been reported allergies to using antibiotics which include *anaphylaxis*, *cardiotoxicity*, *nephrotoxicity*, *neurotoxicity* and *hepatotoxicity*, and also documented number of *hematological* and *gastrointestinal* problems (Granowitz and Brown, 2008).

In humans or animals certain consideration should be in place in terms of drug characterization to determine its toxicity before administering antimicrobial in food; for storage, pest control and growth enhancement. Also some important characteristics should be considered, such as the age and immune system of target end user or consumer which would help to determine appropriate drug dose to be administered (Watts *et al.*, 2018). One of the major causes of rise in drug resistance is the use and misuse of antimicrobials which have raised concerns (Cabello, 2006; Heuer *et al.*, 2009).

Antimicrobial resistance occurs when an organism show resistance to a drug that is been administered at lethal dose with the purpose of killing or hinder the growth of such organism. These can occur in two different forms: *Intrinsic resistance*; this occur through evolutionary gene transfer. It is also called *vertical gene transfer*. It is implemented in evolutionary phase and genetic errors accumulated in the plasmid or chromosome of bacterial cells and acquired resistance which occurs due to exchange of genetic material between bacteria species. It is also referred to as *Horizontal gene transfer*. This is observed when organisms gain new genes on their mobile genetic elements including plasmids, insertion sequences, phage related elements and integrons transposons (Holmes et al., 2016). Antimicrobial resistance has been found to spread through different means. For example it could be spread in food chain by direct exposure or indirect exposure. The former occurs, through contact of human with animal or its blood, saliva, milk, semen, feaces and urine. While the later occurs, through consumption of contaminated food or food products such as egg, meat and dairy products (Chang et al., 2015; Coetzee et al., 2016; Liu et al., 2016). These have afforded bacteria to be exposed to reservoirs of resistance genes in addition of their pathogenicity to cause various serious public health issues or conditions.

In general, the outcome of dispersing antibiotic-resistant bacteria and infectious diseases could be due to: **1.** Delayed or inadequate treatment, **2.** Wrong diagnostic due to selection of antimicrobials, **3.** surviving of resistant strains during treatment of other bacterial illnesses,

4. Formation of Biofilms which increases pathogenicity of resistance genes during treatment of bacteria diseases (Fluit, 2005; Gooderham and Hancock, 2009; Guerra et al., 2004).

2. SOME COMMON EXAMPLES OF RESISTANT PATHOGENS

Lactic Acid Bacteria (LAB)

Over the years, fermentation of dairy product for yoghurt is at the forefront which is generally acceptable today. Lactic acid bacteria (LAB), is a common microbiota in foods, and widely used as starters culture for specific food products (yoghurt, cheese, dry-cured meat, etc.) which can make a reservoirs of antimicrobial resistance genes similar to those found in clinical pathogens and causing wide spread of resistance genes to food borne pathogenic bacteria (van den Bogaard and Stobberingh, 2000; Smith et al., 2002). As an example, identical tetracycline-, erythromycin-, and vancomycin-resistant genes that were found in clinical bacterial species were also detected in Lactococcus lactis and Lactobacillus species isolated from fermented meat and milk products (Mathur and Singh, 2005). Besides, some human bacteria revealed the presence of resistance gene determinants within their genomes and therefore they show intrinsic antimicrobial resistance (Cox and Wright, 2013). Enterococcus spp. was found to have antibiotic resistance, especially to vancomycin although resistance to chloramphenicol and erythromycin was also observed (Teuber et al., 1999). Therefore, the presence of antimicrobial resistance genes in starter, and/or probiotic cultures that are intentionally added during animal food processing can also pose a substantial risk for increasing food borne diseases that cannot be treated by current antibiotics (Verraes et al., 2013).

Campylobacter spp.: Disease related to Campylobacter has been found to be short lived with low mortality rate and public health problem. Examples of some drug Campylobacter spp. are resistant to includes: macrolides, quinolones, chloramphenicol, ampicillin, tetracycline, lincosamides, aminoglycosides and other tylosin, β -lactams and cotrimoxazole (Alfredson and Korolik, 2007; Koluman and Dikici, 2013).

Salmonella spp.: This is a major food borne pathogens which has high risk factor to human health and it is widely distributed. Salmonella spp. Have shown resistance mostly to beta-lactan antibiotics drugs which includes: tetracyclines, kanamycin, sulfonamides, chloramphenicol, streptomycin, cephalosporins and penicillins (Olsen et al., 2004)

Staphylococcus aureus is also a common pathogen for animals and human which has shown resistance to *penicillins* as early as 1948 (Huttner *et al.*, 2013). These resistant pathogens are important common causes of spoilage in dairy product.

Enterococci spp. These are common bacteria in the gastro intestinal tract of birds and mammals and are indicators for determination of enteric contamination of foods. These pathogens are resilient and can endure adverse conditions such as low or high pH, temperature and hypertonic salt solution (Werner et al., 2013). Enterococci can transfer resistance gene to human-adapted strains and have adverse effect, indirectly (Werner et al., 2013). These pathogens with their unique resistance abilities can be responsible for municipal transmission of diseases related to them.

Yersinia spp.: There are different species including Y. pestis, Y. enterocolitica and Y. pseudotuberculosis, which are pathogenic strains in this genus (Carniel, 2002). Y. enterocolitica has been found to be the causes of various diseases including: septicemia, septic arthritis, pneumonia, cellulitis, meningitis, empyema, osteomyelitis and panophthalmitis. Genus Yersinia has indicated resistance to carbenicillin, cephalothin and ticarcillin, cefoxitin and amoxicillin/clavulanic acid (Preston et al., 1990; Pham et al., 1991).

Plasmodium spp.: Chloroquine was the empirical antimalarial agent used for treating malaria for years. It is the first hand therapy for malaria. During the past few years, Plasmodium falciparum and Plasmodium vivax have grown increasingly resistant to this empirical drug; chloroquine (Boland et al., 1997). This has challenged the scientist to produce another drug that would be of effective dose against this disease which leads to the production of Artemita and Lufemantrin; a non-itching anti malaria drug (White, 1998). And recent studies have shown that it is getting less effective as well.

Acinetobacter baumannii: This is common causes of nosocomial infections, such as bloodstream infection, ventilator-associated pneumonia, urinary tract infection, and wound infection (Urban et al., 2003). A. baumannii has generated concerns with its resistance to commonly prescribed antimicrobial agents and thereby making it very difficult to treat any disease related to it (Bergogne-Berezin and Towner, 1996; Cisneros and Rodriguez-Bano, 2002).

Escherichia coli: This one of the common microbial flora in gastrointestinal tract of poultry and human being which has the capacity to become pathogenic to both due to its ability to form biofilm (Jawetz et al., 1984; Levine 1987). E. coli are nonpathogenic yet opportunistic pathogens that are widely used as indicator of faecal contamination in food (Barnes and Gross 1997). Example of diseases caused by E.coli and other gastrointestinal coliforms are: meningitis, endocarditis, urinary tract infection, septicemia, epidemic diarrhea in adults and children (Daini et al., 2005) and also yolk sac infection, omphalitis, cellulitis, swollen head syndrome, coligranuloma, and colibacillosis (Gross, 1994). The extensive use of antibiotics as growth promoters in poultry production or to control infectious disease has led to the resistance of these pathogens today (Moreno et al., 2000; Okeke et al., 1999).

Clostridium difficile: C. difficile is a serious nosocomial infection, with transmission been through faecal-oral (CDC, 2013). The symptoms exhibited by infected patients includes: fever, abdominal pain, diarrhea, and in severe cases, development of pseudo-membranous colitis. C. difficile has been discovered to be resistant to fluoroquinolones which have been observed in patients that the drug was administered to (CDC, 2013; He et al., 2013). Transmission of C.difficile may be associated with food production and animal husbandry.

3. THE ROLE OF FOOD IN MULTI DRUG RESISTANCE

Food as been shown to be the major causes of the raise in resistant pathogens due to the abuse of antimicrobial in food processing; planting, processing and storage. As such, it has helped in harboring antimicrobial residual traits which the pathogens eventually acquire and become resistant.

There are several routes of transmission of these resistant strains to infectious pathogens along the food chain. However, the direct impact of foods to infections caused by multi-drug resistant pathogens have not been estimated yet (Likotrafiti *et al.*, 2018). The use of antibiotics for prevention of disease or to improve growth has been largely found in Animal farming and Aqua culture (Verraes *et al.*, 2013). The use of overdose or misappropriation of antimicrobial drugs for therapy and prophylaxis of bacterial infections in Animal farming or with their use in feeds as growth promoters in food producing animals are the leading causes of multi-drug resistant pathogens in livestock production (Barber *et al.*, 2003; Aarestrup, 2005; Normanno *et al.*, 2007; Verraes *et al.*, 2013; Schrijver *et al.*, 2018). Van Boeckel *et al.* (2015) estimated the antibiotic consumption rate in livestock and predicted its global importance in the future. Examples include: the use of 3rd and 4th generation *cephalosporins*

to treat *E. coli* infections in livestock is related to presence of resistances *E. coli* found in humans. Also, *ciprofloxacin-resistant Salmonella*, and *macrolides* and *fluoroquinolones-resistant Campylobacter* strains are on the rise in food producing animal (Kumar *et al.*, 2012; Mukherjee *et al.*, 2013).

3.1 FOOD FROM ANIMAL ORIGIN

Food from animal products or Aqua culture can indeed act as the resistance booster due to their exposure to the antimicrobial used during their cultivation. Farmers apply antimicrobial to prevent the animals from diseases related to bacteria and vaccines to prevent viral infection to reduce mortality rate in animals. Multi-drug resistance transmission is not exclusive to animal house boundary or Aqua culture as green plants or vegetables can also contribute to Multi-drug resistant microorganisms due to their exposure to effluents from industries, erosion from neighboring farm, or contaminated water with fecal material from effluent of surrounding farms. It is not generally common to find pathogens in food but the risk factor is from non-pathogenic microorganisms or probiotics that could harbor resistance gene and transfer such trait when its forms Biofilms with a virulent organism to cause public health disease is the major concern (i.e., transformation, conjugation, and transduction) (Aarestrup, 2005; Appelbaum, 2006; Hammerum et al., 2010; Verraes et al., 2013). In food producing animals, Enterocccus spp. was isolated and was found to contain resistance gene of gentamicin (Donabedian et al., 2003). Studies have also shown that, antimicrobial resistance gene can be transferred in inactivated cells, including pathogens, or microbiota in general and, after ingestion, it mobilizes into guts in humans and interact with probiotics in guts to form Biofilms in which genetic materials are transferred by quorum sensing to and fro (Verraes et al., 2013). In general, causes of Multi-drug resistance genes should not be limited to transfers of traits from animals to humans or vice versa with the later been caused by effluent or improper sewer system, but also in overall agricultural practices which include the application of biocides; disinfectant, preservatives during food production could be the leading causes of Multi-drug resistance in the world today (Capita and Alonso-Calleja, 2013; Händel et al., 2013).

3.2 FOOD FROM PLANT ORIGIN

Common Agriculture practices include the application of biocides; Preservatives, Pesticides, Fertilizers during planting season for fear of invasion of insects; locust and microbial contamination etc.

114

However, Multi-drug Resistant pathogens entry cannot be limited to a specific food processing point alone, they can be seen to be present in both raw materials and also in finished foods (Lee, 2003; Verraes *et al.*, 2013). Although, the complete elimination of pathogens by lethal treatments is not a precursor to Antimicrobial Resistance transmission, because DNA released from lysed cells can still be transferred to living microorganisms through foods consumption or in human digestive system. Also, adverse environmental conditions can drive pathogens to adapt thereby causing the expression of the resistance genes, and as a result, increase the resistance capacity and changes in virulence to the populations (Horn and Bhunia, 2018). Examples of such stress include: *thermal*, *acidic*, and *saline* conditions in which the pathogen adapt to and increase their infectivity (Verraes *et al.*, 2013).

3.3 DAIRY PRODUCT

The fermentation of dairy products to improve its taste and quality in food technology has contributed immensely to the transmission of resistance gene and adaptation of virulent pathogens to adverse condition; heat.

Lactic acid bacteria (LAB), one of the most commonly used starters in food products such as: yoghurt, cheese, dry-cured meat, etc. can act as reservoirs of resistance genes and thus cause the spread of resistance genes to food borne pathogenic bacteria (van den Bogaard and Stobberingh, 2000; Smith et al., 2002). For example, tetracycline-, erythromycin-, and vancomycin-resistant genes that has been indentified in clinical bacterial species were also detected in Lactococcus lactis and Lactobacillus species isolated from fermented meat and milk products (Mathur and Singh, 2005). In humans, some probiotics have shown the presence of antimicrobial resistance within their genomes (Cox and Wright, 2013). For example, Enterococcus spp. was found to have antibiotic resistance, especially to vancomycin although resistance to chloramphenicol and erythromycin was also observed (Teuber et al., 1999). Therefore, the presence of antimicrobial resistance genes in starter or probiotic cultures that are intentionally added to improve the quality of food during animal food processing can also pose risk for increasing resistance of food borne diseases that cannot be treated by their empirical antibiotics (Verraes et al., 2013).

4 HEALTH IMPLICATION OF MULTI DRUG RESISTANT PATHOGENS

Delay in therapy

Multi-drug resistance has reduced the ability to administer effective therapy to patients in time (Ibrahim *et al.*, 2000; Kollef *et al.*, 1999; Lautenbach *et al.*, 2001). Lautenbach et al., (2001) matched control subjects infected with non extended spectrum β-Lactamase (ESBL) producing strains of *K.pneumoniae* and *E.coli* against its empirical antibiotics. After 11.5 h, there was reduction in its lethal efficiency and infection was still detected. Infections caused by antimicrobial-resistant organisms has enforced more drastic approach which could have some adverse effect on the subject. For instance, the use of colistin for highly resistant *Pseudomonas* or *Acinetobacter* infections is also associated with a high susceptible risk of renal dysfunction (Levin *et al.*, 1999). In addition, the use of vancomycin for the treatment of deep-seated *methicillin-resistant Staphylococcus aureus* (MRSA) infections has shown little success recently (Levine *et al.*, 1991). Finally, multi-drug resistant pathogens have increased surgical procedures for patients with such infection to remove the nidus of infection (Harris *et al.*, 1999).

Economic Importance

Multi-drug resistant pathogens have increased the cost of diagnosis, therapy and treatments across the world. The reason been that the empirical antibiotics that have lethal effects on each pathogens has little effect now when administered to patients due to the resistance that these pathogens have acquired from consistent usage or overdose, from food; Animals and Diary products due to prolonged exposure to antibiotics or plant treatments.

Increased Mortality rate

Multi-drug resistance has increased the death rate amongst patients across the world, many of which have been traced to resistance of pathogens to their empirical drugs.

Chloroquine: Malaria is a common infectious disease and very particular to Africa due to its favorable weather conditions, poor drainage systems and poor human hygiene practices. In recent times, *Plasmodium falciparum* and *Plasmodium vivax* have grown increasingly resistant to chloroquine factors which could be responsible have been highlighted above (Boland *et al.*, 1997). These have challenged scientist to provide a more efficient drugs that could cure malaria if a patient gets infected. This led to the discovery of *Artemita* and *Lufematrin*; an effective dose that has no itching effect when taken. Today, *Artemita* and *Lufemantrin* is seemly less effective due to over use, under use; not completing the dose

required by the patient and these have enabled *plasmodium*, once again to develop or developing resistance to the drug with more cost implications.

Empirical Antibiotics: In Africa, the abuse of drug is no news as its common amongst citizens. It is an arbitral practice to self medicate in Africa especially in Nigeria without consulting a medical practitioner for proper diagnosis and administration of drugs. Some of the abused antibiotics include: *Tetracycline, Chloramphenicol, Ciproflaxin, Flagyl*, e.t.c. which are not effective except in combination.

Due to the abuse of usage or self medication, the cost of running a complete diagnosis and also cost of research to produce effective drug(s) that would be lethal have increased considerable. Infact many patients have had to spend longer time in hospital, difficulty in determining the actual therapy to diagnose or drug to administer due to resistance that have been developed by these pathogens to their empirical drugs. It has increased human-human transmission rate and in some cases death of the patients.

1. TRANSMISSION OF MULTI DRUG RESISTANT PATHOGENS

Some part of Africa is still struggling to cope with the rise in their population and human activities that could be potent drivers of antibiotic resistance. Example include: poor sanitation, infection control standards, poor water hygiene systems, low drug quality, diagnostics and therapeutics, and travel or migration quarantine. These are precursors to the mutation in various genes residing on the chromosome of the microorganism, as well as exchange of genetic material between organisms plays a vital role in the distribution of antibiotic resistance (Holmes *et al.*, 2014). Local transmission from human to human is usually through faeco—oral route which is the most important route especially for resistant pathogens of the family *Enterobacteriaceae*, and these is linked to poor sanitation practices. Another example is *Methylene Resistant Staphylococcus aureus* (MRSA) which is usually transmitted from human to human due to prolonged hospital stay or poor hygienic hospital. The most common mode of transmission of resistant strains is through sexual intercourse example include *N. gonorrhoeae* (Wellington *et al.*, 2013; Lewis, 2013; Chamchod and Ruan, 2012).

Indiscriminate use of antimicrobial growth promoters in farm animals, poultry or on plants is associated with the transmission of resistance to humans through dairy products or meat consumption or food. Another issue to consider is the environmental factor which has

enhanced antibiotic resistance due to prolonged exposure to unfavorable conditions like heat, herbicides, pesticides and antimicrobial due food processing as contributed to resistance and transmission with organisms and to humans. Poor sewage systems, waste pollution from pharmaceutical industry effluents, and inadequate waste management procedures have enhanced environment transmission to resistant strains (Lewis, 2013; Kristiansson *et al.*, 2011).

2. PREVENTION AND CONTROL OF MULTI DRUG RESISTANT PATHOGENS

Improved farming procedures

Improved agricultural practices have significant role to play in reducing transmission of antimicrobial resistance pathogens from farm to gut. Food security/Biosecurity is essential in other to achieve healthy living. Biosecurity can be defined as the measures in place to reduce or eliminate the potential threat of the emergence or spreading of diseases at region or country-levels (FAO, 2011; 2003). It can be broken down into; HACCP (Hazard Analysis and Critical Control Points), good agricultural practices, good hygiene practices focus on health and management and Microbial assessments, risk assessments.

Therefore, biosecurity can play economical role in public health especially in agricultural production; reduction in use of chemical preservatives for crops during production and reduction in the use of antibiotics in treating animals (Nahar *et al.*, 2014; Postma *et al.*, 2016; Sivapuram *et al.*, 2010). Early diagnostics of resistant bacteria and their genes will aid agricultural practitioners to early detect and separate the infectious plants and animals to stem the spread of disease (O'Neill, 2015). Today, there are a lot of modern methods which is used to determine and diagnoses of resistance bacteria in food process chain including, Polymerase Chain Reaction (PCR), Fourier Transform Infrared Spectroscopy (FTIR) (Lechowicz *et al.*, 2013), Nanoparticles whose indicator is based on bacterial metabolic activity and also antibiotic susceptibility in blood or milk is also a means to early detect and determine proper diagnosis (Huh, 2011).

Green Antibiotics

As earlier stated, the abuse of antibiotics has led to the increase in resistance genes and thus increased infectious diseases that cannot be treated with today's antibiotics which is why the use of natural and effective antimicrobial agents as alternative therapeutic approach (Calo *et al.*, 2015). A typical example is essential oils which are biological and active substances produced by plants and has been traced to have antibacterial, antifungal, sedative,

antioxidant, digestive, anticancer, anti-inflammatory and antiviral activities (Aumeeruddy-Elalfi and Gurib-Fakim, 2015; Sharifi-Rad *et al.*, 2015; Pilevar and Hosseini, 2013). The efficiency of essential oils produced by plants depends on their genotypes, chemical composition, agronomic and environmental conditions (Mohamed *et al.*, 2014).

Essential oils

These are biological and active substances which are produced by plants that have some therapeutic advantages such as: antibacterial, antifungal, sedative, antioxidant, digestive, anticancer, anti-inflammatory and antiviral activities (Aumeeruddy-Elalfi and Gurib-Fakim, 2015; Sharifi-Rad et al., 2015; Pilevar and Hosseini, 2013) in which the effectiveness is dependent on their genotypes, chemical composition, agronomic and environmental conditions (Mohamed et al., 2014). Recently, essential oils have been shown to have preservative characteristics which can be adopted in food industry to preserve food and also to prevent developing multidrug-resistance in bacteria (Aumeeruddy-Elalfi and Gurib-Fakim, 2015; Sharifi-Rad et al., 2015; Pilevar et al., 2017). Essential oil also has some synergistic effect against microbial activities when used with thyme and this could have some economic importance (Yap et al., 2014)73. Duarte et al., (2011) has studied on antimicrobial effect of essential oil and antibiotics against A. baumannii and the result shows that essential oil can improve antimicrobial effect of ciprofloxacin, gentamicin and tetracycline.

Nanobiotics

Nanobiotics are nano-sized materials that can be bio-augmented with antibiotics to have antimicrobial activity with no adverse health effect (Huh and Kwon, 2011). Example of such process is Nano-encapsulation to improve efficacy of antibiotics (Hajipour *et al.*, 2012; Jamil and Syed, 2017). Also, nano-carriers have been discovered to improve drug absorption by enhancing solubility which helps in cellular absorption (Thorley *et al.*, 2014). Examples of a nano-carrier is *liposomes* and *chitosan* have been used as drug carrier because of their characteristics which includes: *biodegradability*, *biocompatibility*, with minimal side effects (Kumari *et al.*, 2010). Other functional advantages of nanobiotics are (i) production of different antibiotics by the same nanoparticles, (ii) using different mechanisms to prevent bacteria growth, (iii) improving drug efflux, (iv) releasing high amount of antibiotics at the infection site ((Huh and Kwon, 2011; Pelgrift *et al.*, 2013).

Lactic acid bacteria as an antibiotic

Lactic acid bacteria as a probiotics can serve as an alternative approach due its unique characteristics (Woolhouse *et al.*, 2015). Some of these unique qualities include: reduction of pH, production of lactic acids, diacyls, bacteriocins, hydrogen peroxide, etc., which prevents mycotoxins, growth and activity of food spoilage microorganisms (Mokoena, 2017). For example, *Lactobacillus plantarum*, has high antifungal activity and also antiviral activity in a controlled experiment in vitro (Kwak et al., 2013; 2014). One major concern is the bacteria ecosystem within the gut due to the ability to form Biofilms and therefore becomes virulent (Gaggia *et al.*, 2010; Callaway *et al.*, 2008). Probiotics serves different functions in the gut which includes: protecting the guts microbial flora, improving immune system and preventing antigen colonization (Allen *et al.*, 2014). Using Lactic acid bacteria as an antibiotic could of immense benefits to improve strains that have more antimicrobial properties in other prevent drug resistance in the body.

Predatory bacteria

Some bacteria have the ability to feed on other bacteria. Such bacteria are referred to as predatory bacteria. They are usually gram-negative which contains an enzyme DNases and Proteases that have proven effective against pathogenic bacteria e.g Micavibrio aeruginosavorus, Bdellovibrio bacteriovorus and belong to two subgroup of proteobacteria (Davidov et al., 2009; Davidov and Jurkevitch, 2004; Borthwick, 2012; Bragg et al., 2014). They have proven effective against biofilms and multidrug-resistant pathogens including E. coli, P. aeruginosa, A. baumannii, Pseudomonas putida and Klebsiella pneumonia (Allen et al., 2014; Kadouri et al., 2013; Lambert and Sockett, 2013). These bacteria could serve both beneficial functions as probiotic and protective functions as antibiotic (Economou and Gousia, 2015). These bacteria are effective in treatment of ocular diseases caused by Shigella flexneri and Moraxella bovis in animals which includes rabbits and cows, respectively (Dwidar et al., 2012). With the development of antibacterial resistant bacteria and inadequately treatment by conventional antibiotics, predatory bacteria as live anti-bacterial can have effective role in human health and treatment of diseases (Dwidar et al., 2012; Sockett and Lambert, 2004). In spite of useful properties of these bacteria, they have some limitations in their application. Predatory bacteria can have negative effect on the natural microbiota of the body. Furthermore, existence of Gram-positive bacteria can reduce their predation efficacy (Kadouri et al., 2013; Schoeffield et al., 1996).

Vaccines

Vaccination is one of the primitive preventive measures against infectious diseases. It interact with the immune system to activate response against an antigen and master the method of exterminating the antigen to incase of future occurrence (Sanghi and Twilu, 2014). Vaccines are inactivated or attenuated pathogens in which the body triggers immune response to protect the body and invariable prevent future occurrence (Atkins and Flasche, 2018; Ginsburg and Klugman, 2017). Today, modern medicine has adopted the combine therapy approach using antibiotics and vaccines for treatments and prevention of diseases. Vaccines have prevalence role on resistant bacteria by reducing the use of antibiotics and prevent intrinsic transmission of infectious pathogens. There are many immunization programs set up to stem the growth of certain infection diseases. These are preventive measures to reduce the spread of diseases in animals and can significantly increase the productivity by lowing the use of antibiotics and with appropriated novel vaccines program will be able to lessen the worldwide spread of infective diseases also the cost of treating farm animals, poultry and plants which would have a ripple effect in reducing the exposure of humans to resistance pathogen and diseases (Atkins and Flasche, 2018; Lipsitch and Siber, 2016).

3. CONCLUSION

Multi-drug resistant Pathogen is a global concern that has caused several public health issues and adverse effect on the world's economy today. It is incumbent to note that the assurance of public food safety is to be taken with seriousness because it has the ability to stem the growth and spread of resistant pathogens and reduce public health diagnosis, unnecessary delay in hospital and cost of treatments. The common practice of self medication and abuse of drug should be stopped by sensitization of the populace to adopted proper use of antibiotics and reach out professionals before taken any drugs. The transmission of these resistant pathogens to human and animals have been traced to farm practices; use of pesticides, herbicides, fungicides and antibiotics which have helped the pathogens to acquire resistant strains. In other to curb these, biosecurity procedures to ensure food safety in agriculture and food production process are really beneficial practices that can play a significant role in reducing the development of resistant strains and transmission of drug resistant pathogens to humans. Recently, scientist have been in search for alternative measures to combat the rise in resistant pathogens through good farm practices, the use of essential oil; a substance produced by plant that have antimicrobial properties, in combination with empirical antibiotics which have shown success and have proven to be more cost

121

effective. Although further research is encourage to ascertain the level of potency and efficiency of these alternative measures in dealing with drug resistant pathogens and human treatment.

REFERENCES

- 1. Acar JF, Moulin G. (2006) Antimicrobial resistance at farm level. *Rev Sci Tech*, 25: 775-92.
- 2. Alfredson DA, Korolik V. (2007) Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. *FEMS Microbiol Lett.*, 277: 12332.
- 3. Allen HK, Trachsel J, Looft T, Casey TA. (2014) Finding alternatives to antibiotics. *Ann N Y Acad Sci.*, 1323: 91-100.
- 4. Armstrong GL, Hollingsworth J, Morris JGJr. (1996). Emerging food borne pathogens: Escherichia coli 0157: H7 as a model of entry of a new pathogen into the food supply of the developed world. *Epidemiological Review*, 18: 29-51.
- 5. Atkins KE, Flasche S. (2018) Vaccination to reduce antimicrobial resistance. *Lancet Glob Health*, 6: 252.
- Aumeeruddy-Elalfi Z, Gurib-Fakim A, Mahomoodally F. (2015) Antimicrobial, antibiotic
 potentiating activity and phytochemical profile of essential oils from exotic and endemic
 medicinal plants of Mauritius. *Ind Crops Prod*, 71: 197-204.
- 7. Bergogne-Berezin E, Towner KJ. (1996) Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. *Clin Microbiol Rev.*, 9: 148-165.
- 8. Boland PB, Kazembe PN, Watkins WM, et al. (1998) Malarone-donationprogramme in Africa. *Lancet*, 1997; 350: 1624–5.
- 9. Borthwick AD, Da Costa NC. (2017) 2,5-diketopiperazines in food and beverages: Taste and bioactivity. *Crit Rev Food Sci Nutr*, 57: 718-42.
- 10. Borthwick AD. (2012) 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. *Chem Rev.*, 112: 3641-716.
- 11. Cabello FC. (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. *Environ Microbiol*, 8: 1137-44.
- 12. Callaway TR, Edrington TS, Anderson RC, Harvey RB, Genovese KJ, Kennedy CN, Venn D.W., Nisbet D.J. (2008) Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. *Anim Health Res Rev.*, 9: 217-25.

- 13. Calo JR, Crandall PG, O'Bryan CA, Ricke SC. (2015) Essential oils as antimicrobials in food systems–A review. *Food Control*, 54: 111-9.
- 14. Campbell J, Lin Q, Geske GD, Blackwell HE. (2009) New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. *ACS Chem Biol*, 4: 1051-9.
- 15. Carmeli Y, Troillet N, Karchmer AW, Samore MH. (1999) Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. *Arch Intern Med*, 159: 1127–32.
- 16. Carniel E. (2002) Plasmids and pathogenicity islands of yersinia. In: Hacker J, Kaper JB, eds. Pathogenicity islands and the evolution of pathogenic microbes. Berlin, Heidelberg: *Springer*, 6: 89-108.
- 17. Chamchod F, Ruan S. (2012) Modeling methicillin-resistant Staphylococcus aureus in hospitals: transmission dynamics, antibiotic usage and its history. *Theor Biol Med Model*, 9: 25.
- 18. Chang Q, Wang W, Regev-Yochay G, Lipsitch M, Hanage WP. (2015) Antibiotics in agriculture and the risk to human health: how worried should we be? *Evol Appl*, 8: 240-7.
- 19. Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ, Gordon EA, Vijay B.B.R., Powers Z.C., Zebroski H.A., Gallardo-Macias R, Jaskowski M, Satish S, Park S, Perlin D.S., Freundlich J.S., Brady S.F. (2016) Discovery of MRSA active antibiotics using primary sequence from the human microbiome. *Nat Chem Biol*, 12: 1004-6.
- 20. Cisneros JM, Rodriguez-Bano J. (2002) Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. *Clin Microbiol Infect*, 8: 687-693.
- 21. Coetzee J, Corcoran C, Prentice E, Moodley M, Mendelson M, Poirel L, Nordmann P., Brink A.J. (2016) Emergence of plasmid-mediated colistin resistance (MCR-1) among Escherichia coli isolated from South African patients. *S Afr Med J.*, 106: 35-6.
- 22. Cosgrove SE, Kaye KS, Eliopoulous GM, Carmeli Y. (2002) Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. *Arch Intern Med*, 162: 185–90.
- 23. Cotter PD, Ross RP, Hill C. (2013) Bacteriocins a viable alternative to antibiotics? Nat *Rev Microbiol*, 11: 95-105.
- 24. Culligan EP, Sleator RD. (2017) Antibiotics v2.0: computational and synthetic biology approaches to combat antibiotic resistance. *Future Microbiol*, 12: 267-9.

- 25. D'Costa VM, McGrann KM, Hughes DW, Wright GD. (2006) Sampling the antibiotic resistome. *Science*, 311: 374-7.
- 26. da Costa PM, Loureiro L, Matos AJ. (2013) Transfer of multidrugresistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. *Int J Environ Res Public Health*, 10: 278-94.
- 27. Daini OA, Adesemowo A. 2008. Antimicrobial Susceptibility Pattern and R- Plasmids of Clinical Strains of Escherichia coli. *Aus. J. Basic and Applied Sci.*, 2: 397-400.
- 28. Davidov Y, Huchon D, Koval SF, Jurkevitch E.(2006) A new alpha-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. *Environ Microbiol*, 8: 2179-88.
- 29. Davidov Y, Jurkevitch E. (2004) Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax Peredibacter clade as Bacteriovoracaceae fam. nov. *Int J Syst Evol Microbiol*, 54: 1439-52.
- 30. De Vuyst L, Leroy F. (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. *J Mol Microbiol Biotechnol*, 13: 194-9.
- 31. Djadouni F, Kihal M. (2012) Antimicrobial activity of lactic acid bacteria and the spectrum of their biopeptides against spoiling germs in foods. *Braz Arch Biol Technol*, 55: 435-44.
- 32. Dwidar M, Monnappa AK, Mitchell RJ. (2012) The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. *BMB Rep.*, 45: 71-8.
- 33. Economou V, Gousia P. (2015) Agriculture and food animals as a source of antimicrobial-resistant bacteria. *Infect Drug Resist*, 8: 49-61.
- 34. Elkahoui S, Abdel rahim H, Tabbene O, Shaaban M, Limam F, Laatsch H. (2013) Cyclo-(His,Leu): a new microbial diketopiperazine from a terrestrial Bacillus subtilis strain B38. *Nat Prod Res.*, 27: 108-16.
- 35. FAO. (2003) Biosecurity in food and agriculture. Rome: Food and Agriculture Organization of the United Nations.
- 36. FAO. (2011) Guidelines for risk analysis of food borne antimicrobial resistance. Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO).
- 37. Fluit AC. (2005) Towards more virulent and antibiotic-resistant Salmonella? *FEMS Immunol Med Microbiol*, 43: 111.

- 38. Fong DH, Berghuis AM. (2002) Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. *EMBO J.*, 21: 2323-31.
- 39. Founou LL, Founou RC, Essack SY. (2016) Antibiotic resistance in the food chain: a developing country-perspective. *Front Microbiol*, 7: 1881.
- 40. Gabisoniya TG, Loladze MZ, Nadiradze MM, Chakhunashvili NK, Alibegashvili MG, Tamarashvili NG, Pushkina V.A. (2016) [Effects of bacteriophages on biofilm formation by strains of Pseudomonas aeruginosa]. *Prikl Biokhim Mikrobiol*, 52: 312-7.
- 41. Gaggia F, Mattarelli P, Biavati B. (2010) Probiotics and prebiotics in animal feeding for safe food production. *Int J Food Microbiol*, 141: S15-28.
- 42. Gooderham WJ, Hancock RE. (2009) Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. *FEMS Microbiol Rev.*, 33: 279-94.
- 43. Granowitz EV, Brown RB. (2008) Antibiotic adverse reactions and drug interactions. *Crit Care Clin*, 24: 421-42.
- 44. Guerra B, Junker E, Miko A, Helmuth R, Mendoza MC. (2004) Characterization and localization of drug resistance determinants in multidrug-resistant, integroncarrying Salmonella enterica serotype Typhimurium strains. *Microb Drug Resist*, 10: 83-91.
- 45. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V., Parak W.J., Mahmoudi M. (2012) Antibacterial properties of nanoparticles. *Trends Biotechnol*, 30: 499-511.
- 46. Hamers FF. (2008) European Centre for Disease Prevention and Control issues guidance for the introduction of human papillomavirus (HPV) vaccines in European Union countries. *Euro Surveill*, 13: 1854-61.
- 47. Harris A, Torres-Viera C, Venkataraman L, DeGirolami P, Samore M, Carmeli Y. (1999) Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. *Clin Infect Dis.*, 28: 1128–33.
- 48. Hati S, Mandal S, Prajapati J. (2013) Novel starters for value added fermented dairy products. *Curr Res Nutr Food Sci.*, 1: 83-91.
- 49. Heuer OE, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo FJ. (2009) Human health consequences of use of antimicrobial agents in aquaculture. *Clin Infect Dis.*, 49: 1248-53.
- 50. Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin P.J., Piddock L.J.V. (2016) Understanding the mechanisms and drivers of antimicrobial resistance. *Lancet*, 387: 17687.

- 51. Huh AJ, Kwon YJ. (2011) "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. *J Control Release*, 156: 12845.
- 52. Hummel A, Holzapfel WH, Franz CM. (2007) Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. *Syst Appl Microbiol*, 30: 1-7.
- 53. Huttner A, Harbarth S, Carlet J, Cosgrove S, Goossens H, Holmes A, et al. (2013) Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. *Antimicrob Resist Infect Control*, 2: 31.
- 54. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. *Chest*, 118: 146–55.
- 55. Jamil B, Syed MA. (2017) Nano-antimicrobials: A Viable Approach to Tackle Multidrug-Resistant Pathogens. In: Rai M., dos Santos CA, eds. Nanotechnology applied to pharmaceutical technology. Cham: *Springer*, 2: 31-54.
- 56. Jawetz E, Melnick J, Adelberg EA. (1984). Review of Medical Microbiology. 16th ed. Los Altos, California: Long Medical Publication, 122-144.
- 57. Jung EY, Hong YH, Park C, Suh HJ. (2016) Effects of Cyclo-HisPro-enriched yeast hydrolysate on blood glucose levels and lipid metabolism in obese diabetic ob/ob mice. *Nutr Res Pract*, 10: 154-60.
- 58. Kaban G, Kaya M. (2008) Identification of lactic acid bacteria and gram-positive catalase-positive cocci isolated from naturally fermented sausage (sucuk). *J Food Sci.*, 73: M385-8.
- 59. Kadouri DE, To K, Shanks RM, Doi Y. (2013) Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. *PLoS One*, 8: e63397.
- 60. Keasling JD. (2012) Synthetic biology and the development of tools for metabolic engineering. *Metab Eng*, 14: 189-95.
- 61. Khurshid M, Rasool MH, Ashfaq UA, Aslam B, Waseem M. (2017) Emergence of ISAba1 harboring carbapenem-resistant Acinetobacter baumannii isolates in Pakistan. *Future Microbiol*, 12: 1261–1269.
- 62. Kollef MH, Sherman G, Ward S, Fraser VJ. (1999) Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. *Chest*, 115: 462–74.
- 63. Koluman A, Dikici A. (2013) Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends. *Crit Rev Microbiol*, 39: 57-69.

- 64. Krishnamurthy M, Moore RT, Rajamani S, Panchal RG. (2016) Bacterial genome engineering and synthetic biology: combating pathogens. *BMC Microbiol*, 16: 258.
- 65. Kristiansson E, Fick J, Janzon A, Grabic R., Rutgersson C., Weijdegard B., Söderström H., Larsson D.G.J. (2011) Pyrosequencing of antibiotic contaminated river sediments reveals high levels of resistance and gene transfer elements. *PLoS One.*, 6: e17038.
- 66. Kumari A, Yadav SK, Yadav SC. (2010) Biodegradable polymeric nanoparticles based drug delivery systems. *Colloids Surf B Biointerfaces*; 75: 1-18.
- 67. Kwak MK, Liu R, Kim MK, Moon D, Kim AH, Song SH, Kang S.O. (2014) Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. *J Microbiol*, 52: 6470.
- 68. Kwak MK, Liu R, Kwon JO, Kim MK, Kim AH, Kang SO. (2013) Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza A virus. *J Microbiol*, 51: 836-43.
- 69. Lambert C, Sockett RE. (2013) Nucleases in Bdellovibrio bacteriovorus contribute towards efficient self-biofilm formation and eradication of preformed prey biofilms. *FEMS Microbiol Lett*, 340: 109-16.
- 70. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. (2001) Extended-spectrum b-lactamase–producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. *Clin Infect Dis.*, 32: 1162–71.
- 71. Lechowicz L, Urbaniak M, Adamus-Bialek W, Kaca W. (2013) The use of infrared spectroscopy and artificial neural networks for detection of uropathogenic Escherichia coli strains' susceptibility to cephalothin. *Acta Biochim Pol.*, 60: 713-8.
- 72. Lee KH, Kim KW, Rhee KH. (2010) Identification of Streptomyces sp. KH29, which produces an antibiotic substance processing an inhibitory activity against multidrugresistant Acinetobacter baumannii. *J Microbiol Biotechnol*, 20: 1672-6.
- 73. Levin AS, Barone AA, Penco J, Santos M.V, Marinho I.S., Arruda E.A., Manrique E.I., Costa S.F. (1999) Intravenous colistin as therapy for nosocomial infections caused by multidrug-resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii*. *Clin Infect Dis.*, 28: 1008–11.
- 74. Levine DP, Fromm BS, Reddy BR. (1991) Slow response to vancomycin or vancomycinplusrifampininmethicillin-resistantStaphylococcusaureus endocarditis. *Ann Intern Med*, 115: 674–80.

- 75. Levine M. (1987). Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic and enteroadherent. *J. Infect. Dis.*, 155: 377-390.
- 76. Lewis DA. (2013) The role of core groups in the emergence and dissemination of antimicrobial-resistant N. gonorrhoeae. Sex Transm Infect, 89: 47–51. 41.
- 77. Lind H, Sjogren J, Gohil S, Kenne L, Schnurer J, Broberg A. (2007) Antifungal compounds from cultures of dairy propionibacteria type strains. *FEMS Microbiol Lett*, 271: 310-5.
- 78. Lipsitch M, Siber GR. (2016) How can vaccines contribute to solving the antimicrobial resistance problem? *MBio.*, 7: e00428-16.
- 79. Liu R, Kim AH, Kwak MK, Kang SO. (2017) Proline-based cyclic dipeptides from Korean fermented vegetable kimchi and from Leuconostoc mesenteroides LBP-K06 have activities against multidrug-resistant bacteria. *Front Microbiol*, 8: 761.
- 80. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y., Tian G., Dong B., Huang X., Yu L.F., Gu D., Ren H., Chen X., Luchao Lv., He D., Zhou H., Liang Z., Liu J.H., Shen J. (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. *Lancet Infect Dis.*, 16: 161-8.
- 81. Lushniak BD. (2014) Antibiotic resistance: a public health crisis. *Public Health Rep.*, 129: 314–316.
- 82. McCullough AR, Parekh S, Rathbone J, Del Mar CB, Hoffmann TC. (2016) A systematic review of the public's knowledge and beliefs about antibiotic resistance. *J Antimicrob Chemother*, 71: 27-33.
- 83. McEwen SA, Fedorka-Cray PJ. (2002) Antimicrobial use and resistance in animals. *Clin Infect Dis.*, 34: S93-s106.
- 84. Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I., hooi YH., Claesen J., Coates RC., Cruz-Maroales P., Duddela S., Dusterhus S., Edward Dj., Fewer DP., Garg N., Geiger C., Gomez-Esribano LP., Greule J., Hadjithomas M., Haines AS., Helfrich EJN., Hillwig ML., Ishida K., Jones AC., Jones CS., Jungman K., Kegler C., KIM HU., Kötter P., Krug D., Masschelen J., Melnik AV., Mantovani SM., Monroe EA., Moore M., Moss N., Nützmann HW., Pan G., Pati A., Petras D., Reen FJ., Rosconi F., Rui Z., Tian Z., Tobias NJ., Tsunematsu Y., Weimann P., Wyckoff E., Yan X., Yim G., YU F., Xie Y., Aigle B., Apel AK., Balibar CJ., Balskus EP., Gomez FB., Bechthold A., Bode HB., Borriss R., Brady SF., Brakhage AA., Caffrey P., Cox RJ., De

- Mot R., Donadio S., Donia MS., Van der Donk W., Dorrestein PC., Doyle S., Driessen AJM,M Ehling-Schulz M., Enitan KD., Fischbach MA., Gerwick L., Gerwick WH., Gross H., Gust B., Hertweck C., Höfte M., Jensen SE., Ju J., Katz L., Kaysser L., Klassen JL., Keller NP., Kormanec J., Kuipers OP., Kuzuyama T., Kyrpides NC., Kwon HJ., Lautru S., Lavigne R., Lee CY., Linquan B., Liu X., Liu W., Luzhetskyy A., Mahmud T., Mast Y Mendez C., Metsä-Ketelä., Micklefield J., Mitchell DA., Moore BS., Moreira LM., Müller R., Neilan BA., Nett M., Nielsen J., O'Gara F., Oikawa H., Osbourn A., Osburne MS., Ostash B., Payne SM., Pernodet JL., Petricek M., Piel J., Ploux O., Raaijmakers JM., Salas JA., Schmoitt EK., Scott B., Seipke RF., Shen B., Sherman DH., Sivonen K., Smanski MJ., Sosio M., Stegmann E., Sussmuth RD., Tahlan K., Thomas CM., Tang Y., Truman AW., Viaud M., Walton JD., Walsh CT., Weber T., van Wezel GP., Wilkinson B., Willey JM., Wohlleben W., Wright GD., Ziemert N., Zhang C., Zotchev SB., Breitling R., Takano E., GLöckner O. (2015) Minimum Information about a biosynthetic gene cluster. *Nat Chem Biol.*, 11: 625-31.
- 85. Mensah SE, Koudande OD, Sanders P, Laurentie M, Mensah GA, Abiola FA. (2014) Antimicrobial residues in foods of animal origin in Africa: public health risks. *Rev Sci Tech*; 33: 987-96, 75-86.
- 86. Minelli A, Bellezza I, Grottelli S, Galli F. (2008) Focus on cyclo(HisPro): history and perspectives as antioxidant peptide. *Amino Acids*, 35: 283-9.
- 87. Mohamed AA, Ali SI, El-Baz FK, Hegazy AK, Kord MA. (2014) Chemical composition of essential oil and in vitro antioxidant and antimicrobial activities of crude extracts of Commiphora myrrha resin. *Ind Crops Prod*, 57: 10-6.
- 88. Mokoena MP. (2017) Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: *A mini-review. Molecules*, 22: 8.
- 89. Morita Y, Tomida J, Kawamura Y. (2014) Responses of Pseudomonas aeruginosa to antimicrobials. *Front Microbiol*, 4: 422.
- 90. Munita JM, Arias CA. (2016) Mechanisms of antibiotic resistance. *Microbiol Spectr*, 4: 2.
- 91. Nahar A, Siddiquee M, Nahar S, Anwar KS, Islam S. (2014) Multidrug resistant-proteus mirabilis isolated from chicken droppings in commercial poultry farms: Bio-security concern and emerging public health threat in Bangladesh. *J Biosafety Health Educ*, 2: 1-5.
- 92. O'Neill J. (2015) Tackling a global health crisis: initial steps. London: *Review on Antimicrobial Resistance*.
- 93. Olsen SJ, Ying M, Davis MF, Deasy M, Holland B, Iampietro L, Baysinger C.M., Sassano F., Polk L.D., Gormley B., Hung M.J., Pilot K., Orsini M., Van Duyne S.,

- Rankin S., Genese C., Bresnitz E.A., Smucker J., Moll M., Sobel J. (2004) Multidrug-resistant *Salmonella Typhimurium* infection from milk contaminated after pasteurization. *Emerg Infect Dis.*, 10: 932-5.
- 94. Österberg J, Wingstrand A, Nygaard Jensen A, Kerouanton A, Cibin V, Barco L, Denis M., Aabo S., Bengtsson B. (2016) Antibiotic resistance in *Escherichia coli* from pigs in organic and conventional farming in four European countries. *PLoS One*, 11: e0157049.
- 95. Papagianni M, Anastasiadou S. (2009) Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. *Microb Cell Fact*; 8: 3.
- 96. Parada JL, Caron CR, Medeiros ABP, Soccol CR. (2007) Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. *Braz Arch Biol Technol*, 50: 512-42.
- 97. Pelgrift RY, Friedman AJ. (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. *Adv Drug Deliv Rev*, 65: 1803-15.
- 98. Pham JN, Bell SM, Lanzarone JY. (1991) Biotype and antibiotic sensitivity of 100 clinical isolates of Yersinia enterocolitica. *J Antimicrob Chemother*, 28: 13-8.
- 99. Philippe J, Gallet B, Morlot C, Denapaite D, Hakenbeck R, Chen Y., Vernet T., Zapun A. (2015) Mechanism of beta-lactam action in *Streptococcus pneumoniae*: the piperacillin paradox. *Antimicrob Agents Chemother*, 59: 609-21.
- 100. Pilevar Z, Hosseini H, Hajimehdipoor H, Shahraz F, Alizadeh L, Khaneghah AM, Mahmoudzadeh M. (2017) The anti-*Staphylococcus aureus* effect of combined *Echinophora platyloba* essential oil and liquid smoke in beef. *Food Technol Biotechnol*, 55: 117-24.
- 101. Pilevar Z, Hosseini H. (2013) Chemical composition, antimicrobial and antioxidant activity of Echinophora platyloba DC. *J Pharm Nutr Sci.*, 3: 270-83.
- 102. Pilevar Z, Hosseini H. (2017) Effects of starter cultures on the properties of meat products: A review. *Annu Res Rev Biol*, 17: 1-17.
- 103. Postma M, Backhans A, Collineau L, Loesken S, Sjölund M, Belloc C, Emanuelson U., Beilage EG., Nielsen E.O., Stärk K.D.C., Dewulf J. (2016) Evaluation of the relationship between the biosecurity status, production parameters, herd characteristics and antimicrobial usage in farrow-to-finish pig production in four EU countries. *Porcine Health Manag*, 2: 9.
- 104. Preston MA, Brown S, Borczyk AA, Riley G, Krishnan C. (1994) Antimicrobial susceptibility of pathogenic *Yersinia enterocolitica* isolated in Canada from 1972 to 1990. *Antimicrob Agents Chemother*, 38: 2121-4.

- 105. Read AF, Woods RJ. (2014) Antibiotic resistance management. *Evol Med Public Health*, 147: 1.
- 106. Riesenfeld CS, Schloss PD, Handelsman J. (2004) Metagenomics: genomic analysis of microbial communities. *Annu Rev Genet*, 38: 525-52.
- 107. Ruder WC, Lu T, Collins JJ. (2011) Synthetic biology moving into the clinic. *Science*, 333: 1248-52.
- 108. Sanghi DK, Tiwle R. (2018) A detail comprehensive review on vaccines. *Int J Res Dev Pharm Life Sci.*, 2014; 3: 887-95.
- 109. Sauguet L, Moutiez M, Li Y, Belin P, Seguin J, Le Du MH., Thai R., Masson C., Fonvielle M., Pernodet J.L Charbonnier B., Gondry M. (2011) Cyclodipeptide synthases, a family of class-I aminoacyl tRNA synthetase-like enzymes involved in non-ribosomal peptide synthesis. *Nucleic Acids Res.*, 39: 4475-89.
- 110. Schoeffield AJ, Williams HN, Turng B, Fackler WA Jr. (1996) A comparison of the survival of intraperiplasmic and attack phase Bdellovibrios with reduced oxygen. *Microb Ecol.*, 32: 35-46.
- 111. Schukur L, Geering B, Charpin-El Hamri G, Fussenegger M. (2015) Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. *Sci Transl Med*, 7: 318-201.
- 112. Sharifi-Rad J, Hoseini-Alfatemi SM, Sharifi-Rad M, Setzer WN. Chemical Composition, Antifungal and Antibacterial Activities of Essential Oil from Lallemantia Royleana (Benth. in Wall.) Benth. J Food Saf., 2015; 35(1): 19-25. doi: 10.1111/jfs.12139
- 113. Sharifi-Rad J, Hoseini-Alfatemi SM, Sharifi-Rad M, Setzer WN. (2015) Chemical Composition, Antifungal and Antibacterial Activities of Essential Oil from Lallemantia Royleana (Benth. in Wall.) Benth. *J Food Saf.*, 35: 19-25.
- 114. Sivapuram PVRK, Sano D, Srivastava N. (2010) Food Safety in the Asia-Pacific Region: Current status, policy perspectives and a way forward. In: Sustainable Consumption and Production in the Asia-Pacific Region: Effective Responses in a Resource Constrained World, Institute for Global Environmental Strategies, White Paper III. Hayama, Japan: *Institute for Global Environmental Strategies*, 21538.
- 115. Smanski MJ, Zhou H, Claesen J, Shen B, Fischbach MA, Voigt CA. (2016) Synthetic biology to access and expand nature's chemical diversity. *Nat Rev Microbiol*, 14: 135-49.
- 116. Sockett RE, Lambert C. (2004) Bdellovibrio as therapeutic agents: a predatory renaissance? *Nat Rev Microbiol*, 2: 66975.

- 117. Staley C, Dunny GM, Sadowsky MJ. (2014) Environmental and animal-associated enterococci. *Adv Appl Microbiol*, 87: 147-86.
- 118. Stokes HW, Gillings MR. (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. *FEMS Microbiol Rev.*, 35: 790–819.
- 119. Thaker MN, Wright GD. (2015) Opportunities for synthetic biology in antibiotics: expanding glycopeptide chemical diversity. *ACS Synth Biol*, 4: 195-206.
- 120. Thorley AJ, Ruenraroengsak P, Potter TE, Tetley TD. (2014) Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium. *ACS Nano*, 8: 11778-89.
- 121. Tsuruoka N, Beppu Y, Koda H, Doe N, Watanabe H, Abe K. (2012) A DKP cyclo(L-Phe-L-Phe) found in chicken essence is a dual inhibitor of the serotonin transporter and acetylcholinesterase. *PLoS One*, 7: e50824.
- 122. Urban C, Segal-Maurer S, Rahal JJ. Considerations in control and treatment of nosocomial infections due to multidrug-resistant Acinetobacter baumannii. Clin Infect Dis., 2003; 36: 1268-1274.
- 123. USDA. (1999) Part III: Health management and biosecurity in US feedlots.
- 124. Uyemura K, Dhanani S, Yamaguchi DT, Song MK. (2010) Metabolism and toxicity of high doses of cyclo (his-pro) plus zinc in healthy human subjects. *J Drug Metab Toxicol*, 1: 105.
- 125. Van den Bogaard AE, Stobberingh EE. (2000) Epidemiology of resistance to antibiotics. Links between animals and humans. *Int J Antimicrob Agents*, 14: 327-35.
- 126. Verraes C, Van Boxstael S, Van Meervenne E, Van Coillie E, Butaye P, Catry B, de Schaetzen M.A., Van Huffel., X., Imberechts H., Dierick K., Daube G., Saegerman C., De Block J., Dewulf J., Herman L. (2013) Antimicrobial resistance in the food chain: a review. *Int J Environ Res Public Health*, 10: 2643-69.
- 127. Wang X, Li Y, Zhang X, Lai D, Zhou L. (2017) Structural diversity and biological activities of the cyclodipeptides from fungi. *Molecules*, 22: 12.
- 128. Waters CM, Bassler BL. (2005) Quorum sensing: cellto-cell communication in bacteria. *Annu Rev Cell Dev Biol*, 21: 319-46.
- 129. Watts JL, Sweeney MT, Lubbers BV. (2018) Antimicrobial susceptibility testing of bacteria of veterinary origin. *Microbiol Spectr*, 6: 2.
- 130. Wellington EM, Boxall AB, Cross P., Feil E.J., Gaze W.H., Hawkwey P.M., Johnson-Rollings A.S., Jones D.L., Lee N.M., Otten W., Thomas C.M., Williams A.P. (2013) The

- role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. *Lancet Infect Dis.*, 13: 155–165.
- 131. Werner G, Coque TM, Franz CM, Grohmann E, Hegstad K, Jensen L, van Schaik W., Weaver K. (2013) Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. *Int J Med Microbiol*, 303: 360-79.
- 132. Woolhouse M, Ward M, van Bunnik B, Farrar J. (2015) Antimicrobial resistance in humans, livestock and the wider environment. *Philos Trans R Soc Lond B Biol Sci.*, 370: 2014-0083.
- 133. World Health Organization (WHO). (2015) World health statistics 2015. Geneva: WHO.
- 134. Zacharof MP, Lovitt RW. (2012) Bacteriocins produced by lactic acid bacteria a review article. *APCBEE Procedia*, 2: 506.