

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 10, Issue 5, 336-346.

Review Article

ISSN 2277-7105

A REVIEW ON DEVELOPED AND VALIDATED METHOD FOR MONTELUKAST SODIUM AND BILASTINE FROM PURE AND IT'S PHARMACEUTICAL DOSAGE FORM

Annasaheb R. Kudhekar*, Nachiket S. Dighe and Amol S. Dighe

Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy, Pravaranagar, Loni Tal. Rahata Dist. Ahmednagar (Maharashtra) India 413735.

Article Received on 22 Feb. 2021,

Revised on 14 March 2021, Accepted on 04 April 2021

DOI: 10.20959/wjpr20215-20262

*Corresponding Author Annasaheb R. Kudhekar

Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy, Pravaranagar, Loni Tal. Rahata Dist. Ahmednagar (Maharashtra)

India 413735.

ABSTRACT

Nowadays, many anti-allergic drugs are emerging in the market. One of them is combination of Montelukast Sodium and Bilastine. Both are different in their mode of action. Montelukast Sodium is a leukotriene receptor antagonist and Bilastine is a selective histamine H1 receptor antagonist. The aim of this article is to study the previously reported various analytical techniques for the determination of Montelukast Sodium and Bilastine. There are various techniques for estimation of drug such as RP-HPLC, UV spectroscopy, MS, etc. The RP-HPLC is the most accurate and easy method for estimation.

KEYWORDS: Montelukast Sodium, Bilastine, RP-HPLC, etc.

INTRODUCTION

Cysteinyl leukotriene and histamine are the potent inflammatory mediators which are involved in both the asthma and seasonal allergic rhinoconjunctis (SARC). A combination therapy of Montelukast Sodium and Bilastine may provide additive benefits. The combination therapy is superior to the Bilastine monotherpay in the reduction of the SARC symptoms and also improving the asthma quality of life over a longer period of time. Allergic rhinitis and asthma is a most common immunomediated diseases over the worldwide. Asthma is a chronic inflammatory disease of airway in which the obstruction to air flow. AR is the allergens induced disease which can causes the inflammation to the upper airway. Bilastine is a novel drug belonging to the oral second generation antihistamines. It is approved in India in February 2019 by DCGI. Bilastine is a non- sedating drug approved for the symptomatic treatment in patients with allergic disorders. Montelukast was firstly approved in USFDA in 1998 as a brand name Singulair. It shows its action by blocking the action of leukotriene D4 in the lungs that results in reducing the inflammation and relaxation of smooth muscle.

Drug profile

$Montelukast\ sodium^{[1,5,19,23]}$

Montelukast Sodium is a monosodium salt which is a synthetic leukotriene receptor antagonist which is used as a anti-asthmatic agent. It is a selective and potent antagonist of cysteinyl leukotriene. It is used in the treatment of asthma as well as seasonal allergies in children and adults. Montelukast Sodium is a systemically active drug which can shows two mechanism of action i.e bronchodilator and anti-inflammatory.

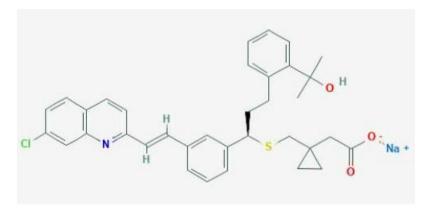


Fig. 1: Chemical structure of montelukast sodium.

Physicochemical properties^[22,23,21]

Sr.no	Parameters		
1	Molecular formula	C35H35ClNNaO3S	
2	Molecular weight	608.2 g/mol	
3	IUPAC name	sodium;2-[1-[[(1 <i>R</i>)-1-[3-[(<i>E</i>)-2-(7-chloroquinolin-2-	
		yl)ethenyl]phenyl]-3-[2-(2-hydroxypropan-2-	
		yl)phenyl]propyl]sulfanylmethyl]cyclopropyl]acetate	
4	Appearance	White to off white in colour	
5	Solubility	Methanol (freely soluble)	
		Ethanol (Freely Soluble)	
		Water (Freely Soluble)	
6	Melting point	145°C to 148 °C	
7	Class	Leukotriene receptor antagonist	
8	CAS no	151767-02-01	
9	Storage	Store at 25 °C	
10	Brand name	Singulair	

Mechanism of $action^{[20,21,22]}$

Leukotriene LTC4, LTD4, LTE4 are collectively called as cysteinyl leukotriene. These are the peptide conjugated lipids. That are the product of activated eosinophils, basophils, macrophages and mast cell. CySLT's are the product or derivatives of arachidonic acid CySLT's are synthesized by immunocyte in respiratory mucosa in presence of allergens. And it is also released by the immunocyte. CySLT's can bind to CySLT's receptor. These receptors are mostly found in airway smooth muscle cells and airway macrophages. Montelukast Sodium can competitively block the binding of CySLT's to receptor that why they can inhibit the binding of inflammation mediator LTD4.

$Pharmacokinetics^{[20,21,23]}\\$

Absorption

Orally administered Montelukast Sodium is rapidly absorbed. After orally administered 10 mg tablet reaching to the peak plasma concentrations is about 3 to 4 hours with bioavailability of 64 %. When 5 mg chewable tablets is administered then the Cmax is achieved 2 to 2.5 hours. When 4 mg chewable tablets are administered then the Cmax is achieved 2 hours.

Distribution

Most of the drug (more than 99 %) is bound to plasma proteins. The bounded drug is distributed across the blood brain barrier. About 8 to 11 liter, steady state volume of distribution of Montelukast Sodium.

Metabolism

It is extensively metabolised. Metabolism is generally occur in liver. The various enzyme like cytochrome P450 3A4 and 2CP are also involved in the metabolism of Montelukast.

Excretion

Generally, excretion occurs in bile with half life from 2.7 to 5.5 hours in healthy person.

Bilastine^[8,18,23]

Bilastine is a novel drug which belongs to the class of anti-histamine. It is a second generation histamine H1 receptor antagonist which is used in the treatment of allergic reaction. It is also used in the treatment of chronic urticaria. Bilastine is work based on the blocking of histamine receptor. Bilastine is chemically similar to piperidinyl-benzimidazol.

Faes farma, Spain can developed the Bilastine. It is a safe and effective non-sedating H1-antihistamine approved for the treatment of rhinoconjunctis and urticaria.

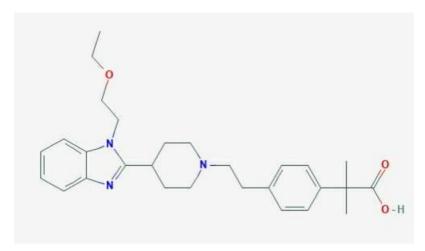


Fig. 2: Chemical structure of bilastine.

Physicochemical properties^[17,22,23]

Sr. no	Parameters		
1	Molecular formula	C28H37N3O3	
2	Molecular weight	463.6 g/mol	
3	IUPAC name	2-[4-(2-(4-(1-(2-ethoxyethyl)-1H-	
		benzimidazol-2-yl) piperidine-1-	
		yl)ethyl)phenyl]-2-methylpropionic acid	
4	Appearance	White crystalline powder	
5	Solubility	Methanol (Soluble)	
		Acetonitrile (Slightly Soluble)	
		Water (Slightly Soluble)	
6	Melting point	195°C	
7	Class	Anti – histamine	
8	CAS number	202189-78-4	
9	Brand name	Billasi	

Mechanism of action^[17,18,22,23]

Bilastine is a selective histamine H1 receptor antagonist. Bilastine having the antagonist property towards the H receptor. They having higher affinity towards histamine H1 receptor with minimal effect of receptor for other mediator. Bilastine having 3 and 5 fold greater affinity than centirizine and fexofenadine respectively. During the allergic reaction mast cell undergoes denaturation which release the histamine and other substances. By binding and preventing to the activation of H1 receptor they reduces the effect of allergic reaction because of release of tissue cell.

$Pharmacokinetics^{[17,18,22]}$

Absorption

Bilastine is rapidly absorbed after administring by oral route. The amount of absorption is proportional to the dose. The maximum plasma concentrations (Cmax) is around 1.3 hours. The oral bioavailability of drug is 61 %. When Bilastine is taken with grape juice Cmax is decreased by 30 %. When Bilastine is taken with low fat and high fat meal Cmax decreased 25 % and 33% as compared to fasted state. The anti-histaminic activity of drug shows within 30 min, and clinical effect persisting from 30 min. to 8 hours.

Distribution

About 84% to 90% of the Bilastine is bound to plasma proteins.

Metabolism

Bilastine does not interact as a inducer or as a inhibitors to the CYP450 isoenzymes. They does not show significant metabolism in human.

Excretion

After administration of the single dose of Bilastine 20 mg, approximately 95 % of Bilastine is excreated from body in the form of urine (28 %) and in faeces (67%) as a unchanged form of Bilastine. The elimination half-life of Bilastine is 14.5 hours in health volunteer.

Analytical method

This all method are use for the determination of Montelukast sodium and Bilastine. During the literature survey these all method were studied which are helpful to method development. The following are the previously reported analytical methods for estimation of the Montelukast Sodium and Bilastine Pharmaceutical dosage form and individual.

Previously reported analytical method

Sr. no	Title	Method	Description	References
1	Determination of	RP-HPLC	Column: Lichorosoval	[1]
	Montelukast Sodium in		octylsilyl column	
	Raw Material and		Dimensions: 250×4.6	
	Solid Dosage Form		mm, 5 um	
	Using Reverse Phase		Mobile phase:	
	HPLC		Acetonitrile: Sodium	
			acetate buffer (80 : 20)	
			Flow rate: 1 ml/ min	
			UV detection	

340

			wavelength: 350 nm	
2	RP-HPLC Method for	RP-HPLC	Column: Inertsil ODS	[2]
	the estimation of		C18 column	
	Montelukast Sodium in		Dimensions: 250×4.6	
	Pharmaceutical Dosage		mm, 5 um	
	Form		Mobile phase: Sodium	
			phosphate buffer (0.02	
			M): Methanol (85:15)	
			Flow rate: 1 ml/min	
			Retention time: 3.017	
			min.	
			UV detection: 218vnm	[3]
3	Newly Developed and	RP-HPLC and UV	Column: Princeton	[5]
	Validated Method of	spectroscopy	SPHER C18 column	
	Montelukast Sodium		Dimensions: 250 mm×	
	Estimation in Tablet		4.6 mm, 5u	
	Dosage Form by		Mobile phase:	
	Ultraviolet		Ammonium acetate:	
	Spectroscopy and		acetonitrile (25: 75 v/v)	
	Reverse Phase High Performance Liquid			
	Chromatography			
4	Development and	RP-HPLC	Column:	[4]
7	Validation of a RP-	Ki-Iii LC	Octadecylsilane column	
	HPLC Method for		Mobile phase: Sodium	
	Estimation of		acetate: acetic acid	
	Montelukast Sodium in		(90:10 v/v)	
	Bulk and in Tablet		Retention time: 3.4 min	
	Dosage Form		Detection: 285 nm	
5	Validated UV	UV Spectroscopy	Absorbance Maxima:	[5]
	Spectroscopy Method	1 17	286.5 nm	
	for Estimation of			
	Montelukast Sodium			
6	Validated UV	UV Spectroscopy	Absorbance Maxima:	[6]
	Spectroscopic Method		287 nm	
	for Estimation of		Dilution media:	
	Montelukast Sodium		Phosphate buffer (pH	
	from Bulk and Tablet		7.4) and Sodium laurel	
	Formulation		sulphate (0.5%)	[7]
7	Validated	Spectrophotometry	N- Bromimosuccinimide	[/]
	Spectrophotometric		as a oxidant	
	Methods for		Methylene blue,	
	Determination of		amaranth and indigo	
	Montelukast Sodium in		carmine are due.	
	Pure and Dosage form		Absorbance: 664 nm,	
	using N- Bromimosuccinimide		520 nm and 610nm.	
	and dyed.			
8	Development and	UPLC	Column: Phenomenex	[8]
0	validation of stability		C8	
	varidation of stability		CO	

www.wjpr.net | Vol 10, Issue 5, 2021. | ISO 9001:2015 Certified Journal | 341

	l l l l IIDI G	T	D:	
	indicating UPLC		Dimensions: Sodium	
	Method for the		phosphate buffer:	
	estimation of Bilastine		Methanol: acetonitrile	
	in bulk and		(60:30:10 v/v/v)	
	Pharmaceutical Dosage		Flow rate: 0.5 ml/min	
	Form		Retention time: 1.19	
			min	
			UV detection:248 nm	
9	Method Development	RP-HPLC	Column: Inertsil ODS	[9]
	and Validation of New	iu iii ii	C18	
	RP-HPLC Method for		Dimensions:	
	Estimation of Bilastine		250mm×4.6mm,5 u	
	in Pharmaceutical		· · · · · · · · · · · · · · · · · · ·	
			Mobile phase:	
	Dosage Form		Methanol: Acetonitrile	
			(60:40)	
			Flow rate: 1.2 ml/min	
			Retention time: 2.8 min	
			Run time: 6 min	F1.01
10	Application of	HILIC	Column: Luna HILIC	[10]
	Analytical Quality by		Dimensions:	
	Design concept for		100mm×4.6mm, 5 um	
	Bilastine and it's		Mobile phase:	
	degradation impurities		Acetonitrile: glacial	
	determination by		acetic acid (90.5:9.5)	
	hydrophilic interaction		Flow rate: 1 ml/min	
	liquid chromatographic		Detection wavelength:	
	method		275 nm	
11	Method Development	HPLC	Column: Phenomenex	[11]
11	and Validation of		C18	
	Bilastine by HPLC		Dimensions: 150mm×	
			4.6 mm, 5um	
			Mobile phase: Buffer:	
			Acetonitrile: Methanol (
			45:25:30)	
			Flow rate: 1 ml/ min	
			Run time: 10 min	
			Detection wavelength:	
			254 nm	
12	Stability indicating	UPLC	Column: CSH Phenyl-	[12]
	Method Development		hexyl column	
	and Validation For the		Dimensions: 2.1 mm×	
	Determination of		150 mm, 1.7 u	
	Bilastine and it's		Mobile phase: 0.05%	
	Impurities by UPLC		TFA + Water and 0.05%	
	Method		TFA + acetonitrile	
	MICHION		Flow rate: 0.10 ml/min	
			Detection wavelength:	
10	A 1 .	* * * * * * * * * * * * * * * * * * * *	275 nm	[13]
13	Analytical method	UV	Wavelength Maxima for	[10]
	development and	spectrophotometry	Bilastine is 214 nm and	

www.wjpr.net | Vol 10, Issue 5, 2021. | ISO 9001:2015 Certified Journal | 342

validation for		for Montelukast Sodium	
simultaneous		is 218 nm in methanol.	
estimation of Bilastine			
and Montelukast			
Sodium by UV			
spectrophotometry.			
14 A new stability	RP-HPLC	Column: Phenomenex	[14]
indicating RP-HPLC		Gemini C18 column	
method for		Dimensions: 150×4.60	
determination of		mm, 5 um	
Bilastine in bulk and		Mobile phase: Formic	
Pharmaceutical		acid: Methanol (50:50)	
formulation		Flow rate: 0.8 ml / min	
		Detection wavelength:	
		282 nm	
		Retention time: 2.167	
		nm	
15 Degradation kinetics of	RP-HPLC	Column: water	[15]
Bilastine determined		symmetry C18 column	
by RP-HPLC method		Dimensions: 250×4.6	
and identification of		mm, 5um	
it's degradation		Mobile phase:	
products in oxidative		Acetonitrile: Phosphate	
condition		buffer (30: 70)	
16 Development and	RP-HPLC	Column: C18 column	[16]
validation of RP-HPLC		Dimensions: 250×4.6	
method for estimation		mm	
of the Bilastine from		Mobile phase:	
Bulk and formulation		Methanol:	
		Orthophospharic acid	
		buffer (70:30)	
		Flow rate: 0.8 ml/min	
		Detection wavelength:	
		280 nm	
		Retention time: 3.280	
		min	
		Run time: 40 min	

CONCLUSION

In this article, we review the information about the previously reported analytical methods for analysis of Montelukast sodium and Bilastine in their bulk and Pharmaceutical dosage form. Most of techniques having the flow rate is 0.8- 1.2 min/ ml. Mainly this article gives the basic knowledge and information which is required for the development of new analytical methods for Montelukast Sodium and Bilastine.

ACKNOWLEDGMENTS

Author are specially thankful to Pravara rural college of pharmacy, Pravaranagar Loni to provide the library facilities for collecting the information regarding Montelukast sodium and I.

REFERENCES

- 1. Syed Saeed-Ul-Hassan, Ahsan-Ul-Ather, Muhammad Tayyab Ansari, Sabiha Karim, Determination of Montelukast Sodium in Raw Material and Solid Dosage Form Using Reverse Phase HPLC, Asian Journal of Chemistry, 2013; 25(13): 7481-7484.
- 2. Shanmukha Kumar J.V., Ramachandran D., Vijaya Saradhi S., RP-HPLC Method for the estimation of Montelukast Sodium in Pharmaceutical Dosage Form, Current treads in biotechnology and pharmacy, 2010; 4(4): 943-946.
- 3. Selvadurai Muralidharan, Low Jia Qi, Lai Ting Yi, Narvinder Kaur, Subramani Parasuraman, Jayaraja Kumar, Vijayan Venugopal, Palanimuthu Vasanth Raj, Newly developed and validated Method of Montelukast Sodium Estimation in Tablet Dosage Form by Ultraviolet Spectroscopy and Reverse Phase High Performance Liquid Chromatography, PTB report, 2016; 2(2): 27 - 30.
- 4. R. M. Singh, P.K. Saini, S. C. Mathur, G. N. Singh, B.Lal, Development and validation of a RP-HPLC method for estimation of Montelukast Sodium in bulk and in Tablet Dosage Form, Indian Journal of pharmaceutical sciences, 2010; 72(2): 235-237.
- 5. Kuldeep Singh, Paramdeep Bagga, Pragati Shakya, Arun Kumar, M. Khalid, J. Akhtar, M. Arif, Validated UV Spectroscopic Method for Estimation of Montelukast Sodium, International Journal of Pharmaceutical Science and Research, 2015; 6(11): 4728-4732.
- 6. K. Pallavi, P. Shrinivasa Babu, Validated UV Spectroscopic Method for Estimation of Montelukast Sodium from Bulk and Tablet Formulation, International Journal of Advance in Pharmacy, Biology and Chemistry, 2012; 1(4): 450-453.
- 7. Ragaa el-Shaikh, Wafaa S. Hassan, Rowaida A. Fahmy, Ayman A. Gouda, Validated spectrophotometric method for determination of Montelukast Sodium in pure and dosage form using N-bromosuccinimide and dyes, International Journal of Applied Pharmaceutics, 2020; 12(4): 152-159.
- 8. Shaista Firdous, Dr. S. H. Rizwan, Development and Validation of stability indicating UPLC Method for the estimation of Bilastine in bulk and pharmaceutical dosage form, International Journal of pharmaceutical sciences review and research, 2020; 65(1): 131-135.

- V. Amarendra Chowdary, Anusha Kota, Syed Muneer, Method Development and Validation of New RP-HPLC Method for Estimation of Bilastine in Pharmaceutical Dosage Form, World journal of Pharmacy and Pharmaceutical sciences, 2017; 6(8): 2297-2315.
- 10. Jelena Terzic, Igor Popovic, Ana Stajic, Anja Tumpa, Biljana Jancic-Stojanovic, Application of Analytical Quality by Design concept for Bilastine and it's degradation impurities determination by hydrophilic interaction liquid chromatographic method, Journal of Pharmaceutical and Biomedical Analysis, 2016; 385-393.
- 11. Prasant Sharma, Dr. Shivkumar Gupta, Mr. Nishant Kumar, Dr. Meenakshi Dahiya, Mr. Priyanka Nagar, Method Development and Validation of Bilastine by HPLC, International Journal of Advance Science and Technology, 2020; 29(7): 13751-13758.
- 12. Rambabu Katta, N. N. V. V. S. S. Narayana Murthy, Ramasrinivas, G.N. Rao, Stability indicating method development and validation for the determination of Bilastine and it's impurities by UPLC Method, International Journal of pharmaceutical sciences and research, 2020; 11(3): 1312-1321.
- 13. R. Mohan Raj, A. S. K. Shankar, T. Vemichelvaa, Analytical method development and validation for simultaneous estimation of Bilastine and Montelukast Sodium by UV spectrophotometry, World journal of Pharmacy and Pharmaceutical sciences, 2021; 10(1): 680-687.
- 14. Peethala Prathyusha, Raja Sundararjan, Palyam Bhanu, Mathrusri Annapurna Mukthinuthalapati, A new stability indicating RP-HPLC method for determination of Bilastine in bulk and pharmaceutical formulations, Research journal of Pharmacy and Technology, 2020; 13(6): 2849-2853.
- 15. Radia Ouarezki, Saliha Guermouche, Moulay Hassane Guermouche, Degradation kinetics of Bilastine determined by RP-HPLC method and identification of it's degradation products in oxidative condition, Chemical paper, 2020; 14: 1133-1142.
- 16. Pardeshi P.P., Gaware. V. M., Dhamak.K. B., Development and validation of RP-HPLC method for estimation of the Bilastine in bulk and formulation, Asian Journal of pharmaceutical sciences, 2020; 10(2): 109-111.
- 17. Kandukuri Rekha, R. Aruna, Dr. Rinku Mathappan, Dr. Mekkanti Manasa Rekha, S. Karthik, Formulation and development of Bilastine tablet 20 mg, World journal of pharmaceutical research, 2019; 8(7): 2197-2224.
- 18. Dr. Varsha Narayanan, Bilastine, The Indian practitioner, 2019; 72(5): 45-47.

- 19. Zuzana Diamant, Eva Mantzouranis, Leif Bjermer, Montelukast in the treatment of asthma and beyond, Expert Rev. Clin. Immunol, 2009; 5(6): 639-658.
- 20. Michael S. Montelukast: Pharmacology, Safety, Tolerability and Efficacy, Clinical medicine: Therapeutic, 2009; 1: 1253-1261.
- 21. Singulair, Merck and co., Inc. Whitehouse station, NJ 08889, USA.
- 22. http://go.drugbank.com
- 23. http://pubchem.ncbi.nlm.nib.gov