

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

Coden USA: WJPRAP

Impact Factor 8.453

Volume 14, Issue 23, 1053-1059.

Review Article

ISSN 2277-7105

A REVIEW ARTICLE ON ANALYTICAL METHODS FOR DRUG: IMEGLIMIN HYDROCHLORIDE

Bhavya Modi*, Dr. Nidhi Chauhan, Mansi Sutaria, Samiya Diwan, Khan Kaif, Kher Mitrajsinh

Laxminarayandev College of Pharmacy, Jay Ambe International School, Besides, Narayan Kunj Vihar Society, Bholav, Bharuch, Gujarat 392012.

Article Received on 05 Nov. 2025, Article Revised on 25 Nov. 2025, Article Published on 01 Dec. 2025,

https://doi.org/10.5281/zenodo.17789645

*Corresponding Author Bhavya Modi

Laxminarayandev College of Pharmacy, Jay Ambe International School, Besides, Narayan Kunj Vihar Society, Bholav, Bharuch, Gujarat 392012.

How to cite this Article: Bhavya Modi*, Dr. Nidhi Chauhan, Mansi Sutaria, Samiya Diwan, Khan Kaif, Kher Mitrajsinh (2025). A Review Article On Analytical Methods For Drug: Imeglimin Hydrochloride. World Journal of Pharmaceutical Research, 14(23), 1053–1059. This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Imeglimin Hydrochloride is a novel oral antidiabetic agent belonging to the glimins class, designated to target multiple pathways involved in T2DM. This article is a critical examination of the numerous analytical techniques such as the UV spectroscopy method, RP-HPLC, HPTLC, LC-MS methods as well as stability indicating methods that have been demonstrated. This study encompasses, the range of absorbance 237-420nm, solvents like dist water, MeOH, TFAA, phosphate buffers, acetone, toluene, ACN, formic acid, etc and flow rate is achieved between 0.5-1.5ml/min and retention time is range from 0.61-15 min.

KEYWORDS: Imeglimin Hcl, UV, HPLC, HPTLC, LC-MS method, etc.

INTRODUCTION

An Antidiabetic medicine is any drug that helps lower high

blood sugar situations, a hallmark of diabetes mellitus. Diabetes arises from the body's incapability to produce or effectively use insulin, a hormone vital for controlling blood glucose situations.

There are two main types: Type 1 Diabetes & Type 2 Diabetes.

Type 1 diabetes happens when your body does not make insulin, a hormone that helps your cells use sugar for energy. It generally begins in the nonage or youthful majority, and people

<u>www.wjpr.net</u> Vol 14, Issue 23, 2025. ISO 9001: 2015 Certified Journal 1053

Modi et al.

with Type 1 diabetes have to take insulin every day to stay healthy. Type 1 diabetes, counting for 5- 10% of cases, results from the vulnerable system attacking and destroying pancreatic beta cells, taking insulin remedy for operation.

Type 2 diabetes is more common and frequently begins later in life. With Type 2, your body either does not make enough insulin or cannot use it effectively. This can be managed with life changes like healthy eating, exercise, and occasionally drugs. Type 2 diabetes, comprising 85- of cases, generally affects grown-ups but can do at any age. In type 2 diabetes, the pancreas produces insulin, and the cells within the body turn resistant to insulin, hence its effects on an increase in the blood sugar situations. The cell resistance means insulin is less responsive to the uptake of glucose within the cells therefore taking other medical interventions that are life, oral medicines, or indeed insulin.

Imeglimin Hydrochloride, this is one recently approved oral anti-diabetic medicines under the order of "Glimins" class. Chemical formula(R)-6-imino-N, -tri methyl Hydrochloride having a molecular formula of $C_6H_{14}ClN_5$, importing 191.66 g/ spook. Imeglimin.

This medicine acts substantially on mitochondria It improves their energy product and protects the pancreatic β cells. It reduces liver glucose generation, increases insulin stashing from the pancreatic cells, and improves glucose uptake by the muscles. Hence, Imeglimin targets the root problem in type 2 diabetes mellitus, which is an abecedarian cellular complaint in energy metabolism.^[1]

IMEGLIMIN HCL

Imeglimin Hydrochloride (HCl) is an oral medication used in type 2 diabetes mellitus, belonging to the novel class of drugs known as glimin derivatives. It affects mitochondrial bioenergetics that enhance insulin sensitivity, increase secretion of insulin, and decrease the production of hepatic glucose.

Class: Imeglimin is an agent in a new class of antidiabetic drugs called glimins.

Mechanism of Action: It acts through improvement of mitochondrial function, increase in insulin secretion, and reduction of insulin resistance. This drug also reduces glucose production in the liver and increases glucose uptake in muscles.

Indication: This primarily is used to manage type 2 diabetes mellitus.

Advantages

- This has a different mechanism compared to other known antidiabetic agents.
- May be useful for patients who have both insulin resistance and beta-cell dysfunction.
- Usually well-tolerated with less risk of hypoglycaemia.

Side Effects: The most common side effects are gastrointestinal in nature, including nausea, diarrhoea, and abdominal discomfort.^[2]

Table 1: Drug profile.^[3]

Chemical formula	$C_6H_{14}ClN_5$			
Category	an oral antidiabetic drug used in the treatment of type 2 diabetes			
IUPAC	(4R)-6-N,6-N,4-trimethyl-1,4-dihydro-1,3,5-triazine-2,6-diamine hydrochloride			
CAS NUMBER	775351-61-6			
CDSCO approval	As of now, there is no publicly available information regarding the approval of Imeglimin hydrochloride by the Central Drugs Standard Control Organization (CDSCO) in India			
Chemical structure				
Molecular weight	191.66 g/mol			
Appearance	white to off-white solid			
pKa	10.21			
Solubility	≥29.9 mg/ml in DMSO ≥50.3 mg/ml in ethanol ≥62.7 mg/ml in water			
Pharmacokinetic	Absorption: Rapidly absorbed Metabolism: Minimal hepatic metabolism Excretion: Primarily renal Half-life: Approximately 18-20 hours			
Brand Name	Twymeeg Tablets 500 mg			
Dosage Form	Film-coated tablets, each containing 500 mg of Imeglimin Hydrochloride			
Route	Oral			
Melting point	223-225°C			
Combination with other drugs	None			

REPORTED METHOD FOR ESTIMATION OF IMEGLIMIN HCL

Drug	Method		Description	Ref	
IME	UV method		Solvent: distil water	[4]	
HCL			λ max: 237nm		
IME			Solvent: alizarine red s (ARS), bromophenol		
HCL UV method			blue (BPB) and methyl orange (MO)	[5]	
IICL			λ max: 410, 420 and 420nm, respectively		
	RP-HPLC method		Stationary phase: Phenomenox C18 (250 mm	[6]	
IME			X 4.6 mm, 5 μm) column		
			Mobile phase: MeOH: 0.05% TFAA		
HCL			(20:80% v/v)		
IICL			λ max: 240 nm		
			flow rate: 1 ml/min		
			retention time: 0.983 min		
	RP-HPLC method		Stationary phase: Agilent C18		
			Mobile phase: MeOH: 0.1% OPA (40:60%		
IME			(v/v)	[7]	
HCL			λ max: 240nm		
			flow rate: 0.7ml/min		
			retention time: 4.718 min		
			Stationary phase: BRISA LC ² C18 (25mm x		
			0.46mm, 5 μm)		
IME	DD LIDI C	- 1	Mobile phase: MeOH: phosphate buffer	[8]	
HCL	RP-HPLC method		(10mM) pH 6 (80:20% v/v)	[O]	
			λ max: 243nm		
			flow rate: 1ml/min retention time: 3.097 min		
	HPTLC method		Stationary phase: Merck TLC plates precoated with silica gel 60 F254 (10 cm ×	[9]	
			10 cm with a 250 μ m)		
IME			Mobile phase: acetone: MeOH: toluene:		
HCL			formic acid (4:3:2:1% $v/v/v/v$)		
			δ max: 244nm		
			retention time: 0.61 min		
	Stability indicating RP-HPLC				
	method		Stationary phase: Credchrom C18 column		
	Stress	0/ D 1 1	(250mm x 4.6mm x 5μm)		
T) (E)	Conditions	% Degraded	Mobile phase: Phosphate Buffer: ACN		
IME HCL	Acidic	6.19	(80:20% v/v)	[1]	
	Alkali	24.93	λ max: 241nm		
	Oxidation	17.50	flow rate: 1 ml/min		
	Light	10.01	retention time: 2.5 min		
	Thermal	0			
	Stability indicating LC-		Stationary phase: Xtimate C-18 column		
	ESI/APSI-MS method		Mobile phase: 10 mM Ammonium format		
IME HCL	Stress %		buffer (pH 3): MeOH (75:25% v/v)	[10]	
	Conditions	Degraded	λ max: 234 nm	[-0]	
	Acidic	1.63	flow rate: 0.8 ml/min		
	Basic 3.612		retention time: 15 min		
Basic 3.612		3.012	recention time. 13 mm	<u> </u>	

<u>www.wjpr.net</u> | Vol 14, Issue 23, 2025. | ISO 9001: 2015 Certified Journal | 1056

	Oxidation	3.685		
	Photolytic	7.7		
	Thermal	1.25		
	Stability indicating RP-		G: 1 H .: 11.0DG //150	
IME HCL	UHPLC method			
	Stress	%	Stationary phase: Hypersil gold ODS ((150 x 4.6 mm, 3µm) Mobile phase: Water: ACN (15:85% v/v) \$\lambda\$ max: 240 nm flow rate: 1 ml/min retention time: 3.831 min	[11]
	Conditions	Degraded		
	Acidic	4.9		
	Alkali	0		
	Oxidation	10.7		
	Photolytic	5.7		
	Thermal	0		
	Stability indicating HPLC method		Stationary phase: Thermo hypersile BDS	
	Stress Conditions	% Degraded	C18 reversed phase column (150 mm × 4.6 mm, particle size 5 μm) Mobile phase: MeOH: 0.05M phosphate buffer pH 3.0 (20:80% v/v) λ max: 240 nm flow rate: 1.5 ml/min retention time: 2.9 min	[12]
IME	Acidic	2.64		
HCL	Alkali	8.77		
	Oxidation	14.83		
	Photolytic	1.18		
	Thermal	2.65		
IME HCL	LC-MS Method		Stationary phase: Chiralpak IG-3 (100 × 4.6 mm, 3 µm) Mobile phase: MeOH: 10 mM ammonium acetate (95:5% v/v) flow rate: 0.5 ml/min	[13]
HCL			retention time: 5 min	

CONCLUSION

The analytical techniques for the quantification and characterization of Imeglimin HCl are essential for maintaining its quality, efficacy, and safety. Several techniques, such as chromatographic (HPLC, UPLC), UV spectroscopic, and mass spectrometric (LC-MS) techniques, have been utilized for its analysis in bulk and pharmaceutical formulations. These techniques provide high sensitivity, selectivity, and accuracy for the detection and quantification of Imeglimin HCl in various matrices. Nevertheless, additional improvements in method development, such as green analytical techniques and hyphenated methods, can improve efficiency and sustainability of drug analysis. The future should be directed toward validating these methods under various conditions to provide robust and reliable measurement of Imeglimin HCl in pharmaceutical and biological matrices.

REFERENCE

- 1. Form, H. I. P. D. Stability indicating RP-HPLC method development and validation for Imeglimin Hcl in pharmaceutical dosage form.
- 2. Megan Giruzzi; Imeglimin. Clin Diabetes, 1 October 2021; 39 (4): 439–440.
- 3. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 54763513, Imeglimnin Hydrochloride.
- 4. Tamil Selvan, R., Senthilkumar, S. K., Elakkiya, A., Gayathri, M., Gokulraj, M., Hajima, H., & Hari Prakash, G. (2023). A Novel method development and Validation of imeglimin HCl by UV-visible spectroscopy. Int. J. in Pharm. Sci, 1(12): 852-859.
- 5. Gouda, A. A., Amin, A. S., Fahium, S., Mahdy, A. E. M. R., Elsaify, N. E., & Soliman, N. S. (2025). Spectrophotometric Methods for Quantitative Determination of Imeglimin HCl in Pure and Dosage Forms. Bulletin of Faculty of Science, Zagazig University, 2024(4): 190-200.
- 6. Chikhale, H., Ambekar, Y., Avhad, S., & Borse, L. (2024). Development and validation of RP-HPLC method for determination of antidiabetic drug (Imeglimin HCl) in bulk and its dosage form. Journal of Chemical Health Risks, 14(4): 675-685.
- 7. Jahagirdar, S., Godge, R., Vikhe, S., & Bornare, S. (2024). Estimation of Imeglimin in pharmaceutical tablets by RP-HPLC. International Journal of Drug Delivery Technology, 14(2): Article 19. doi:10.25258/ijddt.14.2.19.
- 8. Mubeen, G., Navali, S., & Lalitha, N. (2024). RP-HPLC Method for Determination of Imeglimin Hydrochloride in Bulk and Tablet Formulation. Asian Journal of Pharmaceutical Research and Development, 12(4): 92-96.
- 9. Kumar, K. S., Arokia Raj, M. S., Arivukkarasu, R., Kiruthiga, N., & Dhinesh Kumar, S. (2024). Method development and validation of Imeglimin Hydrochloride using highperformance thin-layer chromatography in bulk and tablet dosage form. International Journal of Pharmaceutical Sciences, 2(8): 3445-3453.
- 10. Talati, A. S., & Dave, H. N. (2024). Forced Degradation Studies and Assessment of Degradation Products of Imeglimin Hydrochloride Using Lc-Esi/Apci-Ms. Rasayan Journal of Chemistry, 17(4).
- 11. Jain, A., Soni, L. K., & Sharma, R. (2023). Development and Validation of Stability Indicating Rp-Uhplc Method for The Estimation of Imeglimin Hydrochloride Used for The Treatment of Metabolic Disorder Diabetes Mellitus. Int J App Pharm, 15(6): 211-217.

- 12. Amin, A. S., Mohamed, S. F., Gouda, A. A., & Mahdy, A. E. M. R. M. (2024). A rapid stability-indicating HPLC method for determination of imeglimin hydrochloride in pure and dosage forms. African Journal of Biological Sciences, 6(2): 2600-2611.
- 13. Ramalingam, S., Subramania, M. N., Basuvan, B., Jaganathan, R., Dhavamani, A. J., Kandukuri, N. K., & Bodduna, S. (2023). A sensitive direct chiral liquid chromatography tandem mass spectrometry method for the enantio—Selective analysis of imeglimin in formulation. Journal of Applied Pharmaceutical Science, 13(7): 214-219.