

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 12, Issue 17, 890-908.

Research Article

ISSN 2277-7105

CHROMATOGRAPHIC METHOD DEVELOPMENT AND VALIDATION STABILITY-INDICATING TWO IMPURITIES AND ITS **DEGRADATION PRODUCTS IN TOFACITINIB ORAL SOLUTION** 1MG/ML

*M. Naresh Chandra Reddy, K. B. Chandra Sekhar and A. Kavitha

Department of Chemistry, Jawaharlal Nehru Technological University, Anantapur, India.

Article Received on 14 August 2023,

Revised on 03 Sept. 2023, Accepted on 24 Sept. 2023

DOI: 10.20959/wjpr202317-29802

*Corresponding Author M. Naresh Chandra Reddy

Department of Chemistry, Jawaharlal Nehru Technological University, Anantapur, India.

ABSTRACT

A Novel RPHPLC Quantification method was developed for estimation of Tofacitinib known impurities like its Amine impurity and Metabolite-1which, were separated on Waters Sunfire®C18, 50 x 4.6 mm, 5 µm (Part No.: 186002560). Using a mixture of Mobile phase-A: Buffer Solution pH 5.5/Acetonitrile = 90/10 (v/v) and Mobile phase-B: Acetonitrile/Buffer Solution pH 5.5 = 70/30 (v/v) as a gradient mobile phase with a flow rate of 1.2 ml/min; λ max at 210 nm. The developed method was validated all the parameters like linearity, specificity, LOD, LOQ, accuracy, robustness, ruggedness, precision, filter variation, solution stability and forced degradation studies.

KEYWORDS: Method development and validation, Tofacitinib,

Related substances, Stability-indicating, Oral solution.

INTRODUCTION

Tofacitinib is chemically

3-((3R,4R)-rel-4-Methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (fig. 1). (tofacitinib) is indicated for patients who have had an inadequate response or intolerance to one or more TNF blockers in adults with moderately to severely active rheumatoid arthritis (RA), active psoriatic arthritis (PsA), active ankylosing spondylitis (AS), or moderately to severely active ulcerative colitis (UC), and patients 2 years of age and older with active polyarticular course juvenile idiopathic arthritis (pcJIA). Limitations of Use: XELJANZ in combination with biological therapies or with potent immunosuppressants

is not recommended. Many techniques have been reported quantitave estimation including Spectrophotometric^[3-4], liquid chromatographic^[5-6], UPLC^[7], LC/MS method for human plasma.^[8]

Since no method has been developed for the separation and estimation of impurities in Tofacitinib Oral solution and the drug is being marketed in domestic and international market the present study by the author describes a rapid, accurate and precise RP – HPLC method for the estimation of known related impurities, i.e., Amine impurity impurity(3R,4R)-4-Methyl-3-(methyl-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-1-piperidine,Metabolite-1(3-[(3R,4R)-4-Methyl-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropanenitrile) and degrading products under stress conditions present in Tofacitinib Oral solution. The method was validated as per ICH guidelines.^[9]

EXPERIMENTAL

MATERIAL AND METHODS

Chromatographic Conditions

Waters system with empower software & photo diode array detector, Waters Sunfire column compartment connected with Empower software connected with a Waters Sunfire®C18, 50 x 4.6 mm, 5 µm.

Chemicals and reagents

Tofacitinib pure drug and impurities, Potassium Phosphate Monobasic (HPLC Grade), Potassium Hydroxide (HPLC Grade), 1-Octane Sulfonic Acid Sodium Salt (HPLC Grade), Acetonitrile (HPLC Grade), Methanol (HPLC Grade), Water USP Purified or Equivalent., was used in the present study. The oral solution formulations purchased from local market Hyderabad, India.

Mobile Phase

Buffer preparation: Dissolve about 2.72 g of Potassium Phosphate Monobasic and 1.0 g of 1-Octane Sulfonic Acid Sodium Salt into 1000 mL of water. Mix the solution well. Adjust the pH of the solution to 5.5 ± 0.05 with Diluted Potassium Hydroxide Solution. Filter the buffer solution through a 0.45 μ m membrane filter.

Mobile phase-A Preparation: Mix 900 mL of Buffer Solution pH 5.5 with100 mL of Acetonitrile. Mix well and degas for at least 10minutes.

Mobile phase-B Preparation Mix 700 mL of Acetonitrile with 300 mL of Buffer Solution pH 5.5. Mix well and degas for at least 10minutes.

The flow rate of the mobile phase was maintained at 1.2ml/min. The column temperature was maintained at 30°C and the detection was carried out at 210nm with an injection volume of 20µl.

Diluent

Mix 800 mL of Buffer Solution pH 5.5 with 200 mL of Acetonitrile, mix well and label as Diluent.

Standard solution preparation

Accurately weigh and transfer about 32.4 mg of Tofacitinib Citrate Standard into a 200-volumetric flask. Add diluent, sonicate (about 5 minutes) to dissolve, dilute to volume with diluent and mix well. The concentration is about 162 μ g/mL of Tofacitinib Citrate and about 100 μ g/mL of Tofacitinib.

Pipet 2.0 mL of Standard Stock Solution into a 200-mL Volumetric flask, diluted to the volume with diluent, mix well and label as Standard Solution. The concentration is about 1.62 μ g/mL of Tofacitinib Citrate and about 1.00 μ g/mL of Tofacitinib.

Placebo Preparation

Accurately weigh and transfer about 10.7 g of Tofacitinib Oral Solution placebo, 1 mg/mL into a 50-mL volumetric flask with aid of the diluent. Add diluent to about 70% volume of flask and sonicate for 5 minutes with intermittent shaking. Dilute to volume with diluent and mix well. Filter the sample solution through a 0.45 μ m Nylon syringe filter, discarding the first 5 mL of the filtrate prior to collecting the sample solution in HPLC vial for analysis.

Sample Preparation

Accurately weigh and transfer about 10.7 g of Tofacitinib Oral Solution, 1 mg/mL into a 50-mL volumetric flask with aid of the diluent. Add diluent to about 70% volume of flask and sonicate for 5 minutes with intermittent shaking. Dilute to volume with diluent and mix well. The concentration is about 200 μ g/mL of Tofacitinib.

Filter the sample solution through a $0.45~\mu m$ Nylon syringe filter, discarding the first 5~mL of the filtrate prior to collecting the sample solution in HPLC vial for analysis.

Impurities Calculation

```
% of Impurity = \frac{\text{Impurity Area x Standard weight x 1 x 100 x 1 x standard Potency}}{\text{Average Standard Area x 50 x 100 x sample weight x Label amount}} x RF
% of Total Impurities = Sum of % Individual impurities,
RF - Response Factor
```

RESULTS AND DISCUSSION

System Suitability

System suitability was evaluated from the standard solution preparation by injecting six times into the HPLC. The parameters measured were Theoretical plates, asymmetry, %RSD, the observed results asymmetry is about 1.2, theoretical plates about 50000, % RSD is 0.28 and the resolution between two peaks greater than 2.0 indicates the method suitable for related substances estimation.

Placebo and impurities interference

Interference from placebo and impurities was carried out by preparing the following specificity samples. Performed related substances on Placebo equivalent to the amount present in test preparation and injected into the chromatography. By preparing and inject impurities at 1.0 % of test concentration, by preparing active sample as per test concentration, by spiking the active sample with individual known impurities at 1.0% of test concentration. The above samples were injected and observed for any interference from blank and placebo at the retention time of analyte and known impurity peaks. This was further demonstrated by determining the peak purity of analyte and known impurity peaks. Since no interference of blank, placebo and known impurities was observed at the retention time of analyte. Individual impurity peaks are separated from the analyte peak. Peak purity of analyte peak and known impurity peaks are purity angle less than purity threshold, so the method is specific for Tofacitinib Oral solution.

Limit of Quantitation and Detection

The limit of quantitation (LOQ) and detection (LOD) were conducted on the basis of signal to noise ratio method. Different concentrations of impurities with sample solution were injected, LOQ established the values which give the signal to noise ratio about 10.0, for LOD

of impurities were established which give the signal noise ratio about 3.0; the results of both LOQ & LOD values were tabulated in Table-2.

Linearity and Detector Response

The linearity of detector response for impurities was demonstrated by prepared solutions of Lacosamide and its impurities over the range of LOQ to 200% level and the detector response was found to be linear and the correlation coefficient was more than 0.998, proves Tofacitinib and its impurities are linear, the results were tabulated in Table-3.

Establishment of RRT's and RF Values for Impurities

The RRT's and RF values were calculated from the linearity levels of 0.05%, 0.20%, 0.50% 0.75% and 1% i.e., 0.5%, 1.0% and 0.2.0% of test concentration. The RRT's and RF values were calculated and the results were tabulated in Table-4.

Precision

Six sample preparations representing a single batch were injected, the each impurity area were determined and the precision was evaluated, the %RSD of each impurity results was less than 10.0 indicates the method is precise, the results are tabulated in Table-4.

Intermediate Precision

The ruggedness of the method was injected six preparations of a single batch sample by different analyst (analyst-2), different column (column-2) and different instrument (instrument-2). The %RSD of each impurity was calculated; the results were less than 10.0. consider the precision results for analyst-1, column-1 and system-1, the mean %RSD values of both precision and intermediate calculated, the results were less than 15.0 shows the method is rugged and the results were tabulated in Table-4.

Accuracy

The accuracy of the test method was prepared recovery samples (i.e. test sample with known quantities of Amino hydroxide Impurity, Metabolite-1 and Keto Impurity) at the level of LOQ, 50%, 100%, 150% and 200% of target concentration, as the recovery results were found between 90 to 110% the method is accurate for the estimation of Tofacitinib Oral solution and its impurities over the range of LOQ to 200% level of target concentration and the results were tabulated in Table-5.

Robustness

The solution stability & mobile phase stability

The standard and sample solution kept for bench top, under refrigerator were injected initially, after 24 hours and 48 hours. The difference between initial, 24hrs and 48hrs of individual impurity less than 0.03% and total impurities less than 0.1% and the similarity factor after 24 hours and after 48 hours is between 0.95 to 1.05 indicates the solution is stable up to 48hrs and the results were tabulated in Table 8. for mobile phase stability the standard and sample solutions injected initially, after 24 hours and after 48 hours, a slight variation of parameters like theoretical plates, asymmetry and % RSD indicates the mobile phase is stable up to 48 hours.

Extraction time of analyte

The difference between as such condition and different extraction samples for % of individual impurity less than 0.03% and % of total impurities 0.1% found within the limits.

Filter variation

The filter variation was injected the test solution of centrifuged and filtered through 0.22μ nylon filter 0.45μ nylon filter and 0.22μ PVDF, 0.45μ PVDF filter and the difference between filtered portions of individual impurity less than 0.03% and total impurities were less than 0.1% with respect to centrifuged sample shows no effect of filter variation.

Effect of Column Temperature and Flow Variation

The standard preparation was injected under normal condition (i.e. as such condition) and of the altered conditions column temperature 30±5°C and flow rate 1.2±0.1ml the difference between as such for all changed conditions parameters like theoretical plates, asymmetry and % RSD within the limits proves the method is robust.

FORCED DEGRADATION CONDITIONS

Sample Name	Conditions
Control	Not Stressed
Acid Hydrolysis	2.5 mL of 0.5 N HCl, 60°C for 24 hours
Base Hydrolysis	2.5 mL of 0.1 N NaOH, Room Temperature for 2 hours
Water Hydrolysis	5.0 mL of Water, 60°C for 24 hours
Oxidation	5.0 mL of 3% H2O2, Room Temperature for 24 hours
UV/White Light	SUNTEST CPS+, Room Temperature for 8 hours
Elevated Temperature	60°C for 5 days

Table 1: HPLC Gradient Program.

Time (min)	Mobile phase A	Mobile phase B
0	82	18
22	82	18
32	65	35
42	65	35
45	82	18
50	82	18

Table 2: LOD & LOQ results.

			LOD RESULTS	LOQ RESULTS		
S. No	Name of the Component	S/N Ratio % level of component w.r.t to sample concentration		S/N Ratio	% level of component w.r.t to sample concentration	
1	Tofacitinib	2.94	0.0032	9.90	0.0115	
2	Amine impurity	2.82	0.0031	9.98	0.0113	
3	Metabolite-1	2.95	0.0035	9.99	0.0095	

Table 3: Linearity Results.

Compound Name	Correlation coefficient	Slope	Y- Intercept	Residual sum square	Residual standard deviation
Tofacitinib	0.9999	387590.17	2982.93	1.2910×10^9	18965
Amine impurity	1.0000	398692.33	-258.60	1.0861×10^9	17478
Metabolite-1	1.0000	365985.48	522.11	9.7337×10^8	15599

Table 4: Precision, Intermediate Precision, RF and RRT Results.

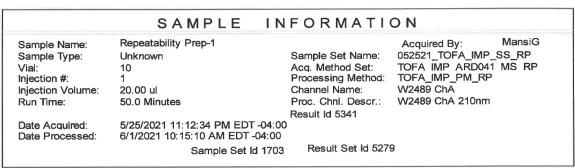
Parameter	Amine impurity	Metabolite-1
Precision(n=6)		
Tofacitinib	0.52	0.62
Intermediate Precision(n=6)		
Tofacitinib	0.75	0.95
RRT&RF Values		
RRT values	0.80	0.92
RF values	0.46	0.42

Table 5: Accuracy results.

Spike Level	Amount added(ppm)	Mean Amount recovered(ppm)	% Mean Recovery	%RSD
Recovery of Amine impurity impurity				
LOQ level	0.045	0.04109	100.25	0.60
50%	2.45	2.4163	99.48	0.35
100%	5.07	5.0745	100.19	0.45
150%	7.68	7.611	99.19	0.47
200%	10.51	10.539	100.73	0.52
Recovery of Metabolite-1				

LOQ level	0.047	0.0462	98.12	0.52
50%	2.55	2.5485	100.52	0.33
100%	5.06	5.0234	99.78	0.35
150%	7.55	7.5127	99.74	0.81
200%	10.06	10.1251	100.65	0.30
Recovery of Tofacitinib				
LOQ level	0.052	0.0504	98.57	1.52
50%	2.55	2.5493	100.71	0.22
100%	5.06	4.9975	98.97	0.17
150%	7.59	7.4817	98.78	1.52
200%	10.21	10.1335	100.33	0.32

Table 6: Degradation Results.


TOFACITINIB ORAL SOLUTION

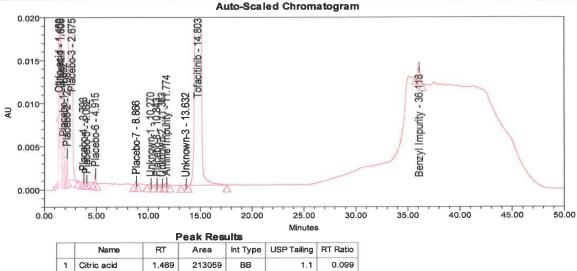
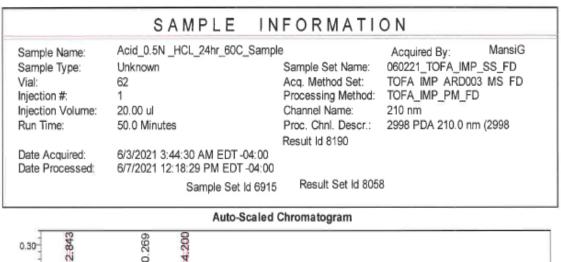

S.No:	Stress conditions	Duration	% of Total imp's	% of Amine impurity imp	% of Metabolite-1	% of major unknown imp
1	Normal	NA	0.11	0.01	ND	0.02
2	Thermalat60°C	5 th day	0.11	0.01	ND	0.02(2.17)
3	75% RH	5 th day	0.12	0.01	ND	0.02(2.17)
4	UV	200 watt hours/m ²	0.11	0.01	ND	0.02(2.17)
5	Sunlight	1.2 million Lux hours	0.11	0.01	ND	0.02(2.17)
6	0.5N HCl at	5 hours	9.40	0.60	ND	2.21(0.77)
7	0.1N NaOH	48 hours	0.17	0.06	ND	0.02(2.17)
8	3% H2O2 at	5 hours	6.90	0.19	ND	1.01(0.73)
9	Water at 60°C	5 th day	0.12	0.01	ND	0.02(2.16)

Figure Captions

- Fig 1). Tofacitinib chemical structure
- Fig 2). Representative Chromatogram of Sample Solution
- Fig 3). Representative Chromatogram of Acid Hydrolysis Sample Solution
- Fig 4). Representative Chromatogram of Base Hydrolysis Sample Solution
- Fig 5). Representative Chromatogram of Oxidation Sample Solution
- Fig 6). Representative Chromatogram of Water Hydrolysis Sample Solution
- Fig 7). Representative Chromatogram of UV/White Light Sample Solution
- Fig 8). Representative Chromatogram of Elevated Temperature Sample Solution
- Fig 9). Representative Chromatogram of Aged Standard Solution
- Fig 10). Representative Chromatogram of Diluent
- Fig 11). Representative Chromatogram of Placebo solution


Fig 1: Tofacitinib chemical structure.

	Name	RT	Area	Int Type	USP Tailing	RT Ratio
1	Citric acid	1.469	213059	BB	1.1	0.099
2	Diluent-1	1.606	90172	BB	1.8	0.109
3	Placebo-1	1.892	77056	BB	1.6	0.128
4	Placebo-2	2.198	13225	BB	1.0	0.148
5	Placebo-3	2.675	12695525	ВВ	0.6	0.181
6	Placebo-4	3.793	2562	ВВ	1.1	0.256
7	Placebo-5	4.082	1090	BB	1.2	0.276
8	Placebo-6	4.915	7440	BB	1.1	0.332
9	Placebo-7	8.866	3204	BB	1.0	0.599
10	Unknow n-1	10.270	1961	BB	1.0	0.694
11	Placebo-8	10.843	2437	BB	1.0	0.732

Fig 2: Representative Chromatogram of Sample Solution.

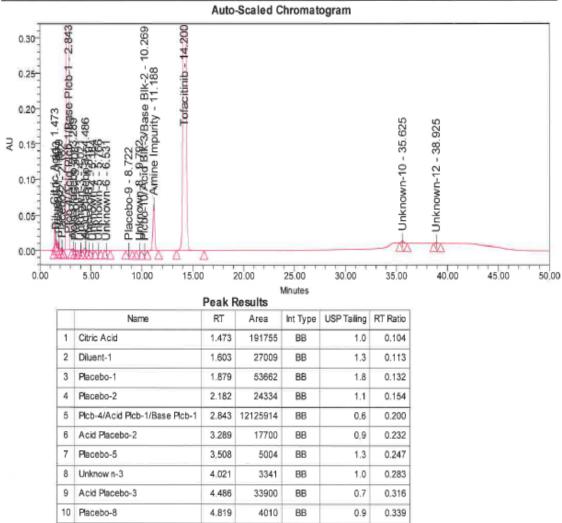


Fig 3: Representative Chromatogram of Acid Hydrolysis Sample Solution.

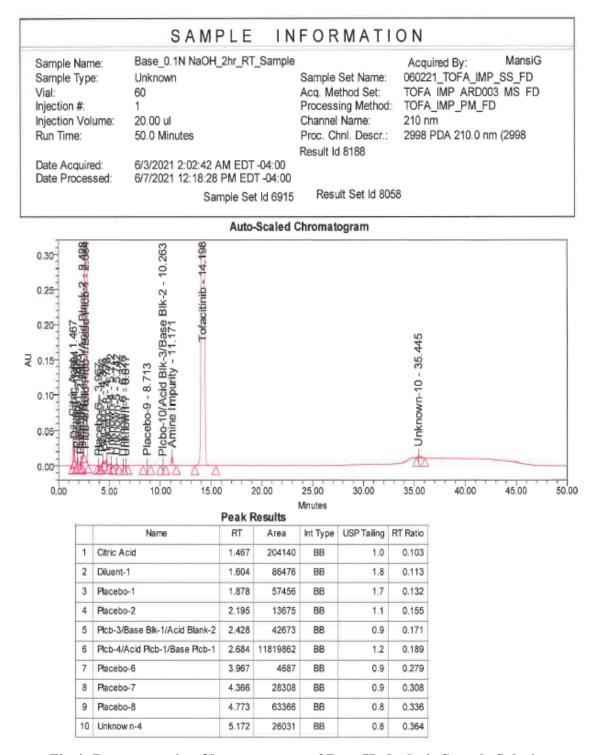
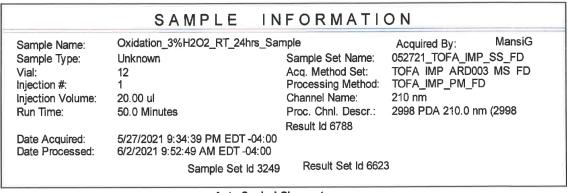
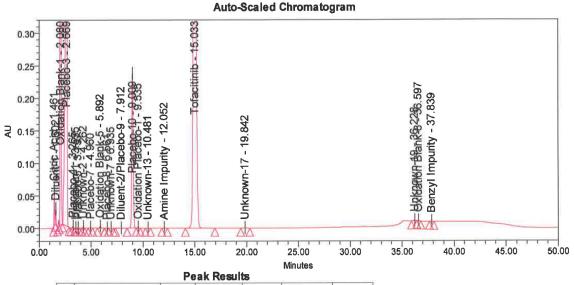




Fig 4: Representative Chromatogram of Base Hydrolysis Sample Solution.

		P.C	ak Izeaul	10		
	Name	RT	Area	Int Type	USP Tailing	RT Ratio
1	Citric Acid	1.461	216955	ВВ	1.0	0.097
2	Diluent-1	1.602	106991	BB	1.7	0.107
3	Oxidation Blank-1	2.080	11808022	BB	1.1	0.138
4	Placebo-3	2.669	12104115	BB	0.6	0.178
5	Placebo-4	3.265	16199	BB	1.2	0.217
6	Unknow n-1	3.535	2328	BB	1.0	0.235
7	Placebo-5	3.757	4584	BB	1.3	0.250
8	Unknow n-2	4.262	12199	BB	1.1	0.283
9	Placebo-7	4.960	8291	BB	1.1	0.330
10	Oxidation Blank-5	5.892	23182	BB	1.3	0.392

Fig 5: Representative Chromatogram of Oxidation Sample Solution.

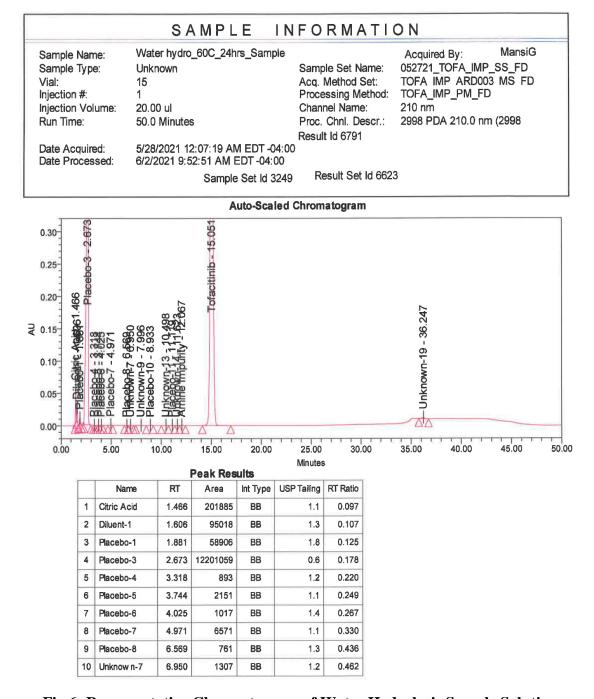
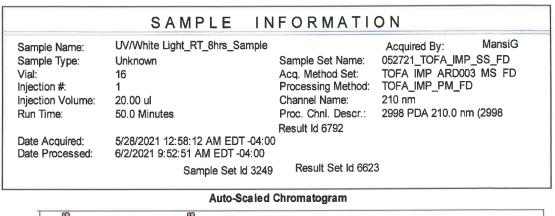



Fig 6: Representative Chromatogram of Water Hydrolysis Sample Solution.

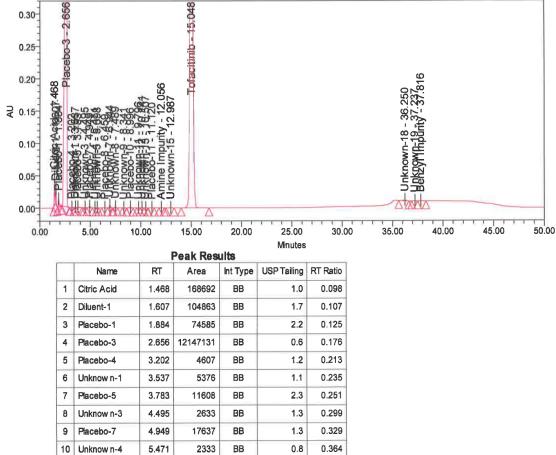


Fig 7: Fig Representative Chromatogram of UV/White Light Sample Solution.

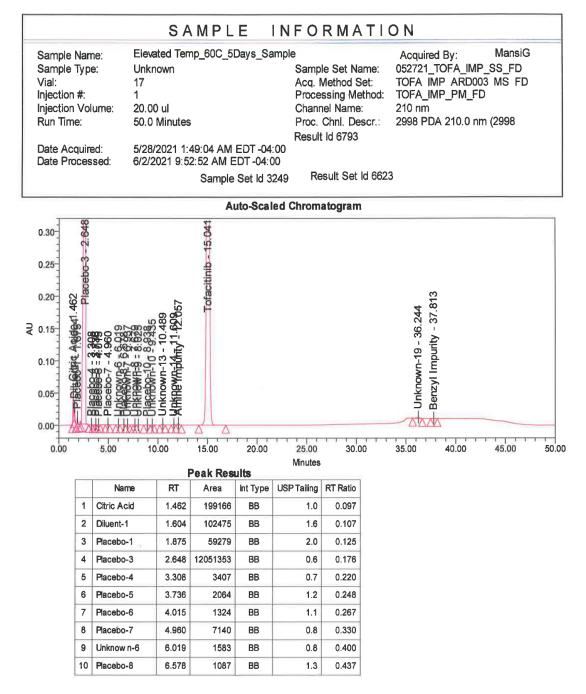
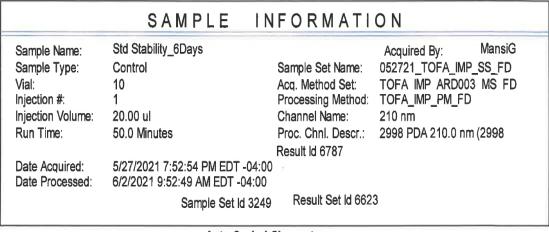



Fig 8: Representative Chromatogram of Elevated Temperature Sample Solution.

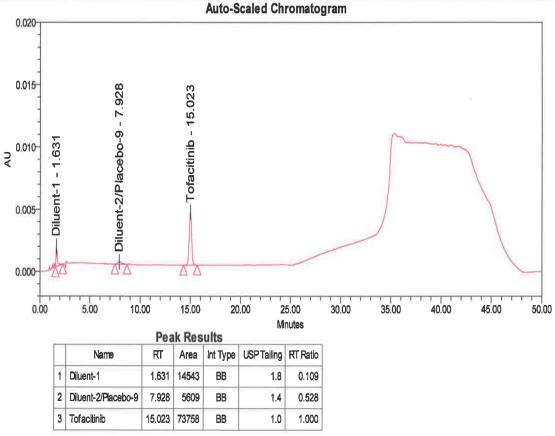
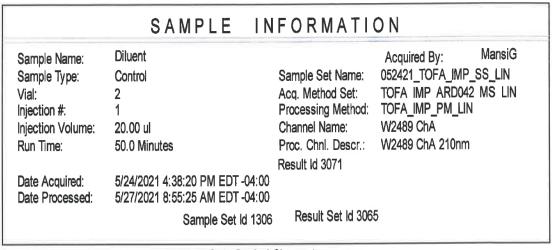



Fig 9: Chromatogram of Tofacitinib Standard solution.

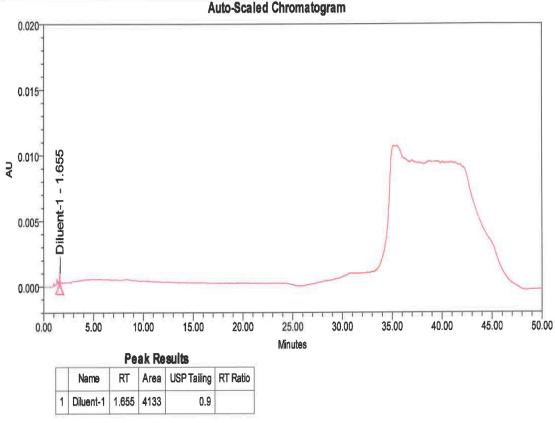


Fig 10: Chromatogram of Tofacitinib diluent solution.

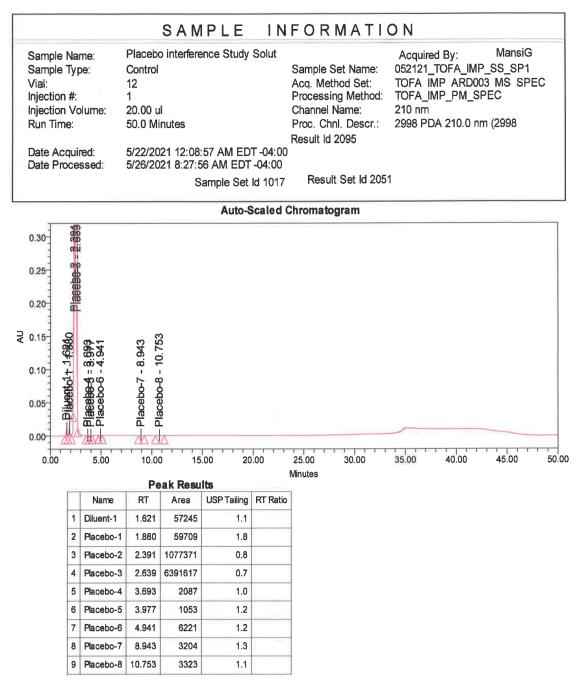


Fig 11: Chromatogram of Tofacitinib Placebo solution

CONCLUSIONS

The proposed RP-HPLC method satisfies the parameters like system suitability, specificity, precision, accuracy, linearity, and robustness, ruggedness. The obtained results from the validation as per the ICH guidelines and drug stability were indicates this method is accurate, sensitive and best suitable Method for determination of known and unknown impurities in Tofacitinib regular laboratory analysis.

ACKNOWLEDGEMENTS

REFERENCES

- 1. Naresh Chandra Reddy M and Chandra sekhar KB, RP-HPLC Determination of Related substances of Pregabalin in bulk and pharmaceutical dosage form International Journal of Chemical and Pharmaceutical Sciences (IJCPS), ISSN: 0976-9390, 2012; 3(2).
- 2. Naresh Chandra Reddy M and Chandra sekhar KB, Kavitha A, Development and validation of A Reverse-phase liquid chromatographic method for Related substances of Prasugrel for 5 and 10 mg Powder for oral suspension, International Journal of Pharmacy and Pharmaceutical Sciences (IJPPS), ISSN- 0975-1491, 2014; 6(1): 90-94.
- 3. V.Kalyan Chakravarthy and D.Gowri Sankar. RJC, 2011; 4: 666-672.
- 4. Lanka A.Rama Prasad, Rao J.V.L.N.S, Srinvasu Pamidi, Vara Prasad J, Naga Raju.D. Int. Research journal of Pharmacy, 2012; 3: 145-149.
- 5. Naresh Chandra Reddy M, Method development and Validation of Related substances in Asenapine Powder for oral suspension by Reverse phase HPLC. World Journal of Pharmaceutical Research (WJPR) ISSN 2277–7105, 5(4): 1653-1663.
- Naresh Chandra Reddy M and Chandra sekhar KB, Development and Validation of Gradient RP-HPLC for Estimation of Impurities in Eplerenone Tablet dosage. International Research Journal of Pharmaceutical and Applied Sciences (IRJPAS), 2012; 2(3): 58-75. ISSN-2277-4149, Vol-II, Issue-III, May-Jun, 2012.
- 7. Yi, S., Jeon, H., Yoon, S. H., Cho, J. Y., Shin, S. G., Jang, I. J., & Yu, K. S. *J Cardiovasc Pharmacol*, 2012; 59: 315-22.
- 8. Chaudhari BG, Patel C. *International Journal for Pharmaceutical Research Scholars*, 2012; 1: 193-198.
- 9. Murugan S, Pavan Kumar N, Kiran Kumar C, Syam Sundhar V, Harika S and Anusha P. *Indian Journal of Pharmaceutical Science & Research*, 2013; 3: 17-19.
- 10. S. Murugan, V. Rajasekharreddy, P. Sirisha, N. Pravallika, K. Chandrakala. *International Journal of Research in Pharmaceutical and Nano Sciences*, 2013; 2: 135-139.
- 11. V.Kalyan Chakravarthy and D.Gowri Sankar. RJC, 2011; 4: 666-672.
- 12. Lanka A.Rama Prasad, Rao J.V.L.N.S, Srinvasu Pamidi, Vara Prasad J, Naga Raju.D. Int.Research journal of Pharmacy, 2012; 3: 145-149.
- 13. Guideline, ICH Harmonized Tripartite. Validation of Analytical Procedures: Text and Methodology Q2 (R1), International Conference on Harmonization. Geneva, Switzerland, November 2005.