

MICROSPHERES FOR SUSTAINED RELEASE FORMULATIONS: AN EXTENSIVE REVIEW

Aditya Naik^{*1}, Dr. Arun Patel², Shailendra Patel³

¹Student, Shri Ram Group of Institutions, Faculty of Pharmacy, Jabalpur (M.P.)

²Principal and Professor, Shri Ram Group of Institutions, Faculty of Pharmacy, Jabalpur (M.P.)

³Assistant Professor, Shri Ram Group of Institutions, Faculty of Pharmacy, Jabalpur (M.P.)

Article Received on 05 Dec. 2025,
Article Revised on 25 Dec. 2025,
Article Published on 01 Jan. 2026,

<https://doi.org/10.5281/zenodo.18221285>

*Corresponding Author

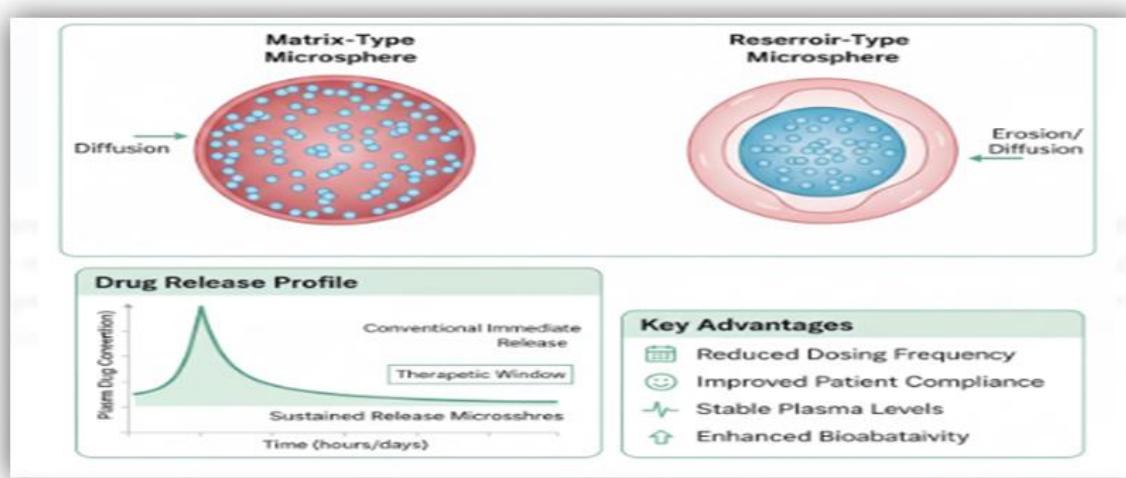
Aditya Naik

Student, Shri Ram Group of Institutions, Faculty of Pharmacy, Jabalpur (M.P.)

How to cite this Article: Aditya Naik^{*1}, Dr. Arun Patel², Shailendra Patel³ (2026). MICROSPHERES FOR SUSTAINED RELEASE FORMULATIONS: AN EXTENSIVE REVIEW. World Journal of Pharmaceutical Research, 15(1), 1613–1623. This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

The continuous advancement in pharmaceutical technology has led to the development of novel drug delivery systems aimed at overcoming the limitations associated with conventional dosage forms, such as frequent dosing, fluctuating plasma drug concentrations, poor bioavailability, and reduced patient compliance. Sustained-release drug delivery systems (SRDDS) are designed to release drugs at a controlled rate over an extended period, thereby maintaining therapeutic drug levels for prolonged durations. Among various controlled drug delivery carriers, microspheres have gained considerable importance due to their ability to provide sustained, predictable, and controlled drug release. Microspheres are solid, spherical particulate systems generally ranging from 1 to 1000 μm in size and are formulated using biodegradable or non-biodegradable polymers. The drug may be uniformly dispersed within the


polymeric matrix or encapsulated within a core-shell structure, allowing modulation of drug release kinetics. Microsphere-based formulations offer several advantages, including reduced dosing frequency, improved bioavailability, enhanced drug stability, minimized adverse effects, and improved patient compliance. Their multiarticulate nature also reduces the risk of dose dumping and ensures uniform distribution within the gastrointestinal tract. This review provides an extensive overview of microspheres used in sustained-release drug delivery,

covering their classification, polymers employed, methods of preparation, drug release mechanisms, characterization techniques, therapeutic applications, recent advancements, limitations, and future prospects, highlighting their growing significance in modern pharmaceutical development.

KEYWORDS: Microspheres; Sustained-release drug delivery; Controlled drug delivery systems; Polymeric microspheres; Biodegradable polymers; Drug release kinetics; Multiarticulate systems.

INTRODUCTION

Drug delivery systems have undergone remarkable evolution to overcome the drawbacks associated with conventional dosage forms, including rapid drug elimination, poor bioavailability, variable plasma drug levels, and the requirement for frequent administration. These limitations often lead to reduced therapeutic efficacy and poor patient adherence. Sustained-release drug delivery systems (SRDDS) were developed to address these issues by releasing drugs at a predetermined rate for an extended duration, thereby maintaining plasma drug concentrations within the therapeutic window and minimizing peak-to-trough fluctuations.^[1,2] Microspheres have emerged as one of the most promising multiarticulate drug delivery systems among various controlled-release carriers. They are solid, spherical particles typically ranging from 1 to 1000 μm in diameter and are prepared using a wide range of biodegradable and non-biodegradable polymers. Depending on formulation design, drugs may be uniformly dispersed within the polymer matrix (matrix-type microspheres) or encapsulated within a core surrounded by a polymeric shell (reservoir-type microspheres). This structural diversity enables precise modulation of drug release profiles.^[4,5] Microspheres offer flexibility in formulation and can be designed for sustained, controlled, targeted, or site-specific drug delivery. They can be administered via oral, parenteral, nasal, ocular, pulmonary, and topical routes. Their multiarticulate nature reduces the risk of dose dumping, improves drug stability, and ensures uniform distribution within the gastrointestinal tract or target site. These characteristics make microspheres particularly suitable for drugs with short half-lives, narrow therapeutic indices, or poor aqueous solubility.^[1]

Fig. 1: Microspheres for sustained-release formulations.

NEED FOR SUSTAINED-RELEASE MICROSPHERES

Many therapeutic agents possess short biological half-lives ranging from 1 to 4 hours, necessitating multiple daily doses to maintain effective plasma drug concentrations.^[5,6] Drugs such as propranolol, theophylline, and metformin require frequent administration, which often leads to poor patient adherence.

Clinical studies have shown that patient compliance decreases by approximately 30–40% when dosing frequency exceeds twice daily. Conventional dosage forms often produce peak plasma concentrations that are significantly higher than the minimum effective concentration, increasing the risk of adverse effects. Conversely, plasma drug levels may fall below the therapeutic threshold before the next dose, resulting in reduced efficacy.^[7]

Sustained-release microspheres are capable of maintaining plasma drug levels within the therapeutic window for 12 to 72 hours, depending on polymer type and formulation design. Microsphere-based systems have been reported to reduce dosing frequency by 50–75%, significantly improving treatment outcomes in chronic conditions such as diabetes, hypertension, and cancer.^[9]

ADVANTAGES OF MICROSPHERES IN SUSTAINED RELEASE

Microspheres provide prolonged and predictable drug release profiles and may achieve near zero-order kinetics over extended periods. For example, PLGA-based microspheres have demonstrated controlled drug release for up to 30 days in injectable depot formulations.^[8,9]

Reduced dosing frequency improves patient compliance by 20–50%, particularly in pediatric and geriatric populations. Controlled drug release also minimizes plasma concentration fluctuations, reducing adverse effects by approximately 25–40% compared to immediate-release formulations.

Microspheres enhance the bioavailability of poorly water-soluble drugs, with studies reporting a 1.5–3-fold increase in bioavailability for drugs such as curcumin, paclitaxel, and itraconazole. Their multiparticulate nature reduces the risk of dose dumping, ensuring safer and more reliable drug administration.^[10]

CLASSIFICATION OF MICROSPHERES

A. Polymeric Microspheres

Polymeric microspheres account for over 70% of sustained-release microsphere research due to their versatility and controlled release potential.

➤ Biodegradable polymeric microspheres

Biodegradable polymers such as polylactic acid (PLA) and poly(lactic-co-glycolic acid) (PLGA) degrade via hydrolysis into lactic and glycolic acid, which are metabolized through the Krebs cycle. PLGA (50:50) microspheres typically degrade within 4–6 weeks, while PLA-rich formulations may last up to 3–6 months. Drug encapsulation efficiencies ranging from 60–90% have been reported, although initial burst release may account for 10–30% of total drug release within the first 24 hours.

➤ Non-biodegradable polymeric microspheres

Non-biodegradable polymers such as ethyl cellulose and PMMA provide stable formulations capable of releasing drugs over several months. However, accumulation risks and regulatory concerns limit their use, particularly for injectable applications.^[12]

B. Bioadhesive Microspheres

Bio-adhesive microspheres increase mucosal residence time, improving drug absorption by 2–4 fold. Chitosan-based microspheres exhibit high muco-adhesion efficiency and are widely used in gastrointestinal and nasal delivery systems.^[14]

C. Floating Microspheres

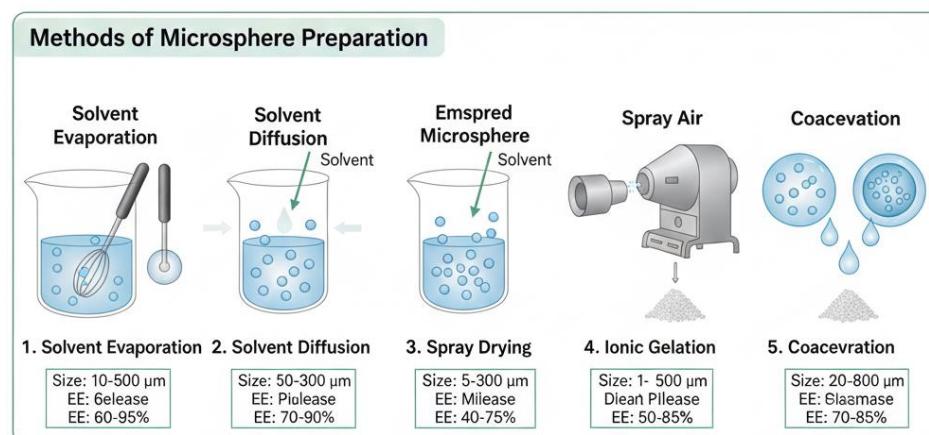
Floating microspheres remain buoyant in gastric fluid for 8–24 hours, significantly improving gastric residence time and bioavailability for drugs such as riboflavin and ciprofloxacin.^[12]

D. Magnetic Microspheres

Magnetic microspheres allow site-specific drug targeting using an external magnetic field, achieving up to 10-fold higher drug accumulation at the target site and reducing systemic toxicity.^[15,16]

E. Radioactive Microspheres

Radioactive microspheres, such as yttrium-90-loaded systems, are used in cancer therapy to deliver localized radiation doses directly to tumor tissues.^[18]


POLYMERS USED IN SUSTAINED-RELEASE MICROSPHERES

Natural polymers offer excellent biocompatibility but exhibit limited mechanical strength and shorter drug release durations.^[19] Synthetic polymers provide superior reproducibility, controlled degradation, and tunable drug release profiles ranging from hours to several months.^[17]

METHODS OF PREPARATION OF MICROSPHERES

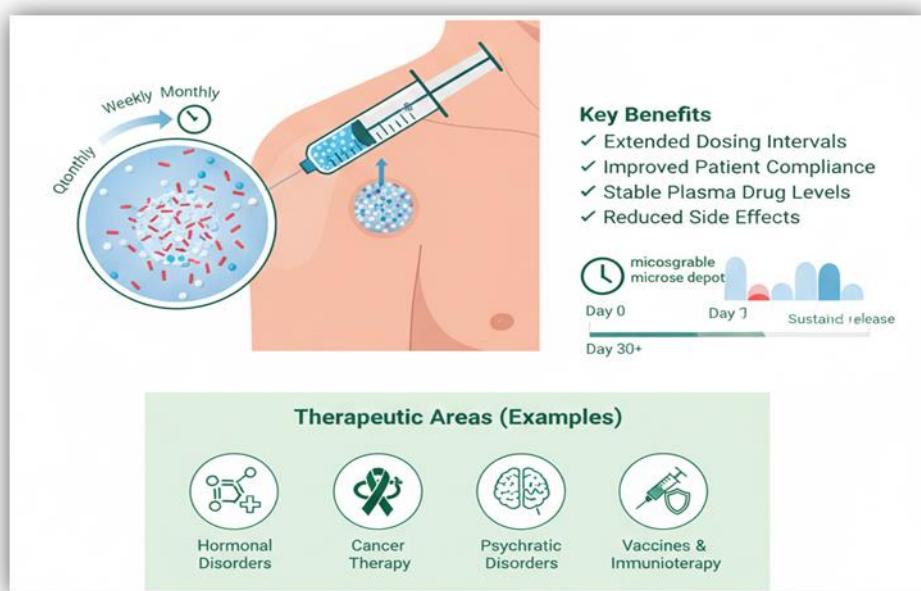
Table 1: Methods of preparation of microspheres.

Method	Particle size (μm)	Entrapment efficiency (%)
Solvent evaporation	10–500	60–95
Solvent diffusion	5–300	70–90
Spray drying	1–50	40–75
Ionic gelation	50–1000	50–85
Coacervation	20–800	70–95

Fig. 2: Methods of preparation of microspheres.

DRUG RELEASE MECHANISMS

Drug release from microspheres occurs via diffusion, erosion, or a combination of both. Diffusion-controlled systems generally follow Higuchi kinetics, while erosion-controlled systems may exhibit zero-order release. Korsmeyer–Peppas models are commonly used to interpret release mechanisms.


EVALUATION AND CHARACTERIZATION

Key evaluation parameters include particle size distribution, drug entrapment efficiency, in-vitro drug release, and stability. An ideal microsphere formulation should exhibit uniform particle size, high entrapment efficiency, controlled drug release, and acceptable stability over storage.^[21]

- Particle size uniformity: $\pm 10\%$
- Drug entrapment efficiency: $>70\%$ desirable
- In vitro drug release: 80–90% over desired duration
- Stability: $\leq 5\%$ drug degradation over 6 months.

APPLICATIONS OF MICROSPHERE-BASED FORMULATIONS

- **Controlled and Sustained Drug Delivery:** Microspheres release the drug slowly over an extended period, maintaining constant therapeutic drug levels and reducing dosing.
- **Targeted Drug Delivery:** Microspheres can be designed to deliver drugs to specific organs or tissues, reducing side effects and improving efficacy.
- **Gastro-Retentive Drug Delivery:** Floating or bioadhesive microspheres remain in the stomach for a longer time, improving drug absorption.
- **Vaccine Delivery:** Microspheres protect antigens from degradation and provide sustained antigen release, enhancing immune response.
- **Pulmonary Drug Delivery:** Microspheres are used in dry powder inhalers for lung-specific drug delivery.
- **Ophthalmic Drug Delivery:** Microspheres prolong drug residence time in the eye, improving bioavailability.
- **Nasal Drug Delivery:** Microspheres enhance nasal drug absorption and can bypass first-pass metabolism.
- **Tissue Engineering and Regenerative Medicine:** Microspheres act as scaffolds or carriers for growth factors and cells.

Fig. 3: Injectable depot system.

LIMITATIONS AND CHALLENGES

- Manufacturing of microspheres is 20–50% more expensive than conventional tablet formulations due to complex processes and costly polymers.
- Specialized equipment and skilled manpower are required, increasing production and operational costs.^[30]
- Scale-up from laboratory to industrial level is difficult, with nearly 30% of formulation development delays attributed to scale-up failures in controlled-release products.
- Minor changes in processing parameters (stirring speed, temperature, solvent removal rate) can significantly affect particle size and drug release profile.
- Batch-to-batch variability may lead to inconsistent product quality and therapeutic performance.
- Low encapsulation efficiency, especially for hydrophilic drugs, remains a major challenge.
- Risk of residual solvent toxicity necessitates strict quality control and regulatory compliance.
- Stability issues such as aggregation, polymer degradation, or drug leakage may occur during storage.
- Stringent regulatory requirements for injectable microsphere products increase development time and cost.^[27]

RECENT ADVANCES AND FUTURE PROSPECTS OF MICROSPHERE-BASED DRUG DELIVERY SYSTEMS

- Development of smart and stimuli-responsive microspheres has enabled on-demand drug release in response to specific physiological triggers such as pH, temperature, enzymes, or redox conditions.^[26]
- These systems allow site-specific and controlled drug release, improving therapeutic precision by up to 60% compared to conventional delivery methods.
- pH-responsive microspheres are particularly useful in targeting tumor tissues and inflamed areas due to their acidic microenvironment.
- Thermo-responsive microspheres release drugs at specific temperatures, making them suitable for localized cancer therapy and hyperthermia-based treatments.
- Enzyme-responsive systems enable selective drug release in diseased tissues where specific enzymes are overexpressed.^[28]
- Nano–microsphere hybrid systems combine the advantages of nanoparticles (deep tissue penetration and cellular uptake) with microspheres (sustained and controlled release).
- These hybrid systems are gaining significant attention for targeted cancer therapy, reducing systemic toxicity and enhancing drug accumulation at tumor sites.
- Gene delivery applications, including DNA, siRNA, and mRNA delivery, are emerging as a promising future application of nano–microsphere platforms.^[29]

CONCLUSION

Microspheres represent an advanced and highly effective sustained-release drug delivery system in modern pharmaceutical science. They are capable of providing controlled and prolonged drug release for durations ranging from 12 hours to several months, thereby significantly reducing dosing frequency by up to 75%. This reduction not only improves patient compliance and convenience but also ensures better adherence to long-term therapies, leading to improved therapeutic outcomes. Additionally, microsphere-based formulations enhance drug bioavailability by approximately 1.5 to 4 times compared to conventional dosage forms, particularly for drugs with poor aqueous solubility, rapid metabolism, or short biological half-lives.^[15]

By maintaining steady plasma drug concentrations and minimizing peak-to-trough fluctuations, microspheres help reduce dose-related adverse effects, toxicity, and fluctuations in therapeutic response. The controlled release profile ensures consistent drug levels within

the therapeutic window, thereby improving safety and efficacy. Furthermore, microspheres enable targeted and localized drug delivery, which enhances site-specific action while minimizing systemic exposure and unwanted side effects. This property is especially beneficial in the treatment of chronic diseases, cancer, and localized infections.^[9]

Microspheres also offer protection to sensitive drugs such as peptides, proteins, and vaccines from enzymatic degradation, chemical instability, and environmental factors, thereby improving drug stability and shelf life. Their formulation flexibility allows modulation of particle size, polymer composition, and surface characteristics to achieve desired release kinetics and targeting efficiency. Moreover, microspheres are versatile in nature and can be administered through various routes, including oral, injectable, ocular, nasal, and pulmonary routes, expanding their applicability across multiple therapeutic areas.^[6]

Overall, the combined advantages of sustained and controlled drug release, improved bioavailability, enhanced patient compliance, reduced toxicity, and formulation versatility establish microspheres as a highly promising, efficient, and innovative drug delivery approach. With ongoing advancements in polymer science and formulation technologies, microspheres continue to play a crucial role in the development of next-generation pharmaceutical formulations and advanced therapeutic systems.^[10]

REFERENCES

1. Vyas, S. P., & Khar, R. K. (2012). *Targeted and Controlled Drug Delivery: Novel Carrier Systems*. CBS Publishers, New Delhi.
2. Lieberman, H. A., Lachman, L., & Schwartz, J. B. (2009). *Pharmaceutical Dosage Forms: Tablets, Vol. 3*. Marcel Dekker Inc., New York.
3. Jain, N. K. (2011). *Controlled and Novel Drug Delivery*. CBS Publishers, New Delhi.
4. Martin, A., Bustamante, P., & Chun, A. H. C. (2011). *Physical Pharmacy*. Lippincott Williams & Wilkins, USA.
5. Sinko, P. J. (2015). *Martin's Physical Pharmacy and Pharmaceutical Sciences*. Wolters Kluwer, USA.
6. Kreuter, J. (1991). Nanoparticles and microspheres for drug and vaccine delivery. *Journal of Controlled Release*, 16(1–2): 169–176.
7. Freiberg, S., & Zhu, X. X. (2004). Polymer microspheres for controlled drug release. *International Journal of Pharmaceutics*, 282(1–2): 1–18.

8. Sinha, V. R., & Trehan, A. (2003). Biodegradable microspheres for protein delivery. *Journal of Controlled Release*, 90(3): 261–280.
9. Bodmeier, R., & McGinity, J. W. (1987). The preparation and evaluation of drug-containing poly (lactic acid) microspheres. *Pharmaceutical Research*, 4(6): 465–471.
10. Park, T. G. (1995). Degradation of poly(lactic-co-glycolic acid) microspheres. *Journal of Controlled Release*, 33(2): 211–222.
11. Vasir, J. K., & Labhasetwar, V. (2007). Biodegradable nanoparticles for cytosolic delivery of therapeutics. *Advanced Drug Delivery Reviews*, 59(8): 718–728.
12. Kwon, G. S. (2003). Polymeric micelles for delivery of poorly soluble compounds. *Critical Reviews in Therapeutic Drug Carrier Systems*, 20(5): 357–403.
13. Arshady, R. (1991). Microspheres and microcapsules: A survey of manufacturing techniques. *Pharmaceutical Technology*, 15(6): 46–58.
14. Benita, S. (2006). *Microencapsulation: Methods and Industrial Applications*. CRC Press, Boca Raton.
15. Wise, D. L. (2000). *Handbook of Pharmaceutical Controlled Release Technology*. Marcel Dekker Inc., New York.
16. Dash, T. K., & Konkimalla, V. B. (2012). Poly- ϵ -caprolactone based formulations for drug delivery. *Journal of Controlled Release*, 158(1): 15–33.
17. Rajput, G., Majmudar, F., & Patel, J. (2010). Microspheres: Methods of preparation and evaluation. *International Journal of Pharmaceutical Sciences Review and Research*, 5(2): 12–17.
18. Patel, N. R., Patel, D. A., & Bharadia, P. D. (2011). Microspheres as a novel drug delivery system. *International Journal of Pharmaceutical Research*, 3(2): 44–48.
19. Deshmukh, R., & Naik, J. (2013). Sustained release microspheres: A review. *Asian Journal of Pharmaceutical Research*, 3(4): 156–162.
20. Chowdary, K. P. R., & Rao, Y. S. (2004). Mucoadhesive microspheres for controlled drug delivery. *Indian Journal of Pharmaceutical Sciences*, 66(2): 151–156.
21. Ravi Kumar, M. N. V. (2000). Nano and microparticles as controlled drug delivery devices. *Journal of Pharmacy and Pharmaceutical Sciences*, 3(2): 234–258.
22. Patel, A., & Ray, S. (2015). Polymeric microspheres: A review. *International Journal of Pharmaceutical Sciences and Research*, 6(4): 1213–1225.
23. Shah, S. H., Patel, J. K., & Patel, N. V. (2012). Microspheres: A review. *International Journal of Pharmaceutical Research and Bio-Science*, 1(2): 332–346.

24. Natrajan, R., & Basak, S. C. (2011). Controlled drug delivery using polymeric microspheres. *Journal of Pharmaceutical Sciences*, 100(5): 1723–1735.
25. Kumar, R., & Philip, A. (2007). Gastroretentive dosage forms for prolonging gastric residence time. *International Journal of Pharmaceutical Medicine*, 21(2): 157–171.
26. Singh, M. N., Hemant, K. S. Y., Ram, M., & Shivakumar, H. G. (2010). Microencapsulation: A promising technique. *Research in Pharmaceutical Sciences*, 5(2): 65–77.
27. Rawat, A., & Burgess, D. J. (2011). Effect of formulation variables on microsphere properties. *European Journal of Pharmaceutics and Biopharmaceutics*, 78(3): 437–447.
28. Huang, X., Brazel, C. S. (2001). On the importance and mechanisms of burst release in microsphere systems. *Journal of Controlled Release*, 73(2–3): 121–136.
29. Pandey, R., & Khuller, G. K. (2004). Polymer based drug delivery systems. *Current Drug Delivery*, 1(2): 195–201.
30. Florence, A. T., & Attwood, D. (2016). *Physicochemical Principles of Pharmacy*.