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ABSTRACT 

Pancreatic cancer is rapidly emerging as a global threat, with 

projections indicating it will become the second leading cause 

of cancer-related deaths by 2030. The main type of pancreatic 

cancer are pancreatic adenocarcinomas, which arise in the 

exocrine region of the pancreas and account for approximately 

95% of all pancreatic tumors. The tumor develops without 

symptoms, which complicates early detection. It is marked by 

the overproduction of fibrotic stroma, referred to as 

desmoplasia, which facilitates tumor growth and metastasis 

through extracellular matrix remodeling and the release of 

tumor growth factors. For decades, substantial efforts have 

been directed toward creating more effective drug delivery 

systems for treating pancreatic cancer using nanotechnology, 

immunotherapy, drug conjugates, and combinations of these 

methods. None the less, even though these methods have shown  

promise in preclinical studies, there has been no significant clinical advancement, and the 

outlook for pancreatic cancer is deteriorating. This review offers insights into the challenges 

linked to delivering therapeutics for pancreatic cancer treatment. It discusses drug delivery 

strategies aimed at reducing the adverse effects of current chemotherapy options and 

enhancing the effectiveness of drug treatment. 
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1. INTRODUCTION 

Pancreatic cancer remains one of the most lethal yet treatable cancers. This factor ranks as the 

seventh most common reason for cancer-linked fatalities worldwide, with approximately 

331,000 deaths each year.
[1–6] 

In 2019, the US saw about 56,770 new pancreatic cancer cases 

and 45,750 deaths, whereas in 2021 there were 60,430 new cases and 48,220 fatalities.
[1,4,7,8]

 

In 2022, pancreatic cancer was the third leading cause of cancer-related deaths in the US, 

following colorectal and lung cancers, with an expected 59,143 new cases and 49,920 

deaths.
[9]

 It is anticipated that by 2030, it will be the second most prevalent cause of cancer-

related deaths.
[1,6,10–13]

 Pancreatic cancer, which has a dismal five-year survival rate of under 

5% and a median survival time of about six months, is responsible for 8% of all cancer-related 

deaths.
[1,14–16] 

 Due to the fact that pancreatic cancer is a silent killer, it requires immediate 

treatment. 

 

Previously, pancreatic cancer has been a silent killer that demands immediate attention. It is 

challenging to identify pancreatic cancer early as the disease progresses slowly and does not 

exhibit symptoms.
[12]

 The link between the poor prognosis of pancreatic cancer and its 

excessive desmoplastic growth—also known as fibrotic stroma—and delayed diagnosis is 

evident, as treatment generally commences when the tumor has reached advanced 

stages.
[11,12,14,17]

 The elevated mortality rate associated with pancreatic cancer can be 

attributed to multiple factors, such as a stringent tumor microenvironment, early metastasis to 

both adjacent and distant sites, a high rate of recurrence, and inadequate diagnostic 

techniques.
[12,

 
18,

 
19]

 Based on the tumor's location, individuals may exhibit varying signs and 

symptoms of pancreatic cancer, including nausea, abdominal discomfort, jaundice, loss of 

appetite, weight reduction, steatorrhea, and back pain (Figure 1).
[20,

 
21]

 Risk factors include age, 

obesity, diabetes, pancreatitis, alcohol consumption, genetics, a high-fat diet, and family 

history.
[12,22–25]

 Black Americans have a higher pancreatic cancer risk and death rate 

compared to non-Hispanic white Americans. This may be due to genetic and socioeconomic 

disparities.
[26,27] 
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Figure 1: Schematic representation of the anatomy of the pancreas, highlighting the 

major anatomical regions and indicating the specific areas of the organ where 

pancreatic cancer may develop. 

 

Pancreatic ductal adenocarcinomas, which occur in the exocrine portion of the pancreas, are 

responsible for over 95% of all pancreatic tumors and are the most common type of 

pancreatic cancer.
[1,14,16,19]

 Neuroendocrine pancreatic cancer, which develops in the 

endocrine area, accounts for fewer than 5% of pancreatic cancer cases.
[22,28]

 It is not as 

aggressive when compared to pancreatic adenocarcinoma. The dense tumor 

microenvironment (TME) of pancreatic adenocarcinoma fosters tumorigenesis and 

metastasis, inhibits chemotherapy penetration, and increases the incidence of both intrinsic 

and adaptive multidrug resistance.
[5,11,18,29–31] 

 

Nonetheless, even though there have been major advancements in cancer treatment that have 

raised the overall life expectancies of patients with various cancer types
[1,18]

, survival rates for 

pancreatic cancer have not seen significant alterations over time. To enhance clinical 

outcomes for pancreatic cancer, it is crucial to detect the disease early and to use optimal 

therapeutic agents that have minimal or no side effects on non-target organs. For initial 

evaluations of individuals with doubts about them, computed tomography or magnetic 
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resonance imaging are generally recommended.
[32,

 
33]

 Since endoscopic ultrasonography can 

detect small lesions, it is often used alongside other diagnostic techniques.
[34]

 Fewer than 

35% of patients who qualify for surgery have a five-year survival rate, and over 85% will 

experience a recurrence two years post-surgery.
[11,16,18,34–36] 

 

2. Cancer's peculiarities 

Situated in the upper abdominal region, the pancreas can be found at the back of the stomach 

(see Figure 1).
[41]

 It secretes hormones and digestive enzymes that regulate the body's 

metabolism and energy storage.
[28]

 Pancreatic cancer can originate in any of the four sections: 

the head (which includes the uncinate process), neck, body, and tail.
[20,21,41,42]

 Numerous 

studies indicate that the prognosis of pancreatic tumors is influenced by their anatomic 

location.
[20,

 
24,

 
43,

 
44]

 A recent study by Lee and colleagues found that head tumors had better 

overall survival rates than body/tail pancreatic cancers. The head pancreatic tumor's early 

symptom onset was cited to explain the discovery.
[24,43,44]

 Patients with head tumors 

frequently suffer from jaundice and its subsequent symptoms, while discomfort and weight 

loss are prevalent indicators of cancers in the body and tail. hyperbilirubinemia caused by a 

standard obstruction of the bile duct.
[43] 

 

Pancreatic cancer arises and advances as a result of numerous factors, with its 

pathophysiology shaped by different components of the cancer microenvironment.
[45,46]

 

Unlike other cancers, pancreatic adenocarcinoma is distinguished by a thick fibrotic stroma 

known as desmoplasia or desmo-plastic reaction (Figure 2), which releases tumour growth 

agents and modifies the extracellular matrix to facilitate tumour growth and spread.
[7,11,47,48]

 

Desmoplasia is caused by invasive immune cells and pancreatic stellate cells. It diminishes 

the efficacy of chemotherapy and worsens primary resistance to a variety of drugs.
[48]
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Figure 2: Illustration of the pancreatic tumor microenvironment, depicting abnormal 

vascular architecture and pronounced desmoplastic stroma characteristic of pancreatic 

cancer. 

 

The stroma in pancreatic adenocarcinoma mainly consists of cancer-activated fibroblasts 

(CAFs) and pancreatic stellate cells (PSCs).
[22,29,49,50]

 In healthy individuals, PSCs usually 

remain inactive; however, under pathological conditions, they can be stimulated by various 

factors such as cytokines, pancreatic parathyroid hormone-related protein, vascular 

endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ).
[22,50]

 Among 

the extracellular matrix components secreted by CAFs, which are linked to the development 

of dense fibrosis in both orthotopic and metastatic tumors.
[7,8,48,51–54]

, are collagen, laminin, 

fibronectin, alpha-smooth muscle actin, fibroblast activation protein, hyaluronic acid, 

cytokines, tumor growth factors, and extracellular proteases. The components of the 

extracellular matrix (ECM) produced by CAFs are believed to be significantly involved in the 

progression of pancreatic adenocarcinoma, thus making them appropriate targets for 

therapy.
[46,55]

 As an illustration, a collagen surplus results in a greater rigidity of tumours. As a 

result, the interstitial pressure increases and blood vessels constrict.
[22,54]

 This leads to 
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insufficient perfusion and diffusion in the centers of pancreatic tumors, heightening 

chemoresistance and complicating the uptake of cytotoxic drugs.
[54,56]

 Prior studies have 

associated reduced stroma levels of collagen and hyaluronic acid with improved overall 

survival.
[8,52,55]

 Moreover, the elevated levels of hyaluronic acid in the pancreatic tumor 

increase the interstitial fluid pressure, hindering the absorption and penetration of cytotoxic 

drugs.
[36,50]

 Furthermore, a relationship exists between stroma deposition and the increased 

interstitial pressure associated with pancreatic tumours. This pressure intensifies treatment 

resistance by obstructing the intra-tumoral delivery of drugs.
[57,58]

 Furthermore, studies show 

that the stroma of pancreatic adenocarcinoma contains a high concentration of proteolytic 

enzymes, including transforming growth factor, matrix metalloproteinases, and fibroblast 

activation protein, which facilitate stroma remodeling.
[8,58,59]

 Pancreatic cancer is thought to 

be preceded by pancreatic intraepithelial neoplasia (PanIN), a precancerous lesion that 

accumulates genetic abnormalities over time and transforms into cancerous cells.
[25,49,52]

 

Mutations in Kirsten rat sarcoma (KRAS) occur in roughly 90% of human pancreatic cancer 

cells.
[28,56]

 KRAS is crucial for cell signaling pathways, and its mutation impacts various 

aspects of cancer biology. It was said to be involved in the initiation and absorption of 

cytotoxic agents.
[36,50]

 Furthermore, a relationship exists between stroma deposition and the 

increased interstitial pressure observed in pancreatic tumours. This pressure intensifies 

treatment resistance by obstructing the intra-tumoral delivery of drugs.
[57,58]

 Furthermore, 

studies show that the stroma of pancreatic adenocarcinoma contains a high concentration of 

proteolytic enzymes, including transforming growth factor, matrix metalloproteinases, and 

fibroblast activation protein, which facilitate stroma remodeling.
[8,58,59] 

Pancreatic cancer is 

thought to be preceded by pancreatic intraepithelial neoplasia (PanIN), a precancerous lesion 

that accumulates genetic abnormalities over time and transforms into cancerous cells.
[25,49,52]

 

[Kirsten rat sarcoma (KRAS) mutations occur in approximately 90% of human pancreatic 

cancer cells.
[28,56]

 KRAS is crucial for cellular signaling pathways, and its mutation impacts 

cancer biology in various ways. Besides immune regulation, migration, metabolism, and 

apoptosis, it is said to play a role in the onset and progression of pancreatic cancer.
[23,60]

 As an 

illustration, the oncogenic variant of KRAS boosts metabolic reprogramming, enabling 

pancreatic cancer cells to thrive in environments that lack oxygen and nutrients. Oxygen 

presence leads to increased glucose absorption, enhanced glycolysis, and lactate 

production.
[47,61–63]

 Moreover, in pancreatic cancer, KRAS mutations correlate with a 

decreased presence of immune cells.
[63]

 Moreover, KRAS has been considered a potential 

therapeutic target for specific cancers; however, efforts to target KRAS have proven 
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challenging, and it has been regarded as "undruggable" for a long time.
[22,63]

 Despite the 

longstanding belief that KRAS is incurable in various cancers, new treatments such as KRAS 

inhibitors, MEK inhibitors, and PI3K inhibitors target KRAS or its downstream signaling 

pathways.
[63]

 Sotorasib is an inhibitor that specifically targets KRAS. In 2021, the FDA 

approved the use of G12C mutations for treating advanced non-small-cell lung cancer.
[64]

 

Moreover, it is claimed that sotorasib has shown considerable anticancer effects in patients 

with KRAS p.G12C mutations and advanced pancreatic cancer who had undergone prior 

treatment.
[65]

 Treatments that work for pancreatic cancer resulting from KRAS mutations are 

still in development. 

 

3. Recent Advances in Pancreatic Cancer Targeted Therapy and Limitations 

While more effective treatments are urgently needed, the early identification of pancreatic 

cancer is crucial for improving patient survival rates.
[34]

 Chemotherapy has served as the 

foundation of treatment for most cancers, yet it has not significantly enhanced overall clinical 

outcomes for those with pancreatic adenocarcinoma.
[109]

 

 

Possible treatment options include gemcitabine combined with nab-paclitaxel, capecitabine, 

5-fluorouracil, and the poly-chemotherapy regimen FOLFIRINOX, which consists of folinic 

acid, fluorouracil, irinotecan, and oxaliplatin.
[32]

 The FDA approved gemcitabine (GEM) for 

treating pancreatic cancer in 1977. It has been used since then both alone and in conjunction 

with other cytotoxic drugs such as 5-fluorouracil (5-FU), cisplatin, and docetaxel.
[15,33]

 It is 

now recommended to use GEM-based treatment for patients with advanced pancreatic 

cancer.
[15]

 Nevertheless, due to the genetic diversity of pancreatic adenocarcinoma and its 

extensive stroma, which hinders effective drug penetration and accumulation at tumor sites, 

this type of cancer is generally resistant to conventional chemotherapeutic agents. To boost 

the effectiveness of pancreatic cancer treatment, enhancing the targeted penetration and 

buildup of cytotoxic drugs is essential.
[19,35,110]

 

 

Since chemotherapeutic drugs cannot tell the difference between cancerous and healthy cells, 

they carry the risk of unintended damage.
[15,39,68,111]

 Additionally, a number of these cytotoxic 

drugs have low bioavailability due to factors such as physiological barriers, biological 

deterioration, and insufficient tumor penetration. As a result of these problems, the 

concentration of medication at the tumor site is low, which ultimately leads to therapy failure. 

Several targeting strategies, such as immunotherapy, nanotherapeutics, and various 

combination methods
[38,

 
39]

, have been developed to address the drawbacks of chemotherapy. 
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Certain items are emphasized below. 

 

3.1 Immunotherapy Methods for Pancreatic Cancer Treatment 

Immunotherapy, which boosts the immune system to stop cancer from spreading, is gaining 

popularity.
[112]

 Immunotherapy aims to target and alter the activation of stromal and 

immunosuppressive cells within the tumor microenvironment (TME), such as regulatory T 

cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages 

(TAMs). It also seeks to affect the release of immune cells and cytokines at locations of 

cancer (Figure 3).
[59,62,113,114]

 Immune checkpoint inhibitors, adoptive T cell therapy, targeted 

immunomodulators, vaccines, and combinations of these immunotherapeutic approaches 

are used to treat pancreatic cancer.
[60]

 The suppression of immune checkpoints regulates the 

activation of T-cells and leads to the death of cancer cells by inhibiting the ligands for 

cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 

(PD1).
[114–116]

 

 

CTLA-4 and CD28 vie for binding to the B7 (CD80) or B7-2 (CD86) ligands on the surface 

of activated T cells. This competition inhibits the immune system and reduces T cell activity 

while obstructing CD28's stimulatory signal.
[116,117]

 In specific cancers like colorectal cancer, 

melanoma, and renal cell carcinoma, it has demonstrated remarkable efficacy in suppressing 

CTLA-4.
[118]

 Ipilimumab is an entirely humanized antibody that acts as a CTLA-4 inhibitor, 

enhancing anticancer activity by preventing the interaction between CTLA-4 and B7-1/B7-2 

to promote T cell activation. In 2011, the FDA approved ipilimumab for treating unresectable 

melanoma or advanced metastatic melanoma (stage III or IV). Due to the ineffectiveness of 

ipilimumab as a standalone treatment, it was recommended to use it alongside other 

immunotherapeutic and chemotherapeutic agents for pancreatic carcinoma. In a Phase 1b 

clinical trial, the ipilimumab-gemcitabine combination did not demonstrate superior 

anticancer effects compared to gemcitabine alone.
[119]

 In another study conducted byWu et 

al., the anticancer effect of ipilimumab and GVAX vaccine was evaluated in 

metastaticpancreatic cancer using FOLFIRINOX as standard treatment.
[120]

 The combination 

didnot demonstrate improved overall survival over chemotherapy and the treatment 

failurewas related to the tumor’s counterregulatory pathways, which prevented the induction 

ofpotent anticancer effects in pancreatic cancer.
[120]
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Figure 3: Schematic representation of the cross-interaction among different cell types 

within the pancreatic tumor microenvironment (TME). Immunosuppressive cytokines, 

including transforming growth factor-β (TGF-β) and interleukin-10 (IL-10), promote 

the establishment of an immunosuppressive TME by recruiting and activating 

regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-

associated macrophages (TAMs). Additionally, the interaction between programmed cell 

death ligand-1 (PD-L1) expressed on cancer cells and programmed cell death protein-1 

(PD-1) on T cells induces T-cell apoptosis, leading to immune evasion. These 

immunosuppressive cells and their associated signaling pathways represent important 

targets for cancer immunotherapy. 

 

3.2. Photodynamic Pancreatic Cancer Therapy 

Photodynamic therapy (PDT) is emerging as a promising treatment option for pancreatic 

cancer. PDT offers an alternative to surgery and other invasive methods in cancer treatment. 

It requires photosensitising agents and specific light wavelengths to induce localized tissue 

necrosis.
[68,129–133]

 Photosensitisers, typically administered orally or through intravenous 

injection, tend to accumulate in abnormal or cancerous cells. Macromolecular 

photosensitisers enhance PDT by ensuring preferential concentration in neoplastic tissues and 

reducing the rapid discharge of these tissues. When the photosensitiser is exposed to the 

designated light wavelength, reactive oxygen species (ROS), particularly singlet oxygen 

species, are generated by transferring excited electrons or absorbed photon energy to nearby 



Sriramcharan et al.                                                            World Journal of Pharmaceutical Research 

www.wjpr.net      │     Vol 15, Issue 1, 2026.      │     ISO 9001: 2015 Certified Journal      │ 

 

 

 

 

1304 

oxygen molecules. 

 

PDT has been studied as a supplementary treatment for pancreatic cancer when combined 

with chemotherapy, radiation, immunotherapy, and surgical resection.
[130]

 A variety of 

photosensitisers, such as sodium porfimer, photofrin, mesotetrahydroxyphenyl chlorin, and 

verteporfin
[132,133]

, have been evaluated for their effectiveness in treating pancreatic cancer. 

PDT utilizing verteporfin has shown effective cytotoxicity in specific gemcitabine- resistant 

pancreatic cancer cells.
[136]

 Lu et al. 
[132]

 documented the effectiveness of sodium porfimer 

and verteporfin across various pancreatic cell lines. It was discovered that, across various cell 

lines with differing sensitivities, both photosensitisers induced cell death in a dose-dependent 

manner. Nonetheless, verteporfin proved to be more effective at a significantly lesser amount 

than sodium porfimer. Huggett et al. showed that vertepofin is safe and effective for inducing 

tumor necrosis in locally advanced pancreatic cancer in their phase I/II study.
[131]

 In addition, 

Xie et al. examined the potential anticancer effects of combining gemcitabine, a 

chemotherapeutic agent, with the PDT medication photosan.
[130]

 Their results showed that 

PDT had a strong but short-lived anticancer effect. The findings indicate that combining 

chemotherapy with photodynamic treatment may enhance the anticancer efficacy.
[130,136,137]

 

 

There are several factors that influence the effectiveness of PDT as a cancer treatment, 

including the selection of photosensitiser, the suitable dosage, and the depth of light 

penetration. The selective drug accumulation and cytotoxic response are influenced by the 

intracellular uptake, location, and vascular permeability of photosensitisers.
[132]

 The stiff 

fibrotic stroma that surrounds pancreatic tumors restricts the effective delivery of 

photosensitizers, creates a reliance on tumor oxygenation, and leads to imprecise dosimetry, 

all of which have limited the clinical application of PDT in treating pancreatic 

cancer.
[134,138,139]

 The review by Wang et al.
[133]

 provides additional information on pancreatic 

cancer PDT, and readers are directed to it. 

 

To improve the therapeutic use of PDT
[135]

, delivery strategies that incorporate conjugated 

polymers and encapsulate photosensitizers within nanovehicles are under investigation. As an 

example, the conjugation of the PDT agent pheophorbide-a with nanoparticles enhanced both 

the drug's effectiveness and the overall efficacy of the delivery method.
[137]

 Conjugate 

delivery systems and nanotechnology in PDT also offer enhanced selectivity and targeting as 

two additional benefits. By adding molecules that penetrate cells and aim at tumors, these 

delivery systems can be further functionalized, resulting in enhanced treatment accuracy. One 
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example of this is the pioneering drug delivery method developed by Hafiz et al. using a 

liquid metal nanoplatform (refer to Figure 4). 

 
[139]

 This formulation is made up of eutectic gallium–indium nanoparticles that are linked to 

hyaluronic acid and a benzoporphyrin derivative, which function as a targeting ligand and 

photosensitiser, respectively. After activation, the technology exhibited remarkable cellular 

absorption and tumor targeting. Compared to the control group, near-infrared light 

significantly elevated intracellular ROS levels, leading to tumour regression and increased 

necrosis. 

 

 

Figure 4: Schematic illustration of photodynamic therapy employing hyaluronic acid as 

a targeting ligand and gallium–indium nanoparticles functionalized with a 

benzoporphyrin-based photosensitizer for targeted cancer treatment. 

 

It has been demonstrated that handling pancreatic cancer is rather difficult and that a 

multimodal approach is essential for achieving the best results. Therefore, additional research 

into the use of PDT as a supplementary therapy is necessary. For more information on 

photodynamic therapy, refer to the outstanding reviews by Meng et al.
[135]

 

 

3.3 Treating Pancreatic Cancer with Nanotechnology 

Nanotechnology integrates various scientific fields and is centered on developing materials 

and devices at the nanoscale.
[140]

 Nanotechnology is one of the most widely used methods in 
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medicine for developing and discovering cancer-fighting drugs.
[31,140]

 Nanotechnology has 

been extensively studied in cancer research to improve the delivery of anticancer drugs by 

utilizing the tumor's leaky vasculature, employing EPR-based passive and/or active targeting 

methods.
[3,15,141]

 Recent studies emphasize the use of active targeting and/or a combination of 

passive and active targeting, as opposed to relying solely on passive targeting, for various 

applications aimed at enhancing the efficiency of drug delivery and minimizing off-target 

toxicity.
[141,142]

 Moreover, vascular permeability can vary within a single cancer and between 

different types of tumors, with some tumors not exhibiting the effects of enhanced 

permeability.
[36,69,75,142]

 There are multiple strategies that enable the aimed-at distribution of 

anticancer drugs, which can be used to actively target tumors. 

 

Nanoparticulate drug delivery employs a diverse array of nanocarriers, including liposomes, 

polymeric nanoparticles, micelles, gold nanoparticles, and quantum dots (refer to Figure 

5).
[3,31,143]

 These nanocarriers are extensively utilized, and numerous nanoproducts have 

emerged as improvements over conventional chemotherapeutics. Nanocarriers can hold or be 

linked to therapeutic medications, resulting in the creation of nanoproducts.
[36]

 Nanoparticle-

based drug delivery systems are designed to minimize toxic effects and off-target exposure, 

improve the therapeutic agent's pharmacokinetic profile regarding solubility, half-life, and 

mean residence time, and ensure that cytotoxic agents reach the tumor site at concentrations 

greater than those of free drugs.
[31,

 
144,

 
145]

 Nevertheless, there are several drawbacks to using 

nanovectors for drug delivery, such as elevated production costs, significant molecular size, 

nanotoxicity, accumulation in off-target tissues, burst release of the drug being carried, 

inadequate systemic circulation stability, and variations between different batches.
[144]

 The 

burst or rapid release of large quantities of drugs carried by nanocarriers shortly after 

injection, before they arrive at the target site 
[141]

, is one of the main issues that impede the 

clinical translation of various nanoformulations. This event can lead to serious toxicity and 

unsuccessful treatment.
[146,147]
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Figure 5: Schematic representation of nanoparticle-based drug delivery systems, 

illustrating the design, targeting mechanisms, and controlled release of therapeutic 

agents. 

 

A key tactic for dealing with certain limitations of nanoparticulate drug delivery systems—

like circulatory instability, short half-life, and rapid clearance—is the creation of stealth 

nanoparticles (PEGylated nanoparticles).
[148]

 Polymers such as polyethylene glycol (PEG) and 

N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are used to create a steric barrier 

by either covalently bonding or adsorbing them onto the surfaces of nanoparticles.
[68,148–150]

 

This approach enables prolonged circulation of nanoparticles by minimizing systemic 

clearance, which is achieved by lowering the uptake of the reticuloendothelial system. 

Additionally, it enhances the pharmacokinetic profile of the active medicinal ingredients, 

resulting in reduced toxicity and improved therapeutic efficacy.
[150]

 

 

3.3.1. Albumin-Based Nanoparticles for Pancreatic Cancer Treatment 

A protein nanomaterial obtained from various natural sources; albumin carries a diverse array 

of substances. Most of the protein in human plasma consists of albumin, which is often utilized 

to produce albumin-based nanoparticles.
[151,152]

 Nanocarrier systems based on albumin 

nanoparticles have undergone thorough investigation in clinical trials for pancreatic cancer 

and are widely utilized in cancer therapy.
[33,62,145]

 They demonstrate excellent tolerance, 

biocompatibility, biodegradability, and high safety standards. It has been shown that albumin 

nanocarriers enhance drug uptake and accumulation in tumors, prolong circulation time, and 
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improve the stability of various therapeutic payloads.
[137,152–156]

 However, since albumin is a 

body-produced protein, the size and purity of its derived products can differ. Due to the 

organic solvents utilized in manufacturing processes, they exhibit increased vulnerability to 

denaturation and unwanted reactions. Furthermore, due to albumin's interactions with various 

endogenous substances within the body, its presence in systemic circulation could potentially 

increase the risk of immunogenicity and instability.
[152,157]

 Bovine serum albumin (BSA) is 

often used in place of human serum albumin. BSA is low-cost, has minimal immunogenicity, 

and has structural similarities to human serum albumin.
[152,158]

 Other publications provide 

thorough assessments of albumin and its uses as a nanocarrier.
[151,159,160]

 

 

Abraxane®, the first nanoparticle based on albumin, was launched in 2013.
[156,161]

 

Abraxane®, also known as nanoparticle albumin-bound paclitaxel or nab-paclitaxel, is an 

albumin-stabilized form of paclitaxel that is approved as a first-line treatment for metastatic 

pancreatic cancer in combination with gemcitabine. The nanoformulation demonstrated 

improved overall survival and an exceptional safety profile when compared to the 

conventional delivery of chemotherapeutic medication.
[158]

 In addition, a phase III clinical 

trial conducted by Goldstein et al. in 2015 demonstrated that gemcitabine plus nab-paclitaxel 

was more effective than gemcitabine alone. The combination group had an overall survival of 

8.7 months, while the gemcitabine group had 6.6 months, resulting in a median difference of 

2.1 months.
[161]

 To enhance therapeutic efficacy and minimize side effects, various albumin-

based formulations have been investigated for bioimaging applications in pancreatic cancer 

treatment.
[137,152,155,156,158]

 In vitro and in vivo studies have demonstrated that albumin 

nanoparticles co-loaded with curcumin and paclitaxel exhibit enhanced anticancer activity and 

a controlled-release effect.
[153]

 Considered a nanocarrier, albumin is adaptable, effective at 

loading a variety of drugs, and functional.
[162]

 Another novel delivery method under 

consideration for pancreatic cancer treatment is the enzyme-sensitive, albumin-based 

gemcitabine therapy.
[163]

 An albumin nanocarrier was used to bind gemcitabine via a linker 

that can be cleaved by cathepsin B. The formulation was created by complexing the albumin 

nanocarrier with IR780. The near- infrared dye IR780 is used for cancer imaging and 

phototherapy. Due to its associated toxicity, it is not recommended to use IR780 directly for 

cancer treatment.
[164]

 Compared to free IR780, the albumin-based formulation resulted in a 

longer retention of IR780, significantly increasing gemcitabine concentrations in tumor tissue 

while minimizing side effects.
[163]

 Also, Yu et al. created a versatile nanoparticle based on 

albumin that aims to deliver gemcitabine and the photodynamic agent pheophorbide to 
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patients with lymph metastases from pancreatic cancer.
[137]

 Due to its short half-life, 

gemcitabine has a low concentration in cancer tissue, which ultimately results in therapy 

failure. In addition, pheophorbide's hydrophobic characteristics reduce its photodynamic 

impact when it is provided freely. The formulation based on albumin exacerbated the 

deficiencies in pheophorbide and gemcitabine. The trial's findings showed that the 

administration method effectively halted the growth of both primary and metastatic tumors 

and offered good imaging-guided medication distribution.
[137]

 Despite extensive investigation 

into albumin's function in therapeutic advancement, only a small number of albumin-based 

treatments have progressed to the clinical phase. 

 

3.3.2. Liposomal Nanoformulations for the Management of Pancreatic Cancer 

Liposomes are another popular nanocarrier for delivering anticancer drugs.
[36]

 Over 60% of 

all authorized nanoproducts are liposomes, which have demonstrated notable success 

compared to other nanoparticles.
[165–167]

 Liposomes, which consist of phospholipids, are 

vesicles with a hydrophilic core and two layers. Liposomes serve as a suitable therapeutic 

carrier for payloads that are either hydrophilic or hydrophobic.
[143]

 Their outstanding 

biocompatibility and biodegradability, combined with their small size and low toxicity 

profiles, make them promising candidates.
[165,167,168]

 Liposomal drug delivery systems have 

been reported for site-specific administration and are suitable for surface functionalization in 

active targeting due to their enhanced permeability and retention effect, which leads to their 

accumulation in tumor tissues.
[169]

 

 

A number of formulations based on liposomes have been evaluated for their efficacy in 

addressing pancreatic cancer. Using a pancreatic cancer xenograft model, Ranjan and 

colleagues demonstrated the anticancer properties of a liposomal form of curcumin that they 

developed. Curcumin, a naturally occurring anticancer agent, has its effectiveness reduced 

due to its hydrophobic nature and low systemic bioavailability. According to the research, 

liposomal curcumin exhibits a significantly stronger anticancer effect than free curcumin.
[170]

 

 

To improve the penetration of paclitaxel micelles in pancreatic cancer, Zinger and colleagues 

developed collagozome, a nanoliposomal formulation of collagenase.
[171]

 Collagen 

overexpression causes the stroma to thicken considerably and become rigid. Collagozomes 

are equipped with collagenase enzymes that degrade collagen and reduce fibrotic tissue in 

cases of pancreatic cancer. The liposomal formulation demonstrated a sustained release rate 

and protected collagenase from premature degradation in the plasma.
[171]

 The overall 



Sriramcharan et al.                                                            World Journal of Pharmaceutical Research 

www.wjpr.net      │     Vol 15, Issue 1, 2026.      │     ISO 9001: 2015 Certified Journal      │ 

 

 

 

 

1310 

effectiveness was attributed to the liposomal collagozome's ability to alter the tumors' 

extracellular matrix, and further investigation of this method has been proposed. The 

liposomal delivery technique has also progressed with the development of LPGem-siMcl-1, a 

formulation that uses liposomes as a nanocarrier to deliver gemcitabine and Mcl-1 siRNA 

together.) Mcl-1 siRNA is a small interfering RNA (siRNA) molecule that was specifically 

designed to target and quiet the myeloid cell leukemia-1 (Mcl-1) gene, enhancing apoptosis 

and perhaps delaying the growth of cancer cells. A protein called Mcl-1 inhibits apoptosis, 

which is essential for controlling this kind of cell death in many cell types, including cancer 

cells. According to reports, the liposomal method effectively delivered the two active 

medications into the pancreatic tumor, shielding them from early degradation and boosting 

their anti-tumor effectiveness.
[172]

 Nonetheless, considering the average particle size of the 

liposomal formulation (188.7 nm) and the established relationship between therapeutic 

efficacy and particle size, further examination is required to ascertain the mechanism 

underlying the observed activity in the pancreatic adenocarcinoma model. Ji et al. created 

MMP-2-responsive liposomes that were modified with β-cyclodextrin (β- CD) and contained 

the antifibrotic drug pirfenidone as well as the chemotherapeutic agent gemcitabine.
[167]

 

Gemcitabine was encapsulated in the liposomes, while pirfenidone was incorporated into the 

β-CD. Using a peptide that can be cleaved by MMP-2, β-CDs were attached to the liposome. 

To aim at tumor cells, RGD (ArgGly-Asp) peptides were incorporated into the liposome. 

After being exposed to MMP-2 in the tumor microenvironment, pirfenidone was released 

from the formulation. This led to a reduction of dense fibrotic tissue and improved the 

absorption and accumulation of the gemcitabine-loaded liposomal product compared to free 

gemcitabine. 

 

Liposomes are used in various drug delivery applications, and ongoing research aims to 

develop liposomes suited for these purposes. Methods for liposomal drug delivery with 

multiple functions seek to create numerous functionalities. If they are programmed to respond 

to specific stimuli, such as changes in pH, temperature, or enzyme activity, the encapsulated 

medication can be released at the target site of action. Additionally, they can be modified by 

focusing on ligands such as proteins, aptamers, peptides, and monoclonal antibodies. The 

goal is to lessen the damaging impact of anticancer drugs on healthy cells while enhancing 

their targeted delivery to tumor cells. These liposomes, which serve multiple functions, have 

demonstrated preclinical success.
[168,175]

 Even though preclinical results show that these 

nanoformulations have better pharmacokinetic profiles and therapeutic efficacy compared to 
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the active medication, they have not been clinically translated.
[168]

 In that location A variety of 

liposomal formulations are presently undergoing preclinical and clinical testing, and it is 

expected that additional innovative liposomal formulations with improved efficacy will soon 

be introduced.
[165,166,168]

 

 

3.3.3 Using Polymeric Nanoparticles to Treat Pancreatic Adenocarcinoma. 

Polymeric polymers, commonly used as drug delivery vehicles, can encapsulate and conjugate 

immunotherapeutic and chemotherapeutic agents. Due to their extraordinary 

biocompatibility, they can be customized for targeted drug delivery.
[176]

 When cytotoxic 

drugs are conjugated or encapsulated in polymeric nanoparticles, they are delivered more 

effectively, have a longer half-life, and accumulate to a greater extent at the tumor site. A 

range of polymeric nanocarriers, such as polymeric micelles, dendrimers, nanogels, and 

polymeric nanoparticles, have been investigated for the treatment of pancreatic cancer. 

Polymeric nanoparticles are made up of various polymers, including poly- (lactic-co-glycolic 

acid) (PLGA), polyglycolic acid (PGA), polyamidoamine (PAMAM), and polylactic 

acid.
[36,143,177,178]

 

 

The surface of PEGylated PLGA nanoparticles containing paclitaxel was modified by Wu et 

al. using the tumor- specific mucin-1 antibody (TAB004).
[179]

 Mucin-1 is overexpressed in 

over 80% of pancreatic adenocarcinomas, and this is associated with a poorer prognosis and 

an increase in metastases. PEG-PLGA serves as a suitable nanocarrier with a high loading 

efficiency, while PEGylation offers prolonged circulation and reduced systemic clearance. 

The limited internalization and accumulation of cells observed during an infection were 

linked to the interaction between the conjugated antibody and the antigen produced by cancer 

cells, as demonstrated in vitro research.
[179]

 Moreover, Sun et al. employed a redox-

responsive gemcitabine polymer with a small particle size (15.40 nm) for the co-loading of 

paclitaxel and the immunomodulating drug NLG919.
[180]

 The generated micelles exhibited 

robust anticancer effects in the pancreatic (PANC02) xenograft model. The connection 

between micelle size and improved anti-tumor efficacy supports the hypothesis that the thick 

stroma in pancreatic cancer hinders the absorption of nanoproducts with larger particle sizes. 

The research demonstrated the benefits of administering chemotherapeutic and 

immunotherapeutic drugs together.
[180]

 

 

To enhance the efficacy of nanodrugs, recent studies have focused on using smart 
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nanocarriers that allow for surface functionalization to improve selectivity in targeted drug 

delivery.
[181]

 These nanocarriers can take in and discharge drugs at targeted locations based on 

physiological or environmental signals. Even though scientists have tried hard to depict 

nanotechnology as the solution for the deficiencies of chemotherapeutics, a considerable gap 

remains between pre-clinical findings and clinical trial results.
[36,145]

 Only a limited number 

of nanoparticle delivery methods, despite their seeming promise, have been used in clinical 

environments for the treatment of pancreatic cancer. Three new nanoparticle systems are 

currently in clinical trials for the treatment of pancreatic cancer (see Table 1). Imx-110 is 

distinctive due to its nanoscale and water solubility. It consists of nanoparticles that 

encapsulate the anticancer agent anthracycline and doxorubicin, a drug with low water 

solubility. Curcumin has demonstrated anticancer properties in various cancer types, such as 

pancreatic cancer, by targeting multiple signaling proteins, including nuclear factor Kappa B 

(NF-kB) and signal transducer and activator of transcription 3 (STAT3).
[182,183]

 These proteins 

are involved in the initiation of cancer as well as in its resistance to chemoradiation and 

targeted therapies.
[182]

 Utilizing Imx-110 nanoparticles for doxorubicin delivery could 

enhance the drug's capacity to infiltrate tumors. Using Imx-110 nanoparticles to transport 

doxorubicin could enhance the drug's capacity to infiltrate tumours. Moreover, co-delivery 

with curcumin may bypass the multidrug resistance pathways of tumor cells and prove 

effective against chemoresistant tumor cells by inhibiting the activity of NF-kB and STAT3. 

Comprising inert inorganic hafnium oxide (HfO2) crystals, NBTXR3 is a 50 nm nanoparticle 

that has shown clinical efficacy in treating hepatocellular carcinoma and advanced solid 

tumors with lung or liver metastases.
[184]

 Upon the delivery of radiation after the intratumoral 

injection of NBTXR3, NBTXR3 becomes activated at the target site, leading to an enhanced 

absorption of ionising radiation aimed at destroying cancer cells.
[184]

 NBTXR3 is inert, which 

means it only emits electrons when exposed to radiation. This feature makes radiation more 

effective than standard radiotherapy. Finally, AGuIX-NP is a nanoparticle based on 

polysiloxane with a hydrodynamic diameter of 4 ± 2 nm that serves as a paramagnetic 

contrast enhancer for theranostic applications and contains gadolinium.
[185]

 Following 

intravenous administration, AGuIX-NP can build up passively in the tumour 

microenvironments due to the EPR effect. Its diminutive dimensions enable rapid renal 

clearance as well as thorough tumour penetration. 
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Table 1: Nanoparticle delivery systems in clinical trials for the treatment of pancreatic 

cancer. 

Anticancer Agent Molecular Target Phase Sponsor 
ClinicalTrials.g

ov Identifier 

Curcumin and 

doxorubicin (Imx-110) 

Stat3/NF-kB/poly- 

tyrosine kinase 

/topoisomerase II 

1/2a 
Immix Biopharma 

Australia Pty Ltd. 
NCT03382340 

Inorganic hafnium 

oxide (NBTXR3) 
Radiation 1 

M.D. Anderson 

Cancer Center 
NCT04484909 

AGuIX-NP 

(Theranostic agent) 
EPR effect 1/2 

Dana-Farber Cancer 

Institute 
NCT04789486 

 

4. Drug-Conjugate Delivery Systems in Pancreatic Cancer Treatment 

Due to their smaller size and ability to accurately target tumors, drug conjugates are being 

utilized more frequently to enhance the effectiveness of medicine delivery for desmoplastic 

pancreatic adenocarcinoma.
[186]

 Monoclonal antibodies and peptides can be employed to 

target tumor-specific elements or receptors that are overexpressed on cancer cell surfaces, 

which may help surmount the challenges of treating pancreatic cancer. Systems based on 

drug conjugates, including polymer-drug conjugates, antibody-drug conjugates, and peptide-

drug conjugates (refer to Figure 6), have demonstrated advantages in cancer treatment and 

seem to hold promise for treating pancreatic adenocarcinoma in comparison to conventional 

nanoparticulate drug delivery systems.
[187,188]

 Using suitable linkers to covalently bond drug 

molecules to macromolecules, drug conjugates utilize the "pro-drug" method.
[189]

 With the 

―pro-drug‖ strategy, the molecule’s physicochemical and pharmacokinetic properties are 

modified and its bioactivity concealed so that it remains inactive while circulating until it 

arrives at the target areas. In comparison to nanoparticle drug delivery systems, drug 

conjugates offer greater adaptability, reduced risk to off-target chemotherapeutic agents, and 

easier manufacturing processes.
[189,190]

 

 

 

Figure 6. Schematic overview of the different types of drug conjugates employed in 

cancer therapy, highlighting their structural components and therapeutic mechanisms. 
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4.1.  Polymer drug conjugates for the treatment of pancreatic cancer 

A variety of diseases are the target of ongoing clinical investigations into numerous polymer-

drug conjugates, which are often called polymeric prodrugs and have drawn considerable 

interest.
[191]

 Cytotoxic agents and hydrophilic polymers are typically linked covalently, either 

directly or via suitable stimuli-responsive linkers (Figure 6a), including the peptide linkers 

PLGLAG (Pro-Leu-Gly-leu-Ala-Gly) and GFLG (glycylphenylalanyl- leucine-

glycine).
[192,193]

 Polymer-drug conjugates release harmful compounds when exposed to 

stimuli such as relatively lower pH or enzymes near the tumor site, causing the substrate 

linkers that attach the drugs to the polymer backbone to break.
[193]

 Polymer-drug conjugates, 

when subjected to stimuli such as a relatively lower pH or enzymes near the tumor site, 

experience the breaking of substrate linkers that attach the drugs to the polymer backbone, 

resulting in the release of harmful compounds.
[193]

 As a result, polymer-drug conjugates 

mitigate the risk of premature or off-target drug release and unintended toxicity to healthy 

cells—two significant concerns associated with nanoparticulate delivery systems.
[191,193] 

Polymer-drug conjugates provide improved water solubility, prolonged drug circulation, and 

enhanced drug accumulation in the tumor microenvironment via the EPR effect. Compared to 

the traditional polymeric nanoparticulate method, which involves encasing the therapeutic 

medication within polymeric nanocarriers, the polymeric-drug conjugate approach offers a 

greater loading capacity and more controlled drug release.
[193]

 Polyethylene glycol-betulinic 

acid (PEG-BA), a distinctive and simple polymer-drug combination, was developed by 

Mosiane et al.
[194]

 Due to its poor solubility, short half- life, and high molecular weight, which 

limit cellular uptake, betulinic acid—a potent anti-cancer compound derived from medicinal 

plants—is not recommended for direct use. PEG-BA exhibited greater antioxidant and 

anticancer effects than free betulinic acid.
[194]

 It has been shown that the conjugation of 

betulinic acid with polyethylene glycol yields a molecule that possesses improved 

pharmacological activity and pharmacokinetic characteristics. Wang et al. created a 

combination of polyamidoamine dendrimer and camptothecin for the treatment of pancreatic 

cancer. Wang et al. devised a combination of polyamidoamine dendrimer and camptothecin as 

a treatment for pancreatic cancer.
[133]

 In this research, camptothecin was attached to the 

dendrimer with a thioketal linker that reacts to reactive oxygen species (ROS) after surface 

modification with glutathione. Gamma (γ)-glutamyl transpeptidase (GGT), which is 

abundantly present on the surface of pancreatic cancer cells, triggered the transformation of 

glutathione into amines via a charge-reversal mechanism, resulting in a positive charge on the 

dendrimer-camptothecin conjugate by facilitating γ-glutamyl transfer reactions that yield 
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primary amines. At neutral pH, glutathione carries a negative charge. With the transition to a 

positive charge, the substance can deeply infiltrate the tumor. By taking on a positive charge, 

the chemical can penetrate deeper into the tumor via caveolae- mediated endocytosis and 

transcytosis. Reports indicate that the optimal method for transporting nanoparticles to tumors 

involves using a neutral or slightly negative surface charge during intravenous injection, and 

then switching to a positive charge once the particles arrive at the tumor site (68). When 

camptothecin was cleaved by intracellular ROS, it became liberated. The thioketal linker, 

which is responsive to ROS, was utilized because cancer cells produce significant amounts of 

ROS as a result of hypoxia. In orthotopic pancreatic cancer cell xenografts, the dendrimer–

camptothecin combination demonstrated a powerful anticancer effect, achieving a tumor 

inhibition rate of 92.8%. This was significantly higher than that of the control dendrimer 

lacking the ROS- sensitive linker (68.3%) and gemcitabine, the first-line FDA-approved 

treatment (62.2%). The significant cellular absorption and accumulation of this conjugate in 

desmoplastic tumors may be attributed to its reduced size (18.3 nm) and the mechanisms of 

caveolae-mediated endocytosis and transcytosis.
[178]

 Almawash et al. also investigated the anti-

cancer efficacy of docetaxel and cyclopamine polymeric conjugates in both primary and 

metastatic pancreatic cancer.
[195]

 Cyclopamine, a steroidal alkaloid, blocks the hedgehog (Hh) 

pathway. The development and dissemination of pancreatic tumors is largely driven by the Hh 

pathway. In contrast, docetaxel, which attaches to β-tubulin and leads to mitotic arrest, is a 

microtubule stabilizer that causes cancer cell death.
[38,50,195]

 The drug conjugates were created 

through a covalent bond between each drug and methoxy poly (ethylene glycol)-block- poly 

(2-methyl-2-carboxyl-propylene carbonate) using carbodiimide chemistry. The conjugates 

had average particle sizes of 73.11 nm for cyclopamine and 66.28 nm for docetaxel. The two 

polymeric conjugates demonstrated significant intra-tumoral accumulation and inhibition of 

tumor progression when used together. Moreover, in contrast to the free drugs that cause 

severe side effects like hypersensitivity and peripheral neuropathies, the conjugates were 

tolerated well. Despite the fact that a number of preclinical studies have demonstrated 

promising results concerning the efficacy of polymer-drug conjugates for treating pancreatic 

cancer, their clinical use remains limited. 

 

4.2.  Antibody-Drug Conjugates for Pancreatic Cancer Treatment 

In the US, over 30 monoclonal antibodies have received approval for use, and they have been 

effectively developed to address various types of cancer.
[196]

 Antibody–drug conjugates 

(ADCs) deliver toxic drugs by utilizing antibodies that attach to specific antigens on tumor 
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cell surfaces that are either not found or only minimally found on healthy cells. This 

contributes to the active targeting of cancer by enhancing selectivity for tumor cells.
[197,198]

 

Besides using complete antibodies, smaller antibody fragments such as fragment antigen 

binding (Fab), single-chain fragment variable (scFv), and single-domain antibodies are also 

employed for drug administration. Compared to full-length antibodies, the smaller pieces are 

easier to produce and can penetrate tissues more successfully.
[196,199,200]

 ADCs are produced 

by combining antibodies with cytotoxic drugs using a suitable linker
[197,198]

 (Figure 6b). 

ADCs lower off-target toxicity and enhance the cellular uptake of anticancer 

therapies.
[198,199,201]

 Nagaoka et al. investigated the anti-tumor effects of a novel ADC, SNS-

622-emtansine, in pancreatic adenocarcinoma cases. The antibody SNS-622 is directed 

against aspartate-β-hydroxylase (ASPH), a type II transmembrane protein that is produced in 

excess amounts in pancreatic adenocarcinomas. ASPH overexpression accelerates the 

development, migration, invasion, and metastasis of pancreatic cancer. The ADC 

demonstrated selectivity for ASPH by preventing lung metastasis and the development of the 

primary tumor.
[201]

 An additional investigation looked into the tumor-suppressive impact of 

an antibody–drug pairing on pancreatic cancer cell lines centers on monomethyl auristatin F, 

or glypican-1.
[202]

 The majority of primary pancreatic adenocarcinomas contain extra 

glypican-1, which is linked to a poor prognosis and recognized as a promoter of cancer 

proliferation. The formulation greatly reduced tumor development and led to the 

internalization of glypican-1-positive pancreatic cancer cells.
[202]

 Moreover, Huang et al. 

developed a new ADC known as ICAM1- antibody, which is connected to mertansine via a 

succinimidyl 4-(N-maleimidomethyl) cyclohexane-1- carboxylate (SMCC) linker.
[203]

In the 

case of pancreatic cancer, a poor prognosis is associated with the overexpression of the 

transmembrane glycoprotein ICAM1. In preclinical studies, the targeted ADC demonstrated 

substantial accumulation in tumor tissues and induced tumor regression.
[203]

 Although many 

preclinical studies have investigated the promise of antibody-drug conjugates for pancreatic 

adenocarcinomas, none have received approval for use againstNo observable anti-cancer 

effects have been seen in clinical contexts for this kind of malignancy. About twelve ADC 

cancer treatments for solid tumors and hematologic cancers have been approved by the 

FDA.
[204]

 Only approximately five antibody-drug conjugates are currently being examined in 

clinical trials for the treatment of pancreatic cancer (refer to Table 2). Because of their large 

molecular dimensions, desmoplasia significantly restricts the ability of antibody–drug 

conjugates to infiltrate pancreatic tumor cells; this may explain why these conjugates are not 

effective in treating pancreatic adenocarcinoma.
[58]

 In addition, the expression of antigens in 
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pancreatic adenocarcinoma is heterogeneous; this variability may occur over time within a 

single patient or among different patients. Treatment failure may be influenced by this 

diversity.
[200,205]

 For the development of ADCs aimed at treating pancreatic cancer, it is 

recommended to use smaller antibody fragments like single-chain fragment variable and 

single-domain antibodies.
[36,205]

 Drago et al. and Marei et al. 
[206,207]

 conducted recent studies 

that offer thorough insights into antibody-drug conjugates and their impact on cancer therapy. 

 

Table 2: Antibody–drug conjugates in clinical trials for the treatment of pancreatic 

cancer. 

Anticancer Agent 
Molecular 

Target 
Phase Sponsor 

ClinicalTrials.gov 

Identifier 

Monomethyl auristatin E 

(TORL-2-307-ADC) 
Claudin 18.2 1 

TORL 

Biotherapeutics, 

LLC 

NCT05156866 

Anthracycline PNU- 159682 

(SOT102) 
Claudin 18.2 1/2 SOTIO Biotech NCT05156866 

Auristatin moiety (A166) * HER2 1/2 Klus Pharma Inc NCT03602079 

Monomethyl auristatin E 

(XB002) 
Tissue factor 1 Exelixis NCT04925284 

Duocarmycin analog 

(vobramitamab duocarmazine) 
B7-homolog 3 1 MacroGenics NCT05293496 

* HER2: Humanepidermal growth factor receptor 2 

 

4.3. Peptide-Drug Conjugates for Pancreatic Cancer Therapy 

Peptide–drug conjugates can be found in other publications.
[188–190,208]

 To summarize, 

peptide–drug conjugates represent a type of drug delivery system that utilizes an appropriate 

linker to covalently attach active pharmaceutical agents to a peptide sequence (see Figure 6c). 

Peptide-drug conjugates possess properties of biocompatibility, biodegradability, and lack of 

immunogenicity.
[188,190]

 Like other drug conjugates, this delivery method can ensure precise 

targeting and alter the pharmacokinetic properties of drugs. Peptide-drug conjugates represent 

a new approach to delivering treatment for various cancers, such as pancreatic 

adenocarcinoma.
[188,209]

 Peptide-drug conjugates are smaller than nanoparticulate drug 

delivery systems and antibody-drug conjugates, allowing them to penetrate the refractory 

tumor microenvironment of pancreatic cancer and micrometastatic tumors more easily.
[45,189]

 

The average IgG antibody consists of roughly 1000 amino acids (150 kDa), whereas a peptide 

used for cancer targeting comprises 5 to 25 amino acids (2–5 kDa).
[189]

 Peptide–drug 

conjugates are primarily composed of two types of peptides: targeting peptides and cell-

penetrating peptides.
[210,211]
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Comprising fewer than thirty amino acids, cell-penetrating peptides (CPPs) include 

transportan, octaarginine (R8), and HIV transactivator of transcription (TAT) peptides. Their 

successful internalisation into cells has resulted in improved cellular drug uptake across 

various cancer types.
[210]

 Cell-penetrating peptides are capable of transporting conjugated 

payloads such as proteins, nucleic acids, nanoparticles, and small molecule drugs.
[212]

 

However, due to their low cell selectivity and non-specific cellular absorption, CPPs are not 

used as frequently as targeting peptides.
[210,213,214]

 Due to their specificity for cancers, 

negatively charged cell-penetrating peptides are utilized more frequently than cationic 

ones.
[209,212]

 

 

Cell-targeting peptides are a type of peptide that can specifically target and enter cells or 

tissues.
[211]

 Cell-targeting peptides, which are smaller and made up of three to fourteen amino 

acids, are a type of penetrating peptide. When used in peptide–drug conjugates, the targeting 

peptides iRGD (cyclic CRGDKGPDC), iNGR (CRNGRGPDC), somatostatin, and 

CKAAKN demonstrate remarkable specificity and selectivity for specific overexpressed 

ECM components, integrin receptors, EGFR, and amino-peptidase N receptor.
[7,30,181,190]

 Due 

to the overexpression of integrin receptors in tumor cells, RGD (arginine glycine-aspartic 

acid) is the most commonly used tumor-homing peptide motif in therapeutic conjugates for 

various cancers.
[209]

 Integrins govern the development of tumors and their invasion of blood or 

lymphatic vessels.
[215–217]

 Eight distinct varieties of integrin receptors exist: αvβ1, αvβ3, αββ5, 

αββ6, αββ8, α5β1, α8β1 und αIIbβ3. These encompass αββ3, αββ5, α5β1, and αββ6, all of 

which play a role in the initiation and advancement of cancer.
[188,216]

 Nevertheless, 

conventional RGD has a limited range of applications in drug delivery methods because it 

cannot penetrate extravascular tumor tissue.
[38]

 

 

The potential of a disulfide-based cyclic iRGD that enhances RGD to boost the penetration 

and cellular uptake of different medications across various cancer types has garnered 

significant interest.
[8,38,217,218]

 The attachment of the peptide to β5 integrins results in the 

cleavage and release of the c-terminal sequence. This sequence interacts with the neuropilin-1 

receptor to enable therapeutic medicine delivery by initiating endocytic transcytosis and 

trans-tissue transport.
[38,94,218]

 The iRGD peptide enhances the infiltration of anti-cancer 

medications into blood vessels associated with tumour development, making iRGD-mediated 

targeting a promising approach for pancreatic adenocarcinoma. It aims to increase the 

permeability of these blood vessels so that medications can more readily home in on and 
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arrive at the tumor.
[217,219]

 Moreover, research has indicated that iRGD peptides that attach to 

integrin receptors can reduce the expression of ECM glycoproteins such as fibrinogen and 

fibronectin, thereby decreasing cell adhesion and tumor proliferation. It has been shown that 

polymeric and liposomal iRGD conjugates are effective against various cancers, including 

breast and prostate cancer. It has been shown to have greater penetration and accumulation of 

anticancer drugs compared to the naked form of nanoparticles.
[188,220]

 

 

Another commonly used tumor-homing peptide in peptide–drug conjugates is somatostatin. 

Somatostatin identifies and attaches to the somatostatin receptor (SSTRI-5). Along with its 

antisecretory and antiproliferative properties, somatostatin regulates the uptake and 

internalization of payloads in cells through its interaction with receptors. Many 

neuroendocrine tumors, such as those affecting the pancreas, breast, lung, and ovary, possess 

somatostatin receptors.
[221]

 Cyclic peptides derived from somatostatin and connected to three 

different drugs— camptothecin, azatoxin, and combretastatin-4A—were created by Ragozin 

et al.
[221]

 The drug conjugates demonstrated significant anti-tumor effects and selective 

accumulation in tumors within the evaluated pancreatic cancer cell lines.
[221]

 Ragozin et al. 

synthesized cyclic peptides derived from somatostatin, which were conjugated with three 

different drugs: camptothecin, combretastatin-4A, and azatoxin.
[221]

 All drug conjugates 

demonstrated significant anti-tumor effects and selective accumulation in tumors within the 

evaluated pancreatic cancer cell lines.
[221]

 Additional tumor-homing peptides comprise 

angiopep-2, gonadotropin-releasing hormones, and epidermal growth factor protein.
[15,30,212]

 

Peptide-drug conjugates have not yet become common in cancer treatment.neu. The FDA-

approved peptide-drug conjugate LutatheraTM (177lu-dotatate) is used to treat 

neuroendocrine tumors. Melfluten, another peptide-drug combination approved for treating 

refractory multiple myeloma, was recently delisted after failing phase III clinical trials.
[214]

 In 

a recent phase I clinical trial, Dean and colleagues found that for 93% of patients with 

metastatic pancreatic cancer, the combination of gemcitabine/nab- paclitaxel with CEND-1 

(iRGD) yielded a response rate of 59% and a median overall survival of 13.2 months.
[222]

 

Von Hoff et al., in a phase III clinical trial, found that the median overall survival for the 

gemcitabine/nab- paclitaxel group was 8.5 months.
[23,223]

 Dámus et al.
[30]

 additionally 

documented the development of effective Ser-Lys-Ala-Ala-Lys-Asn (SKAAKN) peptide-

daunomycin conjugates aimed at selective targeting in PANC-1 pancreatic cancer. Cathepsin 

B might cleave the GFLG peptide, which connects the tumor-homing peptide SKAAKN to 

daunomycin. The peptide–drug conjugates showed significant inhibition of tumour growth 
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and no toxicity in the PANC-1 xenograft model compared to the free antibiotic 

daunomycin.
[30]

 Peptide-drug conjugates should be considered as a potential treatment for 

pancreatic cancer. 

 

5. Delivery Strategy in Multiple Stages 

A multistage drug delivery system is characterised by the sequential release of medications at 

different stages of the illness and in response to stimuli.
[224]

 This approach aims to enhance 

therapeutic outcomes and minimize the adverse effects associated with traditional drug 

delivery methods, including toxicity to non-targeted areas, rapid clearance from the body, and 

inadequate drug concentration at the intended site. In order to allow for the site- specific 

targeting of cytotoxic drugs, a stimuli-responsive system is anticipated to disintegrate into 

particles that differ in size, shape, or surface charge.
[224,225]

 1. In terms of functionalities and 

preparation technique, this differs from the system of functionalised single nanoparticles. 

Usually, a multistage drug delivery system consists of a carrier with cytotoxic substances that 

are either affixed to or housed within other carriers intended to convey these agents to a 

designated target.
[226,

 
227]

 

 

The design of this delivery system necessitates a primary particle that serves as a carrier for 

secondary nanoparticles containing anticancer drugs.
[228,229]

 After the injection, factors like 

alterations in pH or particular enzymes present in the tumour microenvironment lead to the 

disintegration of the primary nanoparticles, resulting in secondary nanoparticles that hold one 

or more anticancer drugs (see Figure 7). Utilizing the EPR effect, it may be possible to 

develop the first nanoscale product made up of liposomes, mesoporous silicon particles, 

nanoparticles, and other nanocarriers that preferentially aggregate in solid tumors. If targeted, 

the smaller secondary construct can penetrate deeper into the cancer and be internalised 

through receptor-mediated endocytosis.
[226,230]

 Wong et al.
[230]

 developed multistage quantum 

dot nanoparticles that initially measured 100 nm. After being injected, it enters the tumor 

microenvironment where matrix metalloproteinases induce a 10 nm reduction in size. Their 

findings indicated that the approach enhanced penetration through the tumor's interstitial 

space.
[230]

 

 

Liang et al. demonstrated, in a similar vein, the effectiveness of multistage drug delivery 

devices for treating HER2-overexpressing breast cancer.
[231]

 The work resulted in the creation 

of a unique nanovehicle with a lipid envelope, core-shell structure, and cascaded aptamers 

designed to reduce toxicity and enable stepwise drug release. Epigallocatechin gallate, a 
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naturally occurring anticancer agent, was incorporated into the nanovehicle and linked to an 

ATP (adenosine-5′-triphosphate) aptamer to form a ternary complex. An aminofunctionalized 

lipid matrix provided protection for this molecule. Liang et al.
[231]

 have also demonstrated the 

effectiveness of multistage drug delivery devices in HER2-overexpressing breast cancer. This 

endeavor yielded a new nanovehicle with a lipid envelope, core shell architecture, and 

cascaded aptamers designed to minimize toxicity and enable stepwise drug release. A ternary 

complex was formed by incorporating the naturally occurring anticancer drug 

epigallocatechin gallate into the nanovehicle and linking it to an ATP (adenosine-5′-

triphosphate) aptamer. This molecule was shielded by a lipid matrix with amino 

functionalization. 

 

 

Figure 7: Illustration of a multistage drug delivery strategy in which primary 

nanoparticles transport secondary, payload-loaded nanoparticles to the tumor 

microenvironment via the enhanced permeability and retention (EPR) effect. Exposure 

to acidic pH or tumor-associated enzymes triggers the degradation of the primary 

nanoparticles, releasing the secondary nanoparticles and enabling localized delivery of 

cytotoxic agents within the tumor. 

 

Although the multistage delivery approach has been utilized for over four decades, its 

effectiveness in treating pancreatic cancer remains uncertain.
[224]

 Considering the unique 

characteristics of this cancer type, including its thick stroma that complicates drug delivery, a 
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multistage design could provide a greater array of options and significant potential for drug 

administration. Research has demonstrated that decreasing the size of nanoparticles enhances 

their ability to target cancer cells, but this may lead to their swift removal from circulation 

following intravenous injection. It is essential to strike a balance so that drug delivery systems 

are of the appropriate size— not so small that they are rapidly eliminated from circulation, 

and not so large that they hinder cancer cell absorption. Furthermore, a multistage design 

approach can modify the physicochemical characteristics of nanoparticles, including their 

shape and surface charge, all of which impact the overall effectiveness of the delivery 

systems.
[232]

 To guarantee the advancement of ideal medication delivery systems, it is vital to 

further explore the potential of multistage design applications in cancer research.
[224,233]

 The 

research conducted by
[234]

 resulted in the creation of multifunctional, size-switchable 

nanoparticles that improved deep tissue penetration, optimized intracellular release, and 

exhibited a considerable anticancer effect in models of stroma-rich pancreatic and breast 

cancer. In a comparable manner, Li et al. developed a size-switchable, ultra-pH-sensitive 

nanoformulation that showed improved therapeutic efficacy and tumor penetration.
[5,235]

 

 

6. CONCLUSION 

The shortcomings of traditional chemotherapeutic applications can finally be addressed with 

nanodelivery systems. Sadly, pancreatic tumors remain resistant to these "promising products," 

and overall patient survival rates have not seen significant improvement. Even though these 

treatments have demonstrated some encouraging preclinical outcomes, there have not yet 

been any significant advancements in pancreatic cancer treatment. Desmoplasia plays a major 

role in the unfavorable prognosis of pancreatic cancer by hindering the infiltration and buildup 

of anticancer drugs. Alongside the heterogeneity of tumor cells, the presence of mutations in 

tumor suppressor genes and micro-sized metastatic tumors—known to resist large 

molecules—are further contributors to insufficient therapeutic outcomes. Consequently, the 

low penetration and storage levels of nanoproducts in tumors have restricted their usefulness, 

irrespective of targeting strategies. The significant physiological and anatomical differences 

between humans and study animals are responsible for the considerable gap between 

preclinical and clinical trial results, which is worth mentioning. While preclinical studies 

provide important information about the potential effectiveness and safety of new treatments 

or drugs, their reliability can be questionable. This complicates the direct application of their 

findings to human patients. Moreover, human studies are inherently complex, whereas animal 

models tend to be uniform. The main goal is to enhance deep penetration and internalization 
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for optimal drug delivery in pancreatic cancer. These aims can be achieved by devising 

delivery strategies that ensure penetration, intracellular absorption, and a considerable 

accumulation of cytotoxic drugs at tumor sites. Based on our understanding of the 

characteristics of pancreatic cancer and the design of drug delivery systems, targeting 

proteolytic enzymes that are overexpressed in the pancreatic tumor microenvironment with 

drug-conjugates—such as peptide–drug conjugates and multi-stage drug delivery systems—

may enhance drug internalization, accumulation, and overall antitumor activity due to the 

small particle size of these delivery systems.Even though multistage drug delivery methods 

are often used in nanotechnology, more research is needed to completely grasp this approach 

in relation to small-sized drug conjugates. Moreover, the use of experimental models like 

genetically modified mouse models that accurately represent the unique characteristics of 

pancreatic adenocarcinoma should be employed during the preclinical phase to reduce 

discrepancies between preclinical and clinical findings and aid in clinical translation. 
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