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ABSTRACT

Magnesium is an important micronutrient that regulates glucose
homeostasis, insulin signaling, and energy metabolism. New
research reveals that magnesium insufficiency is widespread in
people with metabolic disorders, notably type 2 diabetes
mellitus (T2DM), and may contribute to illness development
and progression. The purpose of this systematic review and
meta-analysis was to assess the relationship between
magnesium consumption or supplementation and diabetes-
related metabolic outcomes. Electronic databases such as
PubMed, Scopus, and Web of Science were rigorously searched
for observational studies and randomized controlled trials
(RCTs) that examined dietary magnesium intake, serum
magnesium levels, or magnesium supplementation in
connection to diabetes risk and glycemic control. Incidence of
type 2 diabetes, fasting plasma glucose, insulin resistance
indicators, HbAlc, lipid profile, and blood pressure were

among the outcomes of interest. The risk of acquiring type 2

diabetes is inversely correlated with dietary magnesium consumption, according to data from

prospective cohort studies; dose-response analyses show that increased intake significantly

reduces risk. Although effects on HbAlc were modest and varied, meta-analyses of RCTs

showed that magnesium supplementation significantly improved insulin sensitivity and

fasting blood glucose, especially in people with magnesium deficiency or poor glycemic
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control. Benefits also included improvements in blood pressure and cholesterol profiles,
which may indicate more extensive cardio metabolic protection. Enhanced insulin receptor
function, better glucose transport, decreased inflammation, and oxidative stress control are
some of the suggested causes. Magnesium has been shown to have a positive function in the
prevention and treatment of metabolic diseases, despite variations in study design, dosage,
and duration. Making sure you consume enough magnesium through your diet and using
specific supplements could be a low-risk, safe supplemental approach to diabetes treatment.
More extensive, long-term studies are necessary to determine the best dosage and clinical

recommendations.
KEYWORDS: Magnesium, micronutrient, diabetes, supplementation.

INTRODUCTION

Over time, global populations have seen a reduction in micronutrient intake due to changing
dietary patterns. Among these nutrients,') magnesium (Mg)—one of the body’s most
abundant intracellular ions—plays a central role in essential biochemical processes. A lack of
Mg can trigger serious biochemical and clinical imbalances in the human body.?*!

Diabetes mellitus (DM), a metabolic condition marked by persistent hyperglycaemia,™ is
closely associated with reduced Mg levels in both intracellular and extracellular
compartments.”! Low serum Mg (hypomagnesemia) has been linked to insulin resistance,
while chronic hyperglycaemia worsens Mg loss, fueling a self-perpetuating cycle that drives
both microvascular and macrovascular complications of diabetes. 78!

Although the precise mechanisms connecting DM and hypomagnesemia are not fully
understood, metabolic studies indicate that Mg supplementation may enhance insulin

sensitivity and improve glucose regulation.™"

This review synthesizes evidence from the literature (1990-2004) on the Mg-DM
connection, outlining established findings and highlighting unresolved debates. The
following section expands on mechanisms, clinical significance, and more recent insights into

this relationship.
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1. Mechanisms Linking Magnesium Deficiency and Diabetes

Tissue-specific molecular roles of magnesium

Magnesium (Mg?*) acts as a cofactor for hundreds of enzymes and is central to a wide range
of cellular activities. For example, all kinases require the ATP—Mg?* complex to transfer
phosphate groups during cell signalling.™™ Mg also plays a role in lipid and protein
metabolism.™ as well as electrolyte balance, by activating ATP-dependent pumps such as
Na*/K*, Na*/Ca?*, Na*/Mg?**, and Mg?"/Ca?" transporters.

Beyond these functions, Mg?" regulates cell growth by supporting DNA synthesis and repair,
since it serves as a cofactor for multiple DNA repair enzymes.™! Given its essential role in
these fundamental processes, Mg?* deficiency has been linked to several disorders, including
type 2 diabetes mellitus (T2DM). The following sections outline how Mg?* deficiency affects
key tissues such as the pancreas, liver, and kidneys, contributing to the pathophysiology of

diabetes.

Effects of Magnesium on Pancreatic p-Cells
Glucose regulation relies primarily on the pancreatic islets, liver, and peripheral tissues such
as muscle and adipose tissue.™! Within the islets, a-cells secrete glucagon in response to low

glucose, while B-cells release insulin when glucose is elevated.™

A key player in insulin secretion is the ATP-sensitive potassium (KATP) channel, composed
of four Kir6.2 subunits and four SUR1 regulatory subunits.l*®! Under resting conditions, the
channel remains open, allowing K* efflux. When intracellular ATP/ADP-Mg** levels rise, the
channel closes, leading to membrane depolarization, Ca*" influx, and insulin release.l*® ADP-
Mg?" supports channel opening via nucleotide-binding domains in SUR1, whereas ATP
binding promotes closure. In magnesium deficiency, hyperpolarization and persistent channel

opening block depolarization, ultimately suppressing insulin secretion.!*”!

Magnesium also influences several enzymes involved in glycolysis and the Krebs cycle,
including glucokinase (GCK), phosphofructokinase, and pyruvate kinase. Enhanced enzyme
activity raises ATP production, which in turn closes KATP channels, depolarizes the
membrane, and promotes Ca?* entry through L-type calcium channels. However, Mg?* can
also compete with Ca?" at these channels, reducing insulin release. In addition, Mg*" may

regulate the expression of glucose transporter 2 (GLUT2) and L-type Ca?* channels, though
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no effect has been observed on GCK mRNA or the genes encoding KATP subunits (KCNJ11
and ABCCS8).

Experimental data further highlight the complexity of Mg?"’s role. In murine B-cell cultures,
extracellular Mg?* reduced Ca*" uptake, suggesting that Mg** deficiency alters Ca**
handling.'®! Moreover Murakami et al.l**! reported that insulin secretion triggered by KClI,
forskolin, and D-glyceraldehyde increased intracellular Mg?* in RINmSF cells, an effect
blocked by verapamil, an L-type Ca?* channel inhibitor.'® These findings indicate that Mg?*
deficiency may impair Ca*" transport and insulin secretion. Interestingly, suppression of
TRPM7—the principal Mg?* channel in (3-cells—enhanced insulin secretion threefold in INS-
1 cells.”®! Similarly, a pilot study in healthy subjects showed that intravenous magnesium
sulfate (MgSO4) infusion markedly reduced insulin levels.™® Together, these studies suggest
that Mg?* can exert inhibitory as well as supportive effects on insulin secretion, depending on

context.

Regarding glucose transport, GLUT2 is the main isoform mediating glucose entry into f-
cells. In HepG2 cultures, mild Mg?* deficiency (0.4 mM) increased GLUT2 mRNA by 250%,
whereas Mg-deficient diets in rats decreased expression; in both cases, GLUT2 protein levels
remained unchanged,”®! pointing to compensatory regulation. Molnes et al.”? also noted that
low Mg*-ATP concentrations might dampen the cooperative kinetics of GCK toward
glucose. By contrast, Gommers et al.”” found that reduced extracellular Mg did not affect
glucose-stimulated insulin release or GCK expression in mouse islets and INS-1 cells.

Overall, the relationship between Mg?* and insulin secretion in -cells remains unresolved.
Conflicting evidence suggests both stimulatory and inhibitory effects, underscoring the need
for further studies to clarify whether Mg** supplementation could enhance insulin release in

type 2 diabetes.

Effects of Magnesium on Insulin Action in the Liver

The liver plays a central role in glucose homeostasis, being directly exposed to high glucose
levels under the influence of both glucagon and insulin.*4 During fasting, hepatic glucose
production is maintained through glycogenolysis and gluconeogenesis, while most glucose
utilization (75-80%) occurs in non-insulin-dependent tissues such as the brain, intestine,
erythrocytes, muscle, and adipose tissue.’®! After a meal, plasma glucose rises, prompting

insulin release from pancreatic p-cells and suppression of glucagon secretion.*” Insulin
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release occurs in two phases: an initial burst of mature insulin granules within the first two
minutes of glucose elevation, followed by sustained release from reserve granules and de
novo synthesis.?! Insulin then suppresses hepatic and renal glucose output while promoting
glucose uptake in muscle and adipose tissue, with muscle accounting for ~85% of glucose
disposal. Simultaneously, insulin inhibits lipolysis, lowering free fatty acid levels and further

dampening hepatic glucose production.?!

In healthy individuals, blood glucose levels remain tightly regulated despite fluctuations in
food intake.?* In contrast, patients with type 2 diabetes mellitus (T2DM) exhibit exaggerated
glucose excursions, delayed and blunted insulin secretion, and inadequate glucagon

suppression.!*!

Insulin action in hepatocytes begins with its binding to the insulin receptor (IR),*® a
heterotetramer of two extracellular a-subunits (ligand-binding) and two transmembrane [-
subunits (tyrosine kinase activity).”® Upon binding, autophosphorylation of B-subunits
recruits insulin receptor substrates (IRS-1 to IRS-4), initiating multiple downstream signaling

cascades.

Among these, the PI3BK—-Akt pathway is essential for metabolic control, while the Ras—
MAPK system controls cell growth.?® 3-phosphoinositide-dependent protein kinase 1
(PDK1) is activated by PIP3 and phosphorylates and causes protein kinase B (AKT) to
become active. By controlling many proteins, AKT activation has a variety of impacts. One
of these is the 160 kDa AKT substrate protein (AS160), which controls the membrane
translocation of glucose transporter 4 (GLUT4).*®! AKT encourages the production of
glycogen by Glycogen synthase kinase 33 (GSK3p), a kinase that inhibits glycogen synthase
(GS), is phosphorylated and inhibited.[?® Through transcription factors including Forkhead
Box O1 (FOXO1) and the binding protein to the sterol regulatory element 1c (SREBP1c),
AKT also controls the expression of genes linked to metabolism and survival. AKT adversely
regulates FOXO1, encourages the production of gluconeogenic proteins in the liver, such as
glucose 6 phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK).[®!
Additionally, insulin promotes glycogen formation by stimulating phosphofructokinase
(PFK) and glycogen synthase while suppressing G6Pase activity.l”® Similarly, insulin inhibits

the lipolysis of stored triacylglycerols and stimulates fatty acid production in the liver.*!
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Magnesium’s Role in Hepatic Insulin Sensitivity

Magnesium (Mg?*) has been reported to exert insulin-mimetic effects in the liver. Etwebil®!
found that HepG2 cells cultured in low Mg?* (0.4 mM) exhibited reduced ATP content and
diminished insulin-mediated glucose uptake compared with cells grown under physiological

Mg>* (0.8 mM).

Insulin receptor regulation: Mg?* may positively influence IR expression and activity. In
rats, Mg?" deficiency increased hepatic IR expression, whereas Mg?" supplementation in
diabetic rats enhanced IR expression in skeletal muscle. Supplementation also improved
receptor binding affinity and capacity. In vitro studies indicate that Mg>" levels modulate
receptor tyrosine kinase activity. In vivo, Mg?* deficiency reduces IR autophosphorylation in
liver®! and muscle.

e IRS expression and phosphorylation: Mg?* influences IRS regulation in a tissue- and
disease-dependent manner. Mg>* supplementation increased IRS-1 in skeletal muscle!”!
and IRS-2 in the liver of diabetic rats, while deficiency altered IRS-1 phosphorylation in
opposing directions across studies. This variability suggests that Mg>* effects on IRS are
context dependent and not yet fully resolved.®!

(291 \while

o Downstream signaling: Mg?** deficiency reduces Akt phosphorylation,
supplementation increases Akt2 expression in diabetic rats. Supplementation also
downregulates FOXO1, inhibiting gluconeogenesis®” Similarly, Mg?* deficiency
increases hepatic G6Pase activity by 25%, while supplementation decreases PEPCK and
G6Pase MRNA and protein expression in diabetic rats.** Interestingly, short-term Mg?*
deficiency has also been shown to reduce PEPCK expression, likely via inflammation-
driven mechanisms.?

o Additional pathways: Mg?" supplementation enhances GLUT4 translocation, possibly
through PPAR-y activation, and modulates glucagon receptor expression. It may also

promote glycolysis by increasing PFK-1 expression and stimulate insulin production
indirectly through GLP-1.F*

Magnesium effort on GLUT4

GLUT4 is the primary glucose transporter in skeletal muscle and adipose tissue.!”®! In
diabetic rat models, Mg** supplementation significantly increased GLUT4 mRNA and protein
expression, as well as its translocation to the cell membrane.®™ Another study in the same

model reported a 23% rise in GLUT4 mRNA expression with Mg?* supplementation—more
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than double the 10% increase observed with insulin treatment alone (p < 0.01). This finding

suggests that Mg?* can enhance GLUT4 expression independently of insulin secretion.

Similar results have been observed across multiple type 2 diabetes (T2DM) animal models,
where Mg?** supplementation elevated GLUT4 expression at both the mRNA and protein
level,>*% and in some cases amplified the effect of drugs like metformin on GLUT4 mRNA
expression.®® Mechanistically, Khosravi et al.*®! proposed that Mg?* may regulate GLUT4
via upregulation of peroxisome proliferator-activated receptor gamma (PPAR-y), a

transcription factor central to glucose and lipid metabolism.

Taken together, these findings indicate that Mg>" exerts a beneficial effect on GLUT4

expression and translocation, thereby supporting glucose uptake in insulin-sensitive tissues.

Effects of Magnesium on the Kidney

In the kidney, 10-15% of Mg?" reabsorption occurs in the proximal and distal convoluted
tubules (DCT), while the majority (50-75%) is reabsorbed in the thick ascending limb of
Henle’s loop.*"! Here, Mg reabsorption is mediated through a paracellular pathway driven
by the Na*/K*/Cl™ cotransporter (NKCC2). K* recycling via ROMK generates a positive
luminal potential that facilitates Mg?* transport through claudin-16 and claudin-19
channels.®® In the DCT, Mg* handling is fine-tuned by TRPM6 channels, which may
represent a key connection between insulin signaling and renal Mg* reabsorption.[sg]

Supporting this, a study in streptozotocin (STZ)-treated diabetic rats found that TRPM6

mRNA expression was elevated, and insulin treatment reduced its levels.[”!

Type 2 diabetes is commonly associated with glomerular damage, leading to proteinuria and
albuminuria.*!  These disruptions compromise Mg?** reabsorption and promote
hypomagnesemia. A large cohort study of 5,126 chronic kidney disease (CKD) patients
demonstrated a strong association between hypomagnesemia and high proteinuria, suggesting
that protein loss drives Mg** Wasting.[42] Similarly, low serum Mg*" has been correlated with

elevated microalbuminuria in T2DM. 14344

Magnesium handling is further impaired by increased renal excretion in T2DM. Studies
consistently show higher Mg?" urinary losses in diabetic versus healthy individuals.[**!
Fractional excretion of magnesium (FE Mg) has even been proposed as a biomarker for

diabetes detection.*®! Xu and Maalouf®*”! found elevated FE Mg in hyperinsulinemic T2DM
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patients compared with controls, suggesting that insulin resistance itself contributes to renal

Mg?" wasting.

On the other hand, pharmacological interventions appear to improve Mg?" retention.
Treatment with simvastatin has been shown to lower urinary Mg?* levels,*® while metformin
therapy reduces Mg** excretion from the third month onward,“* with even greater reductions
when combined with sulfonylureas.[*”) Interestingly, in patients undergoing bariatric surgery,
serum Mg** increased only in those who achieved T2DM remission, but not in those with

persistent disease.®™”

Magnesium and Inflammation in T2DM

Chronic inflammation is recognized as a key factor in the pathogenesis of type 2 diabetes
mellitus (T2DM).P**2 Multiple studies have shown strong associations between
inflammatory markers and both the incidence and complications of T2DM. For instance,
King et al.>*! observed that C-reactive protein (CRP) levels—a common marker of systemic
inflammation—increased in parallel with HbAlc levels among T2DM patients. This supports
the link between poor glycemic control and heightened inflammatory status.®*>*! Prospective
studies further confirm that individuals with elevated CRP have a higher risk of developing
TZDM.[SS'%]

Because of this, alterations in magnesium homeostasis may indirectly contribute to insulin
resistance by modulating inflammatory and oxidative stress pathways. Indeed, low dietary
Mg?" intake has been repeatedly associated with higher CRP levels. Population studies show
that individuals consuming less than the recommended Mg*" have significantly greater
prevalence of high CRP compared with those meeting dietary recommendations,” a pattern

also seen in healthy children.®®

An inverse association between Mg*" intake and CRP levels has been documented across
diverse populations, including adults, women adjusted for age and BMI,>*®! and groups

further adjusted for lifestyle factors such as physical activity, alcohol, and tobacco use.!®

Cross-sectional studies have also reported negative correlations between serum or plasma
Mg and CRP in both adultsi®® and children,® A 20-year prospective cohort study
strengthened this evidence by showing long-term inverse associations between Mg?" intake,

serum Mg, and CRP levels.*” Notably, King et al.®” reported that Mg?* supplementation
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reduced the prevalence of elevated CRP, even among individuals consuming less than 50% of

the recommended intake.

Taken together, these findings suggest that adequate magnesium intake—through diet or
supplementation—may help lower systemic inflammation, as reflected by reduced CRP, and

could play a protective role in mitigating inflammation-driven insulin resistance in T2DM.

Signs of Magnesium Deficiency®"*!

e Muscle cramps and spasms
o Fatigue and weakness

e lrregular heartbeat

e Numbness or tingling

e Mood changes (anxiety, depression)

Who Might Need Supplements

e Individuals with digestive disorders (e.g., Crohn’s disease, celiac disease)
e People with type 2 diabetes

« Those with chronic alcohol use

o Older adults

« Patients on certain medications (e.g., diuretics, proton pump inhibitors)

Precautions
« High supplemental doses (>350 mg/day) may cause diarrhea

e Magnesium can interact with medications such as antibiotics and antihypertensives

Magnesium rich foods and Dietary supplements!®>©6:8!

Magnesium Rich Foods Magnesium Dietary Supplements

Magnesium Citrate
Magnesium Glycinate
Magnesium Oxide
Magnesium Chloride
Magnesium Malate
Magnesium L- Threonate

Green leafy vegetables like [spinach]

Nuts and Seeds like[pumpkin seeds, almonds, cashews etc]
Fishes like [mackerel and salmon]

Fruits like [bananas and avocados]

Dark chocolates

Plain yogurt

Duration of Magnesium Supplementation and Its Influence on Health Outcomes
Clinical trials assessing magnesium (Mg?) in type 2 diabetes management generally

supplement participants for three to six months. Within this period, improvements in insulin
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sensitivity and glycemic control have been reported. Longer supplementation may yield more
pronounced benefits, with favorable effects on metabolic markers that support better long-

term diabetes management and potentially reduce complications.

Study Overview: Serum Magnesium, Dietary Intake, and Metabolic Control in T2DM
Objective
To examine the relationship between serum magnesium levels, dietary magnesium intake,

and metabolic control parameters in patients with type 2 diabetes mellitus (T2DM).["™

METHODS

« Participants: 119 T2DM patients (26 men, 93 women; mean age 54.7 + 8.4 years)[""

e Measurements:

o Serum magnesium measured via spectrophotometry

o Dietary magnesium assessed using a food frequency questionnaire

o Anthropometric parameters recorded

o Analysis: General Linear Model (GLM) applied to evaluate associations between serum

magnesium and metabolic variables.™®!

RESULTS

e Prevalence

o 23.5% had inadequate dietary magnesium intake (<67% RDA)
o 18.5% had hypomagnesemia (<0.75 mmol/L)

e Metabolic outcomes

o Patients with hypomagnesemia had higher fasting plasma glucose (FPG), postprandial
glucose (PPG), and HbA1c levels compared to normomagnesemic patients.[”™

o FPG was significantly higher in hypomagnesemic patients in Model 1 (179.0 £ 64.9 vs.
148.7 £ 52.0 mg/dL, p = 0.009), though significance disappeared in adjusted models.

o PPG remained significantly higher across all models (e.g., Model 1: 287.9 + 108.4 vs.
226.8 + 89.4 mg/dL, p = 0.006).

o HbAIc levels were consistently elevated in hypomagnesemia across all models (8.0 +

1.9% vs. 6.5 + 1.2%, p = 0.000).1""
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e Anthropometrics

o Body fat mass was significantly higher in hypomagnesemic patients in Model 3 (35.4
9.4 vs. 34.6 £ 10.2 kg; p = 0.034).

o Dietary magnesium intake: No significant association with metabolic or anthropometric

parameters.[’”

Interpretation

These findings suggest that serum magnesium status, rather than dietary intake alone, is
closely linked to glycemic control in T2DM. Hypomagnesemia was consistently associated
with higher postprandial glucose, HbAlc, and greater body fat mass, indicating its potential

role in poor metabolic outcomes.

CONCLUSION

Hypomagnesemia in patients with type 2 diabetes mellitus (T2DM) is strongly associated
with poor metabolic control, reflected in higher glucose levels, elevated HbAlc, and
increased body fat mass. These findings emphasize the importance of monitoring magnesium

status as part of routine clinical assessment in T2DM.

Magnesium plays a central role in insulin sensitivity and glucose metabolism. Consistently,
low magnesium intake has been linked to a higher risk of developing T2DM, while adequate
magnesium levels are associated with improved metabolic outcomes. Clinical and
experimental studies suggest that magnesium supplementation can enhance insulin action,

reduce blood sugar levels, and potentially lower the risk of diabetes-related complications.

Taken together, ensuring sufficient magnesium intake—through diet or supplementation—
may represent a valuable and underutilized strategy for both the prevention and management
of T2DM.
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