

DIABETES MELLITUS AND ITS COMPLICATIONS: PATHOPHYSIOLOGY AND MANAGEMENT

**Ms. R. Kaviya^{*1}, Ms. G. Devasree¹, Ms. S. Tarunika¹, Ms. M. Vaneshwari¹,
Mr. M. Praveen Kumar², Dr. C. Jothimanivannan³**

^{*1}Students, SS Institute of Pharmacy, Sankari, Salem-637301.

²Assistant Professor, Department of Pharmacology, SS Institute of Pharmacy, Sankari, Salem
637301.

³Professor & Principal, SS Institute of Pharmacy, Sankari, Salem- 637301.

Article Received on 15 Dec 2025,
Article Revised on 05 January. 2026,
Article Published on 16 January 2026,

<https://doi.org/10.5281/zenodo.18266766>

*Corresponding Author

Ms. R. Kaviya
Students, SS Institute of Pharmacy,
Sankari, Salem-637301.

How to cite this Article: Ms. R. Kaviya^{*1}, Ms. G. Devasree¹, Ms. S. Tarunika¹, Ms. M. Vaneshwari¹, Mr. M. Praveen Kumar², Dr. C. Jothimanivannan³. (2026) Diabetes Mellitus and Its Complications: Pathophysiology and Management. "World Journal of Pharmaceutical Research", 15(2), 1141-1151.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Persistent hyperglycemia brought on by decreased insulin secretion, action, or both is a hallmark of diabetes mellitus, a chronic metabolic disease. Due to its associated morbidity, death, and financial cost, diabetes has become more common worldwide in recent decades, creating a serious public health concern. Type 1, type 2, gestational diabetes, and other particular forms of diabetes mellitus are the general categories. Retinopathy, nephropathy, neuropathy, and cardiovascular disorders are among the microvascular and macrovascular problems brought on by persistent hyperglycemia. Glycemic monitoring, lifestyle changes, and pharmaceutical treatments like insulin and oral antidiabetic medications are the main components of management regimens.

KEYWORDS: Type 1 and Type 2 diabetes mellitus;

hyperglycemia; insulin secretion; insulin resistance; diabetic complications; microvascular issues; macrovascular issues; Glycemic control.

INTRODUCTION

Persistent hyperglycemia brought on by deficiencies in insulin secretion, action, or both is a hallmark of diabetes mellitus, a chronic metabolic disease. Its incidence is rising quickly in both rich and developing nations, making it one of the biggest global health issues of the

twenty-first century. Urbanization, sedentary lifestyles, poor eating habits, population aging, and genetic predisposition are all major contributors to the increased prevalence of diabetes. Widespread metabolic and physiological problems result from the disorder's effects on the metabolism of proteins, fats, and carbs. Type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other particular variants linked to endocrine diseases, genetic abnormalities, or drug-induced illnesses are the several types of diabetes mellitus.

While type 2 diabetes mellitus, which makes up the majority of cases globally, is characterized by insulin resistance along with relative insulin shortage, type 1 diabetes mellitus is caused by autoimmune destruction of pancreatic β -cells and culminates in absolute insulin deficiency.

Pregnancy-related gestational diabetes mellitus raises the risk of type 2 diabetes in the future as well as unfavorable outcomes for both the mother and the fetus. Acute metabolic problems as well as long-term microvascular and macrovascular problems, such as retinopathy, nephropathy, neuropathy, cardiovascular disease, and stroke, are linked to chronic hyperglycemia in diabetes mellitus. Increased morbidity, mortality, and medical expenses are mostly caused by these consequences. Early diagnosis, routine blood glucose monitoring, lifestyle changes, patient education, and suitable pharmacological therapies are all necessary for the effective management of diabetes. While type 2 diabetes mellitus, which makes up the majority of cases globally, is characterized by insulin resistance along with relative insulin shortage, type 1 diabetes mellitus is caused by autoimmune destruction of pancreatic β -cells and culminates in absolute insulin deficiency. Pregnancy-related gestational diabetes mellitus raises the risk of type 2 diabetes in the future as well as unfavorable outcomes for both the mother and the fetus. Acute metabolic problems as well as long-term microvascular and macrovascular problems, such as retinopathy, nephropathy, neuropathy, cardiovascular disease, and stroke, are linked to chronic hyperglycemia in diabetes mellitus. Increased morbidity, mortality, and medical expenses are mostly caused by these consequences. Early diagnosis, routine blood glucose monitoring, lifestyle changes, patient education, and suitable pharmacological therapies are all necessary for the effective management of diabetes.

TYPES Of DIABETES MELLITUS

Diabetes mellitus is a diverse set of metabolic diseases that are categorized according to their pathophysiology and etiology. Type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other particular forms are the main varieties. The hallmark of type 1 diabetes mellitus is a complete lack of insulin due to the autoimmune death of pancreatic β -cells. Although it can happen at any age, it usually manifests in childhood or adolescent. Insulin resistance and relative insulin shortage are the hallmarks of type 2 diabetes mellitus, which is the most common type. It is closely linked to aging, genetic predisposition, physical inactivity, and obesity.

ETIOLOGY

Diabetes mellitus has a complex etiology that differs depending on the type. Impaired insulin secretion, insulin action, or both are the results of a complex interplay between genetic, immunological, environmental, and lifestyle variables. The primary cause of type 1 diabetes mellitus is the autoimmune destruction of pancreatic β -cells, which results in a complete lack of insulin. A major factor is genetic vulnerability, especially correlations with human leukocyte antigen (HLA) genes. In genetically susceptible people, environmental triggers such chemicals, nutritional variables, and viral infections are thought to start the autoimmune process.

The most common kind of diabetes mellitus, type 2, is primarily linked to relative insulin insufficiency and peripheral tissue insulin resistance. Obesity, particularly central adiposity, physical inactivity, poor eating habits, age, and genetic predisposition are major etiological contributors. Insulin resistance and β -cell dysfunction are further exacerbated by persistent low- grade inflammation and altered adipokine production. Hormonal changes that cause

insulin resistance during pregnancy cause gestational diabetes mellitus, especially in women with underlying risk factors such as obesity, advanced maternal age, a family history of diabetes, and prior gestational diabetes.

PATHOPHYSIOLOGY

Chronic hyperglycemia is caused by intricate disruptions in insulin secretion, action, or both in the pathophysiology of diabetes mellitus. Under normal physiological circumstances, insulin inhibits the production of glucose in the liver and promotes the uptake of glucose in peripheral tissues, including skeletal muscle and adipose tissue. These regulatory systems are compromised in diabetes mellitus. Absolute insulin insufficiency results from the autoimmune death of pancreatic β -cells in type 1 diabetes mellitus. Reduced cellular glucose uptake, increased hepatic gluconeogenesis, and accelerated lipolysis are the outcomes of insulin deficiency. Diabetic ketoacidosis may result from this metabolic imbalance, which also raises blood sugar levels and produces more ketone bodies.

Insulin resistance in target tissues is a major factor in type 2 diabetes mellitus. When peripheral tissues become less sensitive to insulin, pancreatic β -cells first make up for it by secreting more insulin. Relative insulin insufficiency results from the development of β -cell malfunction over time. Through glucotoxicity and lipotoxicity, persistent hyperglycemia and increased free fatty acids worsen insulin resistance. Through a number of metabolic processes, such as the activation of the polyol pathway, the production of advanced glycation end products, oxidative stress, and the activation of protein kinase C, persistent hyperglycemia contributes to long-term problems. These processes contribute to tissue damage, inflammation, and endothelial dysfunction, which in turn cause microvascular and macrovascular problems linked to diabetes mellitus.

SIGNS AND SYMPTOMS

- The type, duration, and glycemic state of diabetes mellitus all affect its clinical symptoms.
- There may be no symptoms in the early stages, especially in type 2 diabetes mellitus.
- Polyuria, polydipsia, and polyphagia are common symptoms brought on by ongoing hyperglycemia and osmotic diuresis.
- Patients frequently have weariness, widespread weakness, and unexplained weight loss.
- Osmotic changes in the lens may cause blurry vision.
- Peripheral neuropathy symptoms include tingling and numbness, delayed wound healing,

and recurrent infections are common.

- Metabolic problems like diabetic ketoacidosis may arise in extreme circumstances.

COMPLICATIONS

Diabetes mellitus is a long-term metabolic disease that, if left untreated, can cause a number of problems that affect different body regions. The two primary categories of these problems are acute and chronic.

❖ Acute complications

HYPOGLYCEMIA: Excessive insulin or certain drugs can cause low blood sugar (glucose) levels. Shakiness, perspiration, disorientation, and in extreme situations, unconsciousness are among the symptoms. Raising blood sugar levels requires prompt therapy with glucose or carbs.

HYPERGLYCEMIA: High blood sugar, also known as hyperglycemia, can cause hyperosmolar hyperglycemic syndrome (HHS) in type 2 diabetes or diabetic ketoacidosis (DKA) in type 1 diabetes. If left untreated, these dangerous illnesses may cause a coma or even death.

❖ Chronic complications

Prolonged issues Long-term exposure to high blood sugar levels is usually the cause of chronic problems of diabetes. They may have an impact on different organ systems.

❖ Cardiovascular complications

ATHEROSCLEROSIS: It is a heart- related issues diabetes which is the hardening and narrowing of the arteries that can cause heart attacks and strokes.

HYPERTENSION: Diabetes can exacerbate hypertension, or high blood pressure, which raises the risk of heart disease.

❖ Kidney complications (diabetic nephropathy)

Diabetic nephropathy can result from diabetes's damage to the kidneys' tiny blood vessels. renal failure and chronic renal disease may result from this.

❖ Eye complications (diabetic retinopathy)

Diabetic retinopathy can result from persistently high blood sugar levels damaging the blood vessels in the retina. If treatment is not received, this illness may result in blindness and

other visual issues.

❖ **Neuropathy (nerve damage)**

Nerve injury, or neuropathy Diabetic neuropathy is a condition where diabetes damages nerves all over the body. In addition to issues with digestion and sexual function, it can result in pain, numbness, and tingling in the extremities.

❖ **Peripheral artery disease**

Diabetes raises the risk of peripheral artery disease (PAD), which impairs blood flow to the extremities and can result in limb amputation and poor wound healing.

❖ **Foot complications**

Foot issues Foot ulcers, infections, and, in extreme situations, the necessity for amputation can result from nerve loss and inadequate blood circulation in the feet.

❖ **Skin complications**

Skin issues Skin diseases include bacterial and fungal infections, as well as a condition known as diabetic dermopathy that results in skin patches, can be brought on by diabetes.

MANAGEMENT OF DIABETES

The management of diabetes involves a number of contemporary strategies. However, reaching any goals stated in the management of diabetes mellitus depends on early diagnosis. Every patient receives treatment with the intention of reaching a certain goal. To guarantee a customized approach to diabetes care, these goals are established from the first day of clinic visits.

❖ **Internet intervention for lifestyle modification in diabetes**

A key component of managing diabetes is changing one's lifestyle. It is advised for people with pre-diabetes as well as those with diabetes. Among the suggested lifestyle changes include a healthier diet, more physical activity, and a less sedentary lifestyle. The patient's condition may determine the appropriate workout. The plasma glucose level is lowered by the workout. It is advised that individuals with diabetes consume a lot of fruits, vegetables, and whole grains; select lean meats and nonfat dairy products; and avoid foods heavy in fat and sugar. Other lifestyle adjustments include cutting back on alcohol use and quitting smoking. Changes in lifestyle are typically.

❖ Nanotechnology and Diabetes

Nanoparticles (less than 100 nm) are used in nanotechnology. Individual atoms or molecules within a substance are manipulated to create these nanoparticles. Nanomedicine refers to the use of nanotechnology in medicine. The application of medications or diagnostic chemicals with an understanding of nanotechnology, which typically enhances their capacity to target particular cells or tissues, is known as nanomedicine. Through the application of innovative nanotechnology-based glucose testing and insulin administration methods, nanotechnology in diabetes research has improved the results of diabetic treatment in diabetics in a number of ways. Nanotechnology uses non-invasive methods to deliver insulin and build a more effective vaccination, including gene-based and cell-based treatments for type 1 diabetes.

A disease's early and precise diagnosis may be just as crucial as its actual therapy. Early diagnosis can shorten the time it takes for diabetes to develop and prevent dysglycemia. The many diagnostic requirements for diabetes have been met by conventional methods, such as measuring plasma glucose levels and/or identifying immunological damage that precedes type 1 diabetes. However, a new technique that can enhance the diagnostic outcome is required due to the drawbacks of the traditional methods, which include but are not limited to non-early identification of the illness progression. The ability of the beta cell to secrete insulin is indicated by its mass. T1DM is brought on by the gradual depletion of beta cells.

❖ Medical Nutrition Therapy in Diabetes

"Nutrition-based treatment provided by a registered dietitian nutritionist" is the definition of medical nutrition therapy (MNT). It includes dietary diagnostics and professional and therapeutic counseling services to help control diabetes mellitus. An essential component of diabetes treatment and education is MNT. International collaborative groups have attempted to reform and offer courses for adverse nutritional transition in their recommendations on MNT for diabetes treatment. For example, MNT has been used to treat GDM because its effect on glycaemia makes carbohydrate (CHO) the primary causal agent.

Pregnant women need at least 175 g of CHO daily, according to the Institute of Medicine, and low-CHO diets that have long been used to treat GDM have been shown to be safe. Additionally, MNT has been shown to be crucial in the treatment of different forms of diabetes, which has had a major effect on patients, particularly women and infants.

According to reports, when GDM patients' carbohydrate intake is taken into special consideration, their nutritional needs are the same for all pregnant instances. Although the data is still limited, a low-glycemic index diet has been reported to be more beneficial in the management of GDM than the conventional intervention of carbohydrate restriction. Restricting calories is essential for managing obesity and overweight. According to reports, MNT has been tasked with creating distinctive diet plans that are both patient-centered and medically appropriate. In order to provide MNT with evidence-based nutritional guidelines for the prevention and control of diabetes mellitus, it is envisaged that practicing diabetologists and registered dieticians (RDs) will collaborate.

❖ **Stem Cell Therapy in Diabetes**

The traditional methods of managing diabetes mellitus have numerous negative side effects and do not address the underlying causes of the condition. As a result, there is a search for an appealing alternative treatment plan. The current cellular-based therapy approach for managing diabetes mellitus relies on islet-cell transplantation or pancreatic transplantation to restore beta cells for insulin secretion. The scarcity of donor organs limits this strategy. These issues prompt research into the potential of utilizing stem cells to create beta cells. Stem cells' unique capacity for reconstruction may be a useful tool for the treatment of diabetes mellitus. The goal of stem cell DM treatment is to use pluripotent or multipotent stem cells to replace damaged or dysfunctional pancreatic cells. Using a variety of techniques, this methodology has taken use of the capacity of several types of stem cells, such as induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), and adult stem cells, to generate surrogate beta cells or restore the physiologic function of the beta cell. The development of stem cells from several tissue sources, including adipose tissue, skin, bone marrow, umbilical cord blood, periosteum, and dental pulp, has been made easier by technological advancements. The pancreas is typically the first organ of choice when looking for promising stem cells.

Furthermore, mesenchymal stem cells (MSCs) and hematopoietic adult stem cells (HSCs) have the capacity to transdifferentiate into a variety of cell lineages, including those of the brain, liver, lung, and gastrointestinal tract. In order to increase the number of beta cells in T1DM, another team of researchers experimented with the multipotent differentiation of hemopoietic progenitors. Ex vivo differentiation of mouse bone marrow into functional beta cells was observed. Similarly, research utilizing the mouse model suggested that the pancreas might target bone marrow cells and reduce increased blood glucose. An autologous HSC trial

showed improvements in both T1DM and T2DM.

DRUGS RECENTLY INTRODUCED

Tirzepatide: The drug was recently approved by the FDA under the trade name mounjaro for the treatment of T2DM. Tirzepatide is an injectable given under the skin once in a week which targets the receptors of hormones which play central role in the metabolism of glucose. These hormones are glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). While the GLP-1 reduces blood glucose by several mechanisms, including stimulating insulin secretion and suppressing glucagon release during hyperglycemia, GIP stimulates insulin release during hyperglycemia, but it also stimulates glucagon release during hypoglycemia.

Tirzepatide acts as agonist to their receptors, hence elongating their functions which results in blood glucose control. The efficacy of tirzepatide was established against a placebo, a GLP-1 receptor agonist (semaglutide) and two long-acting insulin analogs either as monotherapy or in combination with other antidiabetic agents. In comparison to the placebo, it lowered the HbA1c by 11.6% and 1.5% as monotherapy and combination therapy, respectively. In comparison to other antidiabetic drugs, at the highest dose of 15 mg, it lowered the HbA1c 0.5% more than semaglutide, 0.9% more than insulin degludec and 1.0% more than insulin glargine. Because of the efficacy therein and the once in a week dosing, tirzepatide provides a desirable paradigm shift in the management of T2DM.

CONCLUSION

Persistent hyperglycemia brought on by decreased insulin secretion or activity is a hallmark of diabetes mellitus, a chronic metabolic disease. Its increasing spread around the world poses a serious threat to public health. Chronic hyperglycemia increases morbidity and

mortality by causing major microvascular and macrovascular problems such as retinopathy, nephropathy, neuropathy, and cardiovascular disease. Early diagnosis, consistent glucose monitoring, lifestyle changes, medical nutrition therapy, and suitable medication are all necessary for effective management. Disease control has been enhanced by recent developments such new antidiabetic medications, digital health initiatives, and developing therapeutics. To avoid issues and enhance patient outcomes, a thorough, multidisciplinary approach is necessary.

REFERENCE

1. American Diabetes Association. (2024). Standards of Care in Diabetes—2024. *Diabetes Care*, 47(1): S1–S350.
2. World Health Organization. (2023). Global report on diabetes. WHO Press.
3. International Diabetes Federation. (2023). IDF Diabetes Atlas (10th ed.).
4. DeFronzo, R. A., Ferrannini, E., Groop, L., et al. (2015). Type 2 diabetes mellitus. *Nature Reviews Disease Primers*, 1: 15019.
5. Atkinson, M. A., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. *The Lancet*, 383(9911): 69–82.
6. Nathan, D. M. (2015). Long-term complications of diabetes mellitus. *New England Journal of Medicine*, 328: 1676–1685.
7. Fowler, M. J. (2008). Microvascular and macrovascular complications of diabetes. *Clinical Diabetes*, 26(2): 77–82.
8. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. *Nature*, 414: 813–820.
9. Forbes, J. M., & Cooper, M. E. (2013). Mechanisms of diabetic complications. *Physiological Reviews*, 93(1): 137–188.
10. Stratton, I. M., Adler, A. I., Neil, H. A., et al. (2000). Association of glycaemia with complications. *BMJ*, 321: 405–412.
11. Powers, A. C., Stafford, J. M., & Rickels, M. R. (2017). Diabetes mellitus. In Harrison's Principles of Internal Medicine (20th ed.).
12. Zinman, B., Wanner, C., Lachin, J. M., et al. (2015). Empagliflozin and cardiovascular outcomes. *New England Journal of Medicine*, 373: 2117–2128.
13. Marso, S. P., Daniels, G. H., Brown-Frandsen, K., et al. (2016). Liraglutide and cardiovascular outcomes. *NEJM*, 375: 311–322.
14. Drucker, D. J. (2018). Mechanisms of action of GLP-1 receptor agonists. *Cell*

Metabolism, 27(4): 740–756.

15. Frías, J. P., Davies, M. J., Rosenstock, J., et al. (2021). Tirzepatide versus semaglutide. *New England Journal of Medicine*, 385: 503–515.

16. Cefalu, W. T., et al. (2018). Advances in glucose-lowering therapies. *Diabetes Care*, 41(6): 1117–1128.

17. Buse, J. B., Wexler, D. J., Tsapas, A., et al. (2020). Management of hyperglycemia in T2DM. *Diabetes Care*, 43: 487–493.

18. Franz, M. J., et al. (2017). Medical nutrition therapy for diabetes. *Diabetes Care*, 40(5): 731–754.

19. Skyler, J. S., et al. (2017). Differentiation of diabetes by pathophysiology. *Diabetes*, 66(2): 241–255.

20. Veiseh, O., et al. (2015). Size- and shape-dependent immune response to nanoparticles. *Nature Materials*, 14: 643–651.

21. Silva, A. I., et al. (2020). Nanotechnology-based insulin delivery. *Journal of Controlled Release*, 320: 442–455.

22. Shapiro, A. M. J., et al. (2000). Islet transplantation in type 1 diabetes. *New England Journal of Medicine*, 343: 230–238.

23. Pagliuca, F. W., & Melton, D. A. (2013). How to make a functional β -cell. *Cell*, 152(6): 1237–1250.

24. Hemmati-Derakhshan, M., et al. (2019). Lifestyle interventions and diabetes prevention. *Journal of Diabetes Research*, 2019; 1–10.

25. Polonsky, W. H., & Henry, R. R. (2016). Poor medication adherence in diabetes. *Patient Preference and Adherence*, 10: 1299–1307.

26. Wild, S., Roglic, G., Green, A., et al. (2004). Global prevalence of diabetes. *Diabetes Care*, 27(5): 1047–1053.

27. Kahn, S. E., Cooper, M. E., & Del Prato, S. (2014). Pathophysiology of type 2 diabetes. *The Lancet*, 383: 1068–1083.