

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.453

Volume 13, Issue 14, 39-49.

Research Article

ISSN 2277-7105

IMMUNOHISTOCHEMISTRY PROFILE OF FEMALE BREAST CANCER IN BASRAH CITY FROM (2021-2023) SCIENTIFIC COUNCIL OF THE ARAB BOARD OF ANATOMIC PATHOLOGY

1* Dr. Asraa Abdulkareem Kamil and 2Dr. Wassan Mansour Al-alawi

¹M.B.Ch.B.

²M.B.Ch.B.M. Sc., F.I.B.M.S (Path).

Article Received on 28 May 2024,

Revised on 18 June 2024, Accepted on 08 July 2024

DOI: 10.20959/wjpr202414-33245

*Corresponding Author
Dr. Asraa Abdulkareem
Kamil
M.B.Ch.B.

ABSTRACT

Introduction: Breast cancer is the commonly diagnosed cancer in females, leading cause of female cancer death worldwide Molecular classification of Breast cancer based on Estrogen receptors, progesterone receptors and Her2neu receptors expression which have significant inference for prognosis. Aim: The study aim to evaluate the hormonal receptor status in female breast cancer and assess the relationship with cancer grade and type. Methodology: Atotal 500 Cases of breast cancer were collected from governmental and private laboratories reports were collected; the study period was conducted from January 2021 to December2023. Data analyzed according to age, grade, histological type and immunohistochemical profile. Recurrent cases and cases with incomplete information were not included in the

analysis. **Results**: Invasive ductal carcinoma (not otherwise specified) accounted for 94.2% of all cases in our analysis, with the majority of patients (32%) being between the ages of 51 and 60. The majority of these cases were grade III. Hormone receptor positivity was found to have an inverse relationship with HER 2/neu status. Compared to Grade III tumors, the majority of low-grade cancers were ER+PR+. **Conclusion:** There was a significant statistical association (p=0.003) between the grade of breast cancer and (ER, PR, Her2neu). When the possibility of statistical association between type of cancer and (ER, PR, Her2neu), it was found that there was no any significant statistical association between the two factors (p=0.277), may be because not all cases of breast cancer with different histopathologic subtypes were included in this study.

INTRODUCTION

Breast cancer is the leading form of cancer among women globally, with over 1 million new cases diagnosed annually.^[1]

Breast cancer varies significantly in its biological characteristics, and patients who share similar diagnostic and clinical prognostic factors may experience notably different clinical results.^[2]

Breast cancer survival depends on detecting it early, providing timely and suitable treatment, and considering genetic predisposition.^[2]

The Health Surveillance Secretariat states that women between the ages of 50 and 69 years are the group most at risk of sickness. Yet they encounter considerable obstacles in their quest for secondary cancer prevention measures.^[3]

The majority of invasive carcinoma of breast are originate from the ducts(over 90%). specifically Invasive ductal carcinoma of no special type not otherwise specified (NOS) which accounts for 60%–80% of all breast carcinoma cases.^[4]

The two sub groups of Luminal breast carcinoma (ER-positive, HER2/neu negative with low proliferation and ER-positive, HER2/neu negative with high proliferation), as well as HER2/neu positive and basal- like are the molecular subtypes of breast carcinoma, these sub types are predictive of clinical outcomes and response to treatment.

Among them, the basal like subtype has the poorest prognosis.^[5]

The best approach is thought to be to Classifying breast carcinoma patients into subgroups based on patterns of gene expression patterns in tumor tissue. However, its clinical and research utility is limited due to the high cost and technical challenges associated with carrying out gene activity profiling by use of paraffin-embedded samples. Therefore, immunohistochemistry now used to classify breast carcinoma.^[6]

In contrast to gene expression activity, access to immunohistochemistry is easy, not require specified education, allows for analysis of large tumor area easily, requires less time for interpretation and is relatively cost- effective.^[7]

The immunohistochemical classification is as follows: [6]

- The subtype1= positive for HER2/neu positive and ER/PR
- The subtype2= HER2/neu negative, ER/PR positive
- The subtype3= HER2/neu positive, ER/PR negative
- The subtype4= negative for HER2/neu and ER/PR

The above categorization provide predictive therapeutic information. A lot of clinical, pathological and molecular factors, such as histopathological type, tumor grade, size, lymph node involvement, and status with respect to the Estrogen receptor(ER), Progesterone receptor(PR) and (HER-2nue) gene ,all impact the prognosis and course of treatment for breast carcinoma.^[8,9]

Currently, it is recommended as standard practice to determine hormone status using biopsy specimens Currently, ER status is considered the most influential predictive marker in breast cancer treatment ,despite ER and PR being interdependent variables.^[4]

PR holds equal importance to ER in predicting the prognosis of breast cancer as it is expressed in 60-70% of invasive cancers.^[10] HER 2neu a proto-oncogene that is amplified and over expressed in 15-25% of breast carcinoma cases and it is linked to a poor prognosis.^[11]

Presently, these indicators are widely employed to guide management strategies and predict prognosis of disease in relation to clinical and pathological factors, including status of lymph node, size of tumor, grade, histopathological characteristics, and surgical edges.^{[12],[13]}

More than 70% of breast tumors exhibit activity of estrogen and progesterone in the tumor center, making them suitable for antiestrogen therapy.^[14]

And about 20% of tumors display amplifying HER2 and could potentially advantage from adjuvant treatment with trastuzumab directed target therapy. This treatment can be given alone or in conjunction with chemotherapy, to reduce the risk of recurrence by fifty percent. [15],[16]

The current study conducted immunohistochemical analysis to assess Human epidermal growth factor receptor-2 (HER2/neu), progesterone receptor and estrogen receptor expressions, and subsequently analyzed their statistical relationships with tumor type and

grade.

METHODOLOGY

In Basrah, Iraq, from January 2021 to December 2023, across- sectional study was conducted. All histopathological information for primary breast cancer released by histopathology departments of all major governmental hospitals and from pathological private laboratories were collected in the governorate and analyzed, totaling 500 Cases. The data collected included information on age, grade, histological type, and immunohistochemical profile. Only newly diagnosed cases were used in this analysis, Recurrent cases and cases with incomplete information were not included.

RESULTS

Among 500 case of breast cancer, the most frequent affected age group had been was between 51 to 60 years old represent (32%) of all cases as shown in below table(1).

Table 1: Age distribution of the study sample.

Age group (Year)	Frequency	Percent
21-30	14	2.8
31-40	71	14.2
41-50	152	30.4
51-60	162	32.4
61 or older	101	20.2
Total	500	100.0

It is clear that the most frequent type of breast cancer in this study was invasive ductal carcinoma (not otherwise specified) (94.2%). As shown In figure (1).

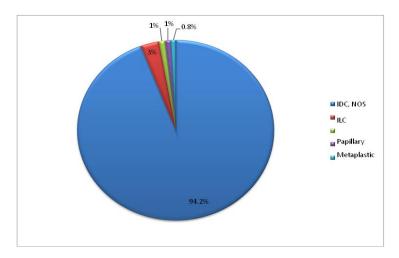


Figure 1: The frequency of different histological types of breast cancer in the study sample.

About 50.6% of all cases of breast cancer are present with high Grade (grade III), as shows in Table (2).

Table 2: Grade distribution of breast carcinoma throught the research participants.

Grade	Frequency	Percent	
I	12	2.4	
II	235	47.0	
III	253	50.6	
Total	500	100.0	

The distribution of (ER, PR, Her2neu) among cancer patients in the study, Table (3), shows that the most frequent one is hormones positive + Her2neu negative which represent(63.4%).

Table 3: Distribution of (ER, PR, Her2neu) among cancer patients in the study.

Net (ER, PR, Her2neu)	Frequency	Percent
Hormones positive + Her2neu negative	317	63.4
Triple negative	86	17.2
Hormones negative + Her2neu positive	51	10.2
Triple positive	46	9.2
Total	500	100.0

When the possibility of statistical association between type of cancer and (ER, PR, Her2neu), it was found that there was no any significant statistical association between the two factors (p=0.277), as shown in figure (2).

Where A=Triple positive, B=Triple negative,

C=Hormone positive Her 2nue negative, D=Hormone negative Her2nue positive

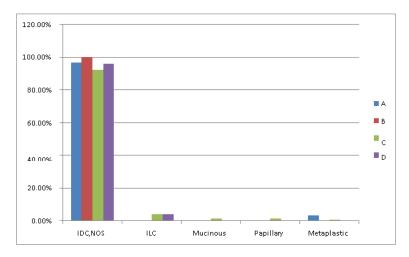


Figure (2): The association between histological type of breast cancer and (ER, PR, Her2neu)

* Fisher's Exact Test

There was a significant statistical association (p=0.003) between the grade of breast cancer and (ER, PR, Her2neu). As show in figure (3)

Where hormones receptors expression more in low grade ductal carcinoma grade (I and II) while when increasing the grade(III) the hormones receptors expression is low.

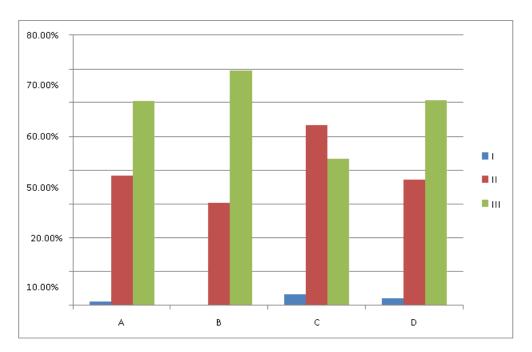


Figure 3: The correlation of the grade of breast cancer with (Her2neu, ER, PR).

DISCUSION

Breast cancer is the leading cancer among women worldwide, and early detection significantly increases chances of cure. Traditional factors like tumor size, grade, and axillary lymph node involvement are key for prognosis, but there is growing emphasis on molecular biological factors in prognosis assessment today.

Breast cancer's biological prognostic indicators encompass: HER2/neu, ER, PR, Ki67, p53, plasminogen activators & inhibitors, and others.

ER, PR and HER2/neu are the most significant predictive and prognostic indicators. [17]

The 500 patients with breast carcinoma in the current study had a mean age of presentation was 51.7 years. most common age group was 51 to 60 years(32%) years, these findings align

^{*} Fisher's Exact Test

closely with Maryam Sadat Hosseini, Maliheh Arab, Behzad Nemati Honar, Giti Noghabaei, Nazanin Safaei, Tahereh Ghasemi, Farah Farzaneh, Tahereh Ashraf Ganjoie research outcomes which show breast cancer is increasing up to 50- 54 age group in Iran, and 55-59 age group in Iraq followed by a reduction in older age while an steady increasing pattern in all ages happens in the US.^{[18],[19],[20]}

Invasive Ductal carcinoma (IDC) specifically IDC/ NOS (no special type), constituted most common histopathological form in 471 (94.2%) cases. similar predominant findings of IDC/ NOS were reported in research conducted by Sofi *et al*[21] (80.30%), Aziz un Nisa *et al*[22] (85.8%), Pallavi Shrigondekar *et al* [23] (93.2%), Suvarchala S B *et al* [24] (93.7%) and Bhagat Vasudha M *et al*[25] (94.8%). I have not found a study that proves the opposite of these results.

Only 12 (2.4%) cases In our research had Grade I tumor, whereas majority 253(50.6%) cases had grade III tumor which were followed by 235(47.0%) cases with grade II tumor, similar finding were reported by Pallavi Shrigondekar *et al* [23] where the most common presentation of breast carcinoma present with high Grade(grade III) tumor.

In our current study, the majority (63.4%) of tumors tested positive for ER and PR while a smaller percentage (10.2%)were HER2neu negative, These results are similar to findings from studies done by Ayadi *et al.*, Ahmed *et al.*, and Vasudha *et al.*, conversely, studies done by Lal *et al.*, Moser Emliroise *et al.*, Vaidhyanatha *et al.*, and Munjal *et al.*, reported a higher incidence of Her-2/neu positivity. There is considerable variability in the expression of ER, PR & HER2/neu across different studies on breast carcinoma, likely influenced by diverse population characteristics. [33-34]

In our study, we did not observe a strong correlation between Hormone receptor expression and the histological type of breast carcinoma (ductal, lobular, etc), this finding aligns with similar results reported by Cherry Bansal, Aarti Sharma1, Mukta Pujani2, Meenu Pujani3, Kiran Lata Sharma1, AN Srivastava4, US Singh5.^[35]

Tumor grade and hormone receptor positivity were found to be inversely correlated, tumors with Grade I mainly positive for ER and PR, while tumors with Grade III mostly negative for both ER and PR.

The presence of ER or PR Expression typically correlate with improved prognosis.^[24] Women with breast tumors containing hormone receptor proteins should receive adjuvant hormonal therapy, irrespective of factors like menopausal circumstances, age, tumor size, location or involvement of.^[23]

In Asian countries, the prevalence of hormone receptor-positive breast cancer is lower compared to Western countries, where more than half of tumors express hormone receptors.^[23]

REFERENCE

- 1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin., 2005; 55: 74-108.
- 2. Sofi GN, Nabi J, Nadeem R, Shiekh RY, Khan FA, Sofi AA, et al. Estrogen receptor and progesterone receptor status in breast cancer in relation to age, histological grade, size of lesion and lymph node involvement. Asian Pacific J Cancer Prev., 2012; 13: 5047-5052.
- 3. Azevedo e Silva G, Bustamante-Teixeira MT, Guerra MR, Moura L. Tendências e controle do câncer e os 20 anos do Sistema Único de Saúde no Brasil. In: Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Análise de Situação de Saúde. Saúde Brasil 2008: 20 anos do Sistema Único de Saúde (SUS) no Brasil. Brasília (DF): Ministério da Saúde, 2009; 365-84.
- 4. Rosai J, editor. Breast. In: Rosai and Ackerman's Surgical Pathology. 10th ed. New York: Elsevier, 2011; 1660-771.
- 5. Kumar V, Abbas AK, Aster JC. Robbins and CotranPathologic basis of Disease.9th edition. Philadelphia, USA: Elsevier Saunders, 2014; 2: 1051-68.
- Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breastcancer subtypes based on ER/PR and HER2/neuexpression: Comparison of clinicopathological features and survival. Clin Med Res., Jun. 2009; 7(1-2): 4-13.
- 7. Bhagat VM, Jha BM, Patel PR. Correlation of hormonalreceptor and HER2/neu expression in breast cancer: a study at tertiary care hospital in South Gujarat. Natl. J Med Res., 2012; 2(3): 295-8.
- 8. Suvarchala SB, and Nageswararao R. Carcinoma Breast- Histopathological and hormone receptors correlation. J Biosci Tech., 2011; 2: 340-348.
- 9. Nisa A, Bhurgri Y, Raza F, and Kayani N. Comparison of ER, PR, and HER-2/neu(C-erb B 2)reactivity pattern with histologic grade, tumor size and lymph node status in breast

- cancer. Asian Pacific J Cancer Prev., 2008; 9: 553-556.
- 10. McGuire WL, Clark GM. The prognostic role of progesterone receptors in human breast cancer. In Seminars in oncology, 1983; 10(4): 2-6.
- 11. Hung MC, Lau YK. Basic science of HER-2/neu: a review. In Seminars in oncology, 1999; 4(12): 51-9.
- 12. Carlos S, Vallejos HL, Gómez WR. Cruz. Clinical breast cancer, 2010; 10(4): 294-300.
- 13. Lloyd MC, Allam-Nandyala P, Purohit CN, Burke N, Coppla D, Bull MM. Using image analysis as a tool for assessment of prognostic and predictive biomarkers for breast cancer: How reliable is it? J Pathol Inform, 2010; 1: 29.
- 14. Dowsett M, Houghton J, Iden C, Salter J, Farndon J, Ahern R, et al. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according to estrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol, 2006; 17(5): 818-26.
- 15. Perez EA, Romond EH, Suman VJ, Jeong JH, Davidson NE, Geyer CE Jr, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol, 2011; 29(25): 3366-73.
- 16. Guarneri V, Frassoldati A, Bruzzi P, Belfiglio M, Molino A, Bertetto O, et al. Multicentric, randomized phase III trial of two different adjuvant chemotherapy regimens plus three versus twelve months of trastuzumab in patients with HER2-positive breast cancer (Short-HER Trial; NCT00629278). Clin Breast Cancer. 2008;8(5):453-56.9831 and NSABP B-31. J Clin Oncol, 2011; 29(25): 3366-73.
- 17. Esteva FJ, Hortobagyi GN. Prognostic molecular markers in early breast cancer. Breast Cancer Research, 2004; 6(3): 109-18.
- 18. Runnak AM, Hazha AM, Heshu MS, Banaz MS, Rekawt MR, Michael DH. Breast cancer in Kurdish women of northern Iraq: incidence, clinical stage, and case control analysis of parity and family risk. BMC Women's Health 2009, peer – reviewed article visited at: www.biomedcentral.com/1472-6874/9/33.
- 19. Ries LAG, Melbert D, Krapcho M, Stinchcomb DG, Howlader N, Horner MJ. SEER cancer statistics review, 1975- 2005, National cancer institute. Bethesda, MD. http:// seer.cancer.gov/csk/19752005/, based on November 2008 SEER data submission, posted to the SEER web site, 2009.
- 20. United States cancer statistics: 1999-2004 incidences, WONDER on-line database. United States department of Health and Human Services, centers for disease control and

- prevention and National cancer institute; August 2008. Accessed at: http://wonder.cde.gov/cancer.v 2005.html on Dec 21, 2009.
- 21. Sofi GN, Nabi J, Nadeem R, Shiekh RY, Khan FA, Sofi AA, et al. Estrogen receptor and progesterone receptor status in breast cancer in relation to age, histological grade, size of lesion and lymph node involvement. Asian Pacific J Cancer Prev, 2012; 13: 5047-5052.
- 22. Nisa A, Bhurgri Y, Raza F, and Kayani N. Comparison of ER, PR, and HER-2/neu(C-erb B 2)reactivity pattern with histologic grade, tumor size and lymph node status in breast cancer. Asian Pacific J Cancer Prev., 2008; 9: 553-556.
- 23. Shrigondekar P, Desai S, Bhosale S, Mankar D and Badwe A. Study of hormone receptor status of breast carcinoma and its correlation with the established prognostic markers. International Journal of Health Sciences and Research, 2012; 1: 109-116.
- 24. Suvarchala SB, and Nageswararao R. Carcinoma Breast- Histopathological and hormone receptors correlation. J Biosci Tech., 2011; 2: 340-348.
- 25. Bhagat VM, Jha BM, and Patel PR. Correlation of hormonal receptor and HER-2/neu expression in breast cancer: A study at tertiary care hospital in south Gujarat. Natl J Med Res., 2012; 2: 295-298.
- 26. Ayadi L, Khabir A, Amouri H, Karray S, Dammak A, Guermazi M, *et al.* Correlation of HER- 2 over- expression with clinico- pathological parameters in tunisian breast carcinoma. World J Surg Oncol, 2008; 6: 112.
- 27. Ahmed HG, Al- Adhraei MA, Al- Thobhani AK. Correlations of hormone receptors (ER and PR), Her2/neu and p53 expressionin breast ductal carcinoma among Yemeni women. Open CancerImmunol J., 2011; 4: 1-9.
- 28. Vasudha M, Bharti M, Prashant R. Correlation of hormonereceptor & Her 2/neu expression in breast cancer: A study at tertiary care hospital in South Gujarat. Natl J Med Res., 2012; 2: 295-8.
- 29. Lal P, Tan LK, Chen B. Correlation of HER- 2 status withestrogen and progesterone receptors and histologic features in 3,655 invasive breast carcinomas. Am J Clin Pathol, 2005; 123: 541-6.
- 30. Ambroise M, Ghosh M, Mallikarjuna VS, Kurian A.Immunohistochemical profile of breast cancer patients at atertiary care hospital in South India. Asian Pac J Cancer Prev., 2011; 12: 625-9.
- 31. Vaidyanathan K, Kumar P, Reddy CO, Deshmane V, Somasundaram K, Mukherjee G. Erb 2 expression and itsassociation with other biological parameter of breast cancerIndian

- women. Indian J Cancer, 2010; 47: 8-15.
- 32. Munjal K, Ambaye A, Evans MF, Mitchell J, Nandedkar S, Cooper K, et al. Immunohistochemical analysis of ER, PR, her2 and CK5/6 in infiltrative breast carcinomas in Indian patients. Asian Pac J Cancer Prev., 2009; 10: 773-8.
- 33. Ambroise M, Ghosh M, Mallikarjuna VS, Kurian A. Immunohistochemical profile of breast cancer patients at a tertiary care hospital in South India. Asian Pac J Cancer Prev., 2011; 12(3): 625-9.
- 34. Engstrom MJ, Opdahl S, Hagen AI, Romundstad PR, Akslen LA, Haugen OA, et al. Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients. Breast Cancer Res Treat., 2013; 140(3): 463-73.
- 35. Putti TC, El-Rehim DM, Rakha EA, Paish CE, Lee AH, Pinder SE, et al. Estrogen receptor-negative breast carcinomas: A review of morphology and immunophenotypical analysis. Mod Pathol, 2005; 18: 26-035.