

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

Coden USA: WJPRAP

Impact Factor 8.453

Volume 14, Issue 21, 148-156.

Review Article

ISSN 2277-7105

PHARMACOLOGICAL AND THERAPEUTIC PROFILE OF HIBISCUS SABDARIFFA L-A REVIEW

Sree Mahalakshmi Pasumarthy^{1*}, Ch. Maneesh², S. Poojitha², A. Mydhili², G. Muni Lakshmi², Ch. Nikitha²

^{1*}Assistant Professor, Dept. of Pharmacology, Narayana Pharmacy College, Chinthareddypalem, Nellore, A.P, India.

²B. Pharm Final Year Students at Narayana Pharmacy College, Chinthareddypalem, Nellore, A.P, India.

Article Received on 26 Sept. 2025, Article Revised on 16 October 2025, Article Published on 16 October 2025,

https://www.doi.org/10.5281/zenodo.17472248

*Corresponding Author Sree Mahalakshmi Pasumarthy

Assistant Professor, Dept. of Pharmacology, Narayana Pharmacy College, Chinthareddypalem, Nellore, A.P, India.

How to cite this Article: Sree Mahalakshmi Pasumarthy1*, Ch. Maneesh2, S. Poojitha2, A. Mythili2, (2025). PHARMACOLOGICAL AND THERAPEUTIC PROFILE OF HIBISCUS SABDARIFFA L – A REVIEW World Journal of Pharmaceutical Research, 14(21), 148–156.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Hibiscus sabdariffa L. (commonly called roselle) is a drug and food plant in Malvaceae. Traditionally, it has been of importance as a food and beverage ingredient as well as a natural cure in various cultures. The plant is wealthy in bioactive compounds together with organic acids (citric, malic, and ascorbic), anthocyanins (delphinidin-3-sambubioside), flavonoids (quercetin and luteolin), phenolic compounds, sterols, triterpenes, fatty acids, polysaccharides, alkaloids, and essential vitamins. Pharmacological investigations have shown that Hibiscus sabdariffa has been found to exhibit a variety of beneficial effects on health. These anthocyanins and phenolic compounds of hibiscus help in treating hypertension by relaxing blood vessels through various mechanisms like increasing nitric oxide release, reducing calcium entry into cells, and blocking angiotensin-converting enzyme. These combined actions induce vasodilation and also lend a slight diuretic effect, which in turn lowers blood pressure. For

anemia, hibiscus helps in the formation of RBC, increases the hemoglobin levels, protects the cells from oxidative stress, and supports the process of normal blood function. improves the antioxidant defense mechanism and blocks α -amylase and α -glucosidase and prevents kidney damage by inhibiting the DPP-4. Additionally, Hibiscus shows potential anticancer and anti-

www.wjpr.net Vol 14, Issue 21, 2025. ISO 9001: 2015 Certified Journal 148

World Journal of Pharmaceutical Research

Mahalakshmi et al.

inflammatory effects by influencing NF-κB/MAPK signaling, lowering cytokine levels, and causing cell death in cancer cells. Overall, Hibiscus sabdariffa offers valuable bioactive compounds with significant therapeutic uses in heart, metabolism, infection, blood, and inflammation issues.

KEYWORDS: Hibiscus, Phytochemicals, Antioxidants, Antihypertensive, Anticancer.

INTRODUCTION

The multipurpose plant Hibiscus sabdariffa L., popularly called roselle, is prized for its culinary and industrial applications. Producing food and fiber are just two of its many uses, and it grows well in multi-cropping systems. Roselle seeds are harvested for their oil in China, where the plant is well known for its traditional therapeutic uses. Both the powdered seeds and the leaves are used in regular meals in West Africa. Hibiscus sabdariffa is used in food and pharmaceutical industries in addition to its culinary and agricultural uses.^[1]

Hibiscus sabdariffa exhibits a wide range of therapeutic benefits due to its rich composition of anthocyanins, flavonoids, and organic acids. It is well known for its antihypertensive effect, where it helps lower blood pressure by promoting vasodilation and inhibiting angiotensin-converting enzyme. The plant also possesses strong antioxidant properties, protecting cells against oxidative stress and reducing the risk of chronic diseases. Its antimicrobial activity makes it useful against certain bacteria, fungi, and parasites. In addition, Hibiscus shows a hepatoprotective role, safeguarding the liver from chemical-induced damage and improving liver function. It has demonstrated antidiabetic potential by reducing blood glucose levels, improving insulin sensitivity, and regulating lipid metabolism. Furthermore, Hibiscus contributes to weight management and cardiovascular health by lowering cholesterol, triglycerides, and LDL levels. Traditionally, it has been used as a mild diuretic and digestive aid, supporting kidney and gastrointestinal health. Its anti-inflammatory effects also make it beneficial in managing conditions like arthritis and other inflammatory disorders.^[2]

TAXONOMY

Kingdom: Plantae

Subkingdom: Tracheobionta (Vascular plants)

Super division : Spermatophyta (Seed plants)

Division : Magnoliophyta (Flowering plants)

<u>www.wjpr.net</u> Vol 14, Issue 21, 2025. | ISO 9001: 2015 Certified Journal 149

Class: Magnoliopsida (Dicotyledons)

Subclass: Dilleniidae

Order : Malvales

Family: Malvaceae

Species: Hibiscus sabdariffa L.

Hibiscus sabdariffa

CHEMICAL CONSTITUENTS

Organic acids:

- •Citric acid
- Malic acid
- •Tartaric acid
- •Ascorbic acid

Fatty acids:

- •Oleic acid
- •Linolic acid
- •Palmitic acid
- •Stearic acid

Anthocyanins:

•Delphinidin-3sambudioside

Flavonoids:

- Qurcetin
- Kaempferol
- •Goss pectin
- •Luteolin

Phenolic compounds:

- Protocatechuic acid
- •Caffeic acid
- •Gallic acid

Polysaccharides:

- Pectin
- Mucilage

Sterols & triterpenes

- •Beta-sitosterol
- Stigmasterol
- Lupeo
- Campesterol

Volatile & aromatic

- Havana
- Nonanal
- Terpenes

Alkaloids:

•Reserning

Enzymes & vitamins:

- •Vitamin (
- •Vitamin E
- Riboflavi
- Niacin

Medicinal uses

S.no	Disease	Chemical constituents	Mechanism	Reference
1.	Hypertension	Anthocyanins (Delphinidin-3- sambubioside)	Hibiscus sabdariffa anthocyanins and phenolics enhance endothelial NO production, increasing cGMP and causing vascular smooth muscle relaxation then block Ca ²⁺ entry, reducing contractility and contributing to relaxation. Anthocyanin compounds such as delphinidin-3-sambubioside and cyanidin-3-sambubioside competitively inhibit ACE, lowering angiotensin II and aldosterone levels which leads to vasodilation and reduced blood volume.	[3]
		Quercetin	Hibiscus sabdariffa (HS) extract increases intracellular glutathione, enhancing antioxidant capacity. This protects vascular endothelium and improves vasodilation beneficial for lowering blood pressure.	[4]
		Anthocyanins Phenolic acids	The extract promotes vasodilation through the endothelium derived nitric oxide to CGMP signaling cascade. It inhibits the Ca ⁺² influx into vascular muscle; it usually blocks both receptor operated and voltage gate channels. Aqueous HS extracts has anthocyanins and phenolic acids which inhibits angiotensin converting enzyme, promote diuresis and enhance vasodilation via bradykinin and prostaglandins.	[5]
2.	Anemia	Phenolic acids	H. Sabdariffa extract has high antioxidant activity and polyphenolic contents, support hematopoietic processes or enhance usage of iron, facilitates regeneration of RBCs and elevating hemoglobin and PCV.	[6]
		Vitamin C	The extract H.sabdariffa gives increased levels of hemoglobin in levodopa anemia model, which involves provision of iron, vitamin C from the extract and improve the RBC quality, it also stimulate erythropoiesis by raising RBC numbers and hemoglobin content per cell. Through antioxidant activity it reduce the damage of cells and contribute to normalize cell metrics like MCV, MCH and MCHC (Mean Corpuscular Volume Hemoglobin & Hemoglobin concentration.	[7]
		Quercetin	The extract of H. Sabdariffa gives antioxidant protection of the hematopoietic stem cells from the oxidative damage. It also stimulate the erythropoiesis and hemoglobin synthesis by	[8]

<u>www.wjpr.net</u> | Vol 14, Issue 21, 2025. | ISO 9001: 2015 Certified Journal | 151

	T		1	
			primarily targeting the erythroid lineage	
			without affecting platelet counts. It also shows	
			huge improvement in the iron content for the	
			hemoglobin synthesis.	
			The extract of H.sabdariffa gives antioxidant	
			protective effects, it decrease the MCHC by	[9]
			lower hemoglobin concentration by inhibiting	
		Gallic acid	the dehydration, then it increase MCV by	
			improve cell hydration, also it increase MPV by	
			potential platelet involvement, there it inhibit	
			the Grados channel (calcium channels) which	
			maintain RBC hydration. The extract of H sabdariffa inhibits the initial	
			adhesion of C. Albanians cells and suppresses	
		Dhanalia aaida	the yeast-hyphae transition, which is critical for robust biofilm formation. The effect was	
		Phenolic acids		
		Anthocyanins	observed both at early stages and against pre- formed biofilms. A noteworthy reduction unto	
			50% disruption of established biofilms was	
			recorded.	
3.	Urinary tract		The extract of H.sabdariffa firstly disrupt	[10]
3.	infections		internal PH and membrane integrity, then it	
			inhibit peptidoglycan synthesis, stopping cell	
			division and block the quorum sensing, disrupt	
		Kaempferol Quercetin	the signals from the biofilm, then they prevent	
			bacterial adhesion and reduce early biofilm	
			establishment, finally it degrade EPS	
			(erythropoiesis) production and weaken any	
			forming biofilm matrix.	
			The effect of Hibiscus sabdariffa L. polyphenol	
	Diabetes	Polyphenols	extract (HPE) in streptozotocin (STZ) induced	[11]
			diabetic nephropathy. The results show that	
			HPE reduced kidney mass induced by STZ	
			significantly, as well as improving hydropic	
			change of renal proximal convoluted tubules in	
			the rats. HPE also significantly reduced serum	
			triglyceride, total cholesterol and LDL in STZ	
			induced rats. Treatment with HPE significantly	
			increased the activity of catalase and	
4.			glutathione and reduced lipid peroxidation.	
		Phenols	The plant has both α-glucosidase & α-	
			glucosidase inhibitory activities. In addition, the	
			red variety possessed higher antioxidant	[12]
			capacity as exemplified by the OH scavenging	
			abilities, Fe2+ chelating ability and inhibition	
			of Fe2+ induced pancreatic lipid peroxidation	
			in vitro. The enzyme Inhibitory activities and	
			antioxidant properties of the roselle extracts	
			agreed with their phenolic content. Hence,	
			inhibition of α -amylase and α -glucosidase,	

<u>www.wjpr.net</u> | Vol 14, Issue 21, 2025. | ISO 9001: 2015 Certified Journal | 152

			coupled with strong antioxidant properties could be the possible underlying mechanism for	
			the antidiabetic's properties of H. sabdariffa	
			calyces; however, the red variety appeared to be	
			more potent.	
		Anthocyanins	Treatment with anthocyanins significantly modulated inflammation-related pathways. Specifically, pathways involved in complement	[14]
			activation, leukocyte migration and chemotaxis, granulocyte migration, neutrophil migration,	
			and myeloid leukocyte migration were upregulated, supporting the recruitment of	
			innate immune cells. There was an increase in	
			the regulation of vasculature development,	
			which may facilitate immune infiltration and	
			suggest a regulatory feedback mechanism in	
			response to vascular destruction.	
			HSE treatments inhibited the cell invasion via	
			down-regulation of PI3K/Akt signaling and	
			further inactivation of NF-κB, followed by a	
			reduction of MMP-9 expression. Most	
			significantly, HSE inhibited the growth of	
		Poly-phenolic	prostate tumor xenograft in athymic nude mice.	[15]
5.	Cancer	compounds	The data also showed that HSE down-regulated the Akt/NF-κB/MMP-9 signaling pathway in	(2)
			vitro and in vivo. HSE represents an accessible	
			possible source of polyphenolic compounds	
			useful for the preparation of food supplements.	
			These findings indicate that HSE could be	
			developed as potent anticancer agent.	
		Anthocyanins Saponins Phenols	The active phytochemicals of HS are involved	
			in the regulation of cell proliferation, and	
			restoration of checkpoint pathways by	
			preventing over-dividing of cells with damaged	
			genomes or inducing these cells to commit	
			suicide through the classical pathway of	[16]
			apoptosis. It has been noted that flower extracts	[-0]
			of the plant containing cyanidin-3-glucoside and anthocyanin significantly inhibit the growth	
			of cervical cancer cells and dried leaf extract of	
			the plant containing saponins, phenols showed	
			proliferation inhibitory effects in prostate	
			cancer cells.	
6.	Inflammation	Essential oils	The anti-inflammatory activity of the essential	[17]
			oil extracted from H. Sabdariffa might be	
			inhibiting the activation of NF-κB and MAPK	
			(JNK and ERK1/2). Thus, the essential oil	
			extracted from H. Sabdariffa is a good source of	
			a natural product with a beneficial effect against	
			inflammation, and it may be applied as a food	

<u>www.wjpr.net</u> | Vol 14, Issue 21, 2025. | ISO 9001: 2015 Certified Journal | 153

			supplement.	
		Poly-phenolic compounds Flavonoids	Hibiscus sabdariffa has been reported to have anti-inflammatory effects due to the presence of polyphenol compounds. Flavonoids are also commonly found in it, which inhibit the transcription factor nuclear factor kappa (NF $K\beta$).	[18]
		Essential oils	These extracts also significantly decreased the inflammatory markers tumor necrosis factoralpha (TNF- α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 β).	[19]
		Polyphenols	The methanol extract of H. sabdariffa improved spatial memory consolidation in Wistar rats and prevented impairment in spatial memory long term storage process by maintaining the ratio of IL-1β/IL-1 in the plasma and hippocampus of Wistar rats who experienced overtraining. H. sabdariffa is a potent anti-inflammatory substance that prevents impairments in spatial memory consolidation in overtrained Wistar rats.	[20]
7.	Anti – Fungal activity	Anthocyanins Flavonoids	The HS extract demonstrated efficacy against C. albicans biofilms at a concentration of 3.125 mg/ml and was capable of preventing the initiation of hyphae and cell adherence. Additionally, the HS extract successfully decreased the C. albicans levels effectively eliminating the Candida cells, resulting in a lower viable colony count.	[21]

REFERENCES

- PanelInês DaCostaRocha a, Bernd Bonnlaender b, Hartwig Sievers c, Ivo Pischel a c, Michael Heinrich. Hibiscus sabdariffa L. – A phytochemical and pharmacological review. Food Chemistry, 2014; 165: 424-443.
- 2. Vinod d. rangari. pharmacognosy & phytochemistry, 2012; 1: 51-54.
- 3. Allison L Hopkins a, Marnie G Lamm a, Janet Funk b, Cheryl Ritenbaugh. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: a comprehensive review of animal and human studies. Fitoterapia, 2013; 85: 84-94.
- 4. Shinta Ayu Nurfaradilla, Fadlina Chany Saputri, Yahdiana Harahap. Effects of Hibiscus Sabdariffa Calyces Aqueous Extract on the Antihypertensive Potency of Captopril in the Two-Kidney-One-Clip Rat Hypertension Model. Evidence-Based Complementary and Alternative Medicine, 2019; 1: 1-9.

www.wjpr.net Vol 14, Issue 21, 2025. ISO 9001: 2015 Certified Journal 154

- 5. PanelI.P. Odigie, R.R. Ettarh, S.A. Adigun. Chronic administration of aqueous extract of Hibiscus sabdariffa attenuates hypertension and reverses cardiac hypertrophy in 2K-1C hypertensive rats. Journal of Ethnopharmacology, 2003; 86(2): 181-185.
- Reem Hassan Ahmed, Abd Wahab Hassan Mohammed, Hashim Mohammed El Hadi, Mofida Yousif El khalifa. The Effect of Aqueous Extract of Hibiscus sabdariffa seeds on Hematological Parameters of Anemic Rats. International Journal of Phytomedicine, 2013; 5(3): 271-281.
- 7. Agbai E.O1. and Nwanegwo C.O2, effect of methanolic extract of Hibiscus sabdariffa on some hematological parameters in levodopa-induced anemia, Journal of Biological Sciences and Bio conservation, 2013; 5(2): 44-51.2.
- 8. CHUKWU, Charles Nnanna, Charity Uchechi, 1UKPABI-UGO, Jacinta, Chigozie, Uchechi Bliss. Aqueous extracts of processed Hibiscus sabdariffa seeds attenuate hemolytic anemia in Wistar albino rats. Animal Research International Journal, 2021; 18(1): 3955-3964.
- Frank Babatunde Mojiminiyi, Blessing Pereye, Mohammed Ndakotsu, Darlington Ndodo, Dorcas Ikhuenbor, Vincent Igbokwe. Effect of Hibiscus sabdariffa Calyx Extract on Erythrocytic Indices in Sickle Cell Anemia in Vitro. The FASEB Journal, 2016; 30(1): 1192.
- 10. PanelIssam Alshami, Ahmed Eid Alharbi, Antimicrobial activity of Hibiscus sabdariffa extract against apathogenic strains isolated from recurrent urinary tract infections, Asian Pacific Journal of Tropical Disease, 2014; 4(4): 317-322.
- 11. Wen-Chin Lee 1, Chau-Jong Wang, Yu-Hsin Chen, Jen-Dong Hsu, Su-Ya Cheng, Hong-Chen Chen, Huei-Jane Lee . Polyphenol Extracts from Hibiscus sabdariffa Linnaeus Attenuate Nephropathy in Experimental Type 1 Diabetes. journal of Agricultural and Food Chemistry, 2009; 5(6): 2206-2210.
- 12. Adedayo O. Ademiluyi and Ganiyu Oboh. Aqueous Extracts of Roselle (Hibiscus sabdariffa Linn.) Varieties Inhibit α -Amylase and α -Glucosidase Activities In Vitro. Journal of Medicinal Food, 2013; 16(1).
- 13. Chiung-Huei Peng 1, Yi-Sun Yang, Kuei-Chuan Chan, Chau-Jong Wang, Mu-Lin Chen, Chien-Ning Huang. Hibiscus sabdariffa Polyphenols Alleviate Insulin Resistance and Renal Epithelial to Mesenchymal Transition: A Novel Action Mechanism Mediated by Type 4 Dipeptidyl Peptidase. Journal of Agricultural and Food Chemistry, 2014; 62(40): 9736-9743.

- 14. Miriam Ezcurra-Hualde1,2, Juan Florencio Go 'mez-Leyva3*, Efren Juarez-Curiel1,2,3, Yanelli Jaquelinne Regalado-Noyola3, Nuria Ardaiz1,2, Noelia Casares1,4, David Ruiz-Guillamon1,2. Intratumorally administration of Hibiscus sabdariffa-derived anthocyanins exerts potent antitumor effects in murine cancer models. Nutritional Immunology, 2025; 16: 1-15.
- 15. Chun-Tang Chiu, Jing-Hsien Chen, Fen-Pi Chou, and Hui-Hsuan Lin. Hibiscus sabdariffa Leaf Extract Inhibits Human Prostate Cancer Cell Invasion via Down-Regulation of Akt/NF-kB/MMP-9 Pathway. nutrients, 2015; 7(7): 5065-5087.
- 16. Raihana Yasmin, Sangeeta Gogoi, Jumi Bora, Arijit Chakraborty, Susmita Dey, Ghazal Ghaziri, Surajit Bhattacharjee, Laishram Hemchandra Singh. Novel Insight into the Cellular and Molecular Signaling Pathways on Cancer Preventing Effects of Hibiscus sabdariffa. J Cancer Prev, 2023; 28(3): 77-92.
- 17. Shen, Chun-Yan and Zhang, Tian-Tian and Zhang, Wen-Li and Jiang, Jian-Guo". Antiinflammatory activities of essential oil isolated from the calvx of Hibiscus sabdariffa L. Food Funct, 2016; 7(10): 4451-4459.
- 18. Renuka Ekka and Bharti Ahirwar. Hibiscus Sabdariffa Linn: Phytochemical Impact on the Mechanism of Neuroprotective and Anti-inflammatory Pathways. Recent Advances in Inflammation & Allergy Drug Discovery, 2025; 19(2): 173-188.
- 19. Adjia Hamadjida, RigobertEspoir, Ayissi Mbomo, Stéphane Essono, Minko, Fidèle Ntchapda, Jean Pierre Kilekoung, Mingoas e Nga Nnanga g. Antioxidant and antiinflammatory effects of Boswellia dalzielii and Hibiscus sabdariffa extracts in alloxaninduced diabetic rats. Metabolism Open, 2024; 21(2): 1-9.
- 20. Gulshan fahmi el bayani 1, nurasi lidya e marpaung 1, dedy arnold sastrajaya simorangkir 1, imelda rosalyn sianipar 2, nurhadi ibrahim 2, neng tine kartinah 2, indra gusti mansur 3, jan s purba 4, ermita i ibrahim ilyas 2. Anti-inflammatory Effects of Hibiscus Sabdariffa Linn. on the IL-1β/IL-1ra Ratio in Plasma and Hippocampus of Overtrained Rats and Correlation with Spatial Memory. kobe journal of medical sciences, 2018; 15(64): E73-E83.
- 21. Dwivedi M, Muralidhar S, Saluja D. Hibiscus sabdariffa Extract Inhibits Adhesion, Biofilm Initiation and Formation in Candida albicans. Indian J Microbial, 2020; 60(1): 96-106.