

“AYURVEDIC FUMIGATION AND MODERN INDOOR PLANTS FOR AIR PURIFICATION: A SYSTEMATIC REVIEW BASED ON PRISMA GUIDELINES”

Dr. Ilsa Thakur^{*1}, Dr. Chandni Gupta²

¹PG Scholar, ²Associate Professor.

R.G.G.P.G., Ayurvedic College and Hospital, Paprola (H.P.).

Article Received on 16 Dec. 2025,
Article Revised on 05 Jan. 2026,
Article Published on 15 Jan. 2026,

<https://doi.org/10.5281/zenodo.18265286>

*Corresponding Author

Dr. Ilsa Thakur

PG Scholar, R.G.G.P.G., Ayurvedic College and Hospital, Paprola (H.P.).

How to cite this Article: Dr. Ilsa Thakur^{*1}, Dr. Chandni Gupta² (2026). "AYURVEDIC FUMIGATION AND MODERN INDOOR PLANTS FOR AIR PURIFICATION: A SYSTEMATIC REVIEW BASED ON PRISMA GUIDELINES". World Journal of Pharmaceutical Research, 15(2), 719–746S.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Indoor air pollution is a growing public health concern linked to respiratory diseases, allergic conditions, and microbial infections. Traditional systems, such as Ayurveda, offer time-tested interventions like *Dhoopana* (medicinal fumigation) and the use of air-purifying herbal plants, which are now gaining renewed attention for their potential in environmental detoxification. **Objective:** To evaluate Ayurvedic practices of *Dhoopana* (medicinal fumigation) and the use of herbal indoor air-purifying plants by correlating references from classical texts with modern scientific evidence, and to establish their role in mitigating indoor air pollution and promoting health. **Data Sources:** Primary references were drawn from classical Ayurvedic texts, including *Charaka Samhita*, *Sushruta Samhita*, and *Kashyapa Samhita* for descriptions of fumigation practices and therapeutic uses. Secondary data were obtained

from modern scientific databases such as PubMed, Scopus, and Google Scholar, screening publications from 2000 to 2025. **Review Methods:** A comprehensive literature review was conducted following PRISMA guidelines. Extracted data included pharmacognostical identity, phytochemical constituents, antimicrobial efficacy, and pollutant-removal capacity of the selected medicinal substances and plants. **Conclusion:** Ayurvedic fumigation formulations generally comprised Agni and Vayu-dominant substances such as *Guggulu*, *Nimba*, *Vacha*, and *Agaru*. A total of 40 classical *Dhoopana Yogas* were identified with

specific disease indications in the *Kashyapa Samhita*. Complementary findings from modern research validated 15 herbal plants, including *Sansevieria trifasciata*, *Chlorophytum comosum*, and *Aloe vera*, which showed measurable reductions in PM2.5, VOCs (benzene, formaldehyde, xylene), and microbial loads, thereby bridging traditional wisdom with environmental health science. The integration of Ayurvedic fumigation and herbal indoor purification strategies provides a holistic, low-cost, and sustainable solution for controlling indoor air pollution. The convergence of traditional Ayurvedic knowledge with modern evidence underscores its dual benefit in health protection and ecological well-being.

KEYWORDS: *Dhoopana*, Indoor Air Quality, Ayurvedic Fumigation, VOCs, Air-purifying Plants, Phytoremediation, Classical Formulations, PM2.5.

INTRODUCTION

Indoor air pollution has emerged as a critical but often underrecognized public health concern. While considerable attention has been directed toward outdoor pollution from industrial emissions and vehicular exhaust,^[1] indoor environments where individuals spend the majority of their time can harbour an array of hazardous pollutants. Indoor air contains a complex mixture of contaminants, including volatile organic compounds (VOCs), particulate matter (PM), combustion by-products, biological agents, and harmful gases released from building materials, furnishings, and cleaning agents. Major sources of indoor air pollution are shown in Table 1.^[2]

Table 1: Source and Types of Pollution.

Sources of pollution	Types of pollution
Outdoor air	PM, nitrogen dioxide, carbon monoxide
Buildings' materials, glues, paints, furniture	Alcohols, benzene, formaldehyde and toluene
Home ware: carpets, wallpapers	PM, bacteria, fungi, mites dust
Electronic equipment: computers, televisions, monitors	Ammonia, benzene, toluene, trichloroethylene and PM
Activities of rooms' users: frying meat, using fireplaces, ironing, cigarette smoking, cleaning	PM, nitrogen dioxide, carbon monoxide, benzene, formaldehyde
Biological: man, animals, fungi, bacteria	Ammonia, acetone, alcohols, methane, nitrogen oxides, carbon monoxide and Sulphur compounds, PM

Poor ventilation, high humidity, and modern lifestyle practices further exacerbate indoor air quality (IAQ), leading to acute and chronic health outcomes. According to the World Health

Organisation (WHO), household air pollution contributes to more than three million deaths annually, primarily from respiratory infections, asthma, low birth weight, cardiovascular complications, and certain cancers.^[3]

Beyond physical illnesses, deteriorating IAQ has been linked to psychological effects such as fatigue, irritability, impaired cognition, and anxiety. This growing recognition of IAQ's impact has stimulated interest in natural, sustainable interventions, including the use of indoor plants and traditional purification methods. Ayurveda, the ancient Indian system of medicine, provides a rich framework for environmental purification, particularly through the therapeutic use of herbal plants and fumigation practices such as *Dhoopana*.

Herbal plants are increasingly recognised as living biofilters that not only absorb toxic compounds but also regulate oxygen and humidity levels while fostering a biophilic indoor environment that promotes mental well-being. Contemporary scientific studies corroborate the role of indoor plants in improving air quality through multiple mechanisms. These include adsorption of gaseous contaminants and particulate matter (dust and bioaerosols) onto leaf surfaces, microbial degradation of volatile compounds via metabolic pathways, removal of CO₂ and production of O₂ through photosynthesis, regulation of indoor humidity through leaf transpiration and evaporation from rooting media, and overall reduction of airborne concentrations of dust and bioaerosols.^[4] These processes collectively reduce concentrations of dust, bioaerosols, and gaseous contaminants, thereby improving IAQ.

Complementing these modern interventions, the Ayurvedic practice of *Dhoopana* (ritualistic fumigation with medicinal herbs) has been employed since Vedic times and is extensively documented in classical texts such as the *Rigveda*, *Atharvaveda*, and later Ayurvedic compendia. Different terms are used to describe fumigation: *Dhoopana* in *Charaka Samhita* (*Chikitsa Sthana* 10/49–50), *Sushruta Samhita* (*Chikitsa Sthana* 40/52–53), and *Kashyapa Samhita* (*Khil Sthana* 5/5–7); *Yagya* in *Charaka Samhita* (*Vimana Sthana* 3/16), *Sushruta Samhita* (*Sutra Sthana* 1/25), and *Bhavaprakasha* (*Purva Khanda* 6/246); and *Havana* in *Charaka Samhita* (*Sutra Sthana* 25/40–42), *Sushruta Samhita* (*Chikitsa Sthana* 40/52), and *Ashtanga Hridaya* (*Sutra Sthana* 2/50–52). Classical authors emphasised its utility both as a therapeutic intervention in specific clinical conditions and as a preventive practice for maintaining environmental health. Modern pharmacological investigations further substantiate these claims, demonstrating that the combustion of herbs such as *Guggulu*, *Vacha*, *Nimba*, and *Haridra* releases bioactive compounds with antimicrobial,

insecticidal, anti-inflammatory, and mood-enhancing properties. Thus, Ayurvedic fumigation serves a dual function: sanitising indoor air while simultaneously promoting psychosocial and spiritual well-being.

This review aims to systematically evaluate the integration of medicinal plants and Ayurvedic *Dhoopana* as a holistic strategy for indoor air purification. Specifically, it seeks to (i) assess the role of plants as natural air purifiers, (ii) review the efficacy and contemporary relevance of *Dhoopana*, and (iii) propose an integrative, sustainable model for improving indoor environmental quality. By bridging traditional ecological wisdom with modern public health perspectives, this work aims to provide a culturally rooted and environmentally conscious framework for healthier living spaces.

MATERIALS AND METHODS

1. Literature Search Strategy: A comprehensive literature search was conducted to gather relevant information on the role of plants in improving indoor air quality, traditional fumigation methods, and associated health impacts. Scientific databases such as PubMed, Google Scholar, ScienceDirect, and SpringerLink were explored. The systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to ensure transparent reporting of the study selection process.

2. Inclusion and Exclusion Criteria: Articles, preprints, and reports published in English up to July 2025 were considered. Studies involving experimental or review-based evidence on indoor plants, air-purifying capacity, fumigation practices, and plant-based bioactive properties were included. Duplicates, unrelated subject areas, or papers without full-text access were excluded.

3. Data Compilation and Thematic Classification: Selected references were classified into themes such as

- Indoor air pollutants and health impact
- Scientific basis of air-purifying plants
- Traditional Ayurvedic fumigation practices (*Dhoopana Karma*)
- Ethnobotanical and Ayurvedic literature
- Antibacterial, insecticidal, and antioxidant properties of specific plants

These themes allowed structured synthesis of findings and enabled a comparative understanding of modern and traditional approaches.

OBSERVATIONS

Evaluation of Indoor Herbal Plants Based on Modern Scientific Evidence

A detailed evaluation was carried out on fifteen indoor herbal plants widely recognised for their ability to improve indoor air quality. Selection was based on their prevalence in indoor horticulture, air-purifying properties, and availability of modern scientific studies supporting their efficacy. These plants were assessed for their ability to absorb volatile organic compounds (VOCs), neutralise pollutants, increase relative humidity, and exhibit antimicrobial activity.

Table 2 presents a summary of the phytoremedial potential and scientific findings associated with each plant.

Table 2: Scientifically Evaluated Indoor Herbal Plants for Air Purification.

S.No.	Botanical Name	Common Name	Key Pollutants Removed	Mechanism of Action	Scientific Validation & Findings
1.	<i>Sansevieria trifasciata</i> Prain., Family - Asparagaceae	Snake Plant	Benzene, Formaldehyde, Xylene	CAM metabolism, VOC absorption	Effective in reducing formaldehyde and improving air quality in sealed spaces (NASA Study) ^[5-7]
2.	<i>Chlorophytum comosum</i> Thunb., Family – Asparagaceae	Spider Plant	Formaldehyde, CO, Benzene	VOC metabolism, high transpiration rate	Converts Formaldehyde to non-toxic compounds; improves ambient humidity. ^[7-8]
3.	<i>Spathiphyllum wallisii</i> Regel., Family – Araceae	Peace Lily	Toluene, Benzene, Trichloroethylene	VOC absorption, phytoremediation ^[9]	Known for removal of indoor smoke-based pollutants ^[10-12]
4.	<i>Nephrolepis exaltata</i> L. Schott., Family - Lomariopsidaceae	Boston fern or Sword fern	Benzene, Formaldehyde, Xylene,	CAM metabolism, VOC absorption	Highly efficient formaldehyde remover "Best humidifying air-purifier" Top VOC-absorbing fern "NASA-tested pollutant filter ^[9,13-15]
5.	<i>Dracaena sanderiana</i> Mast., Family – Asparagaceae	Lucky Bamboo	Formaldehyde, Benzene, Trichloroethylene, Xylene, Toluene	Phytoremediation process, Stomatal gas exchange, Root pollutant uptake, Transpiration-driven humidification, VOC absorption pathway ^[9,12]	VOC Absorption, Air Detoxifier, Indoor Humidifier, Oxygen Enhancer, Phytoremediation Plant, Pollutant Remover, Respiratory Comfort Enhancer, Low-Light Purifier ^[16-17]
6.	<i>Dypsis lutescens</i> H. Wendl., Family – Arecaceae	Areca Palm	TVOCs, CO ₂ , CO, VOCs	Phytoremediation, Transpiration	CSIR-IHBT: Reduced TVOCs, CO ₂ , CO by 88.16% (9 plants); effective in 100–200 sq. ft. spaces. ^[9,18]

7.	<i>Chamaedorea elegans</i> Mart., Family– Arecaceae	Bamboo Palm	Formaldehyde, Benzene, Trichloroethylene, Xylene	VOC Absorption, Photosynthesis	NASA Clean Air Study (1989): Among top VOC-removing plants ^[9]
8.	<i>Ficus benjamina</i> L. LC. Family – Moraceae	Weeping Fig	Formaldehyde, Xylene, Toluene	Broad-leaf VOC Absorption ^[19]	NASA: Broad leaves help absorb pollutants; best for 100–200 sq. ft. indoor areas ^[20]
9.	<i>Aloe barbadensis</i> Miller., Family – Asphodelaceae	Aloe Vera	Formaldehyde, Benzene, VOCs	Leaf-Surface Absorption, Transpiration ^[19]	JEST study: Filters formaldehyde; boosts oxygen levels and indoor humidity ^[20-22]
10.	<i>Aglaonema commutatum</i> Schott., Family – Araceae	Aglaonema / Chinese Evergreen	Gaseous pollutants (from incense, mosquito coils, naphthalene)	Phytoremediation, VOC Breakdown	Tested as indoor phytoremediator; effective against common household pollutant gas ^[23-24]
11.	<i>Areca catechu</i> L. Family- Arecaceae	Areca Palm	CO ₂ , VOCs	CO ₂ absorption, transpiration	Enhances oxygen levels and relative humidity ^[9]
12.	<i>Epipremnum aureum</i> (Linden & Andre) G.S. Bunting Family- Araceae	Money Plant	Benzene, Xylene, Formaldehyde	Stomatal uptake, metabolic degradation	Air-purifying efficiency supported in indoor air monitoring studies ^[12]
13.	<i>Dracaena reflexa</i> Lam. Family- Asparagaceae	Song of India	Formaldehyde, Trichloroethylene	Transpiration and microbial synergy	Reduces eye and respiratory irritants in closed environments ^[18]
14.	<i>Dieffenbachia seguine</i> (Jacq.) Schott. Family- Araceae	Dumb Cane	Toluene, Xylene	VOC binding and phytodegradation	Reduces oxidative indoor pollutants ^[20]
15.	<i>Hedera helix</i> Linn. Family- Araliaceae	English Ivy	Benzene, Formaldehyde, Mold Spores	VOC breakdown, anti-microbial leaf surface	Demonstrated strong anti-microbial and air-purifying properties ^[12,25]

Sansevieria trifasciata Prain.

Chlorophytum comosum Thunb.

Spathiphyllum wallisii Regel.

<i>Nephrolepis exaltata</i> L. Schott.	<i>Dracaena sanderiana</i> Mast	<i>Dypsis lutescens</i> H.Wendl.
<i>Chamaedorea elegans</i> Mart.	<i>Ficus benjamina</i> L.LC.	<i>Aloe barbadensis</i> Miller.
<i>Aglaonema commutatum</i> Schott.	<i>Areca catechu</i> L.	<i>Epipremnum aureum</i> (Linden & Andre) G.S.B
<i>Dracaena reflexa</i> Lam.	<i>Dieffenbachia seguine</i> (Jacq.) Schott.	<i>Hedera helix</i> Linn.

Figure 1. Indoor Herbal Plants for Air Purification.

<i>Nardostachys jatamansi</i> DC	<i>Commiphora mukul</i> Hook ex Stocks	<i>Azadirachta indica</i> A. Juss.

Figure 2. Herbal Drugs used for Fumigation.

Fumigation Practices

Fumigation involves the use of smoke, vapour, or other gaseous substances derived from specific plants or herbs to cleanse an environment. This practice is rooted in various cultural and spiritual traditions, often employed for purification and healing. The concept of fumigation is exclusively narrated in ancient texts. The *Vedas*, particularly the *Rig Veda*, *Yajur Veda*, and *Atharva Veda*, mention the practices of *Yagya* (or *Yajna*) and *Havana* as central to their ritualistic framework. However, they are more closely associated with *Vedic* rituals and spiritual practices than with the purely medical aspects of *Ayurveda*. The *Yajur Veda* specifically focuses on the rituals of *Yajna* (which includes *Yagya*), with detailed

instructions on the offerings, chants, and procedures for conducting sacrifices. The *Taittiriya Samhita* and *Shatapatha Brahmana* (parts of the *Yajur Veda*) describe various fire rituals performed by priests.^[25] *Atharva Veda* discusses the significance of *Homa* (the process of offerings made into the fire), focusing on how it can heal diseases and bring prosperity. The *Homa* rituals are also used for spiritual purification and protecting health.^[26] Ayurvedic traditional fumigation with natural plant products is used to disinfect the environment. It is termed as *Dhoopana*, *Yagya*, *Havana*, and *Homa* in Ayurvedic texts. Fumigation, referred to as *Dhoopana* in the two fundamental texts of Ayurveda, *Charaka Samhitha* and *Sushrutha Samhitha*, is prescribed for the treatment of various ailments and disinfection of the environment and inanimate objects.^[27,28] Classically, *Dhoopana Karma* is indicated in *Janpadodwansha vyadhi*, i.e. epidemic or *Aopsargika Roga*. Ayurveda recommends fumigation as a method of sterilisation and therapeutic procedure for various human diseases, including microbial infections and psychological disorders.^[29]

Homa and *Yagya* are seen as practices that purify the environment, harmonise the *Dosha* (the three biological energies: *Vata*, *Pitta*, and *Kapha*), and promote both physical and mental health. Ayurvedic literature also mentions *Agnihotra* (a specific form of fire ritual) as beneficial for overall well-being. *Agnihotra* is a form of *Yagya* practised daily, often using specific herbs and ghee, said to purify both the air and the body.^[30] Ayurvedic traditional fumigation practices using Garlic (*Allium sativum*) peel, Turmeric (*Curcuma longa*), Carom (*Trachyspermum ammi*) seeds (*Ajwain*) and Loban (resin of *Styrax benzoin* and *Boswellia* species) powders have been mentioned for disinfection.^[31]

The study was conducted to scientifically validate the disinfection efficacy of herbal products as an alternative to conventional chemical fumigation. Nautiyal et al. demonstrated that 500 g *Havan Samagri* (a mixture of more than 50 odiferous and medicinal plants) reduced the airborne bacteria by 94% within 1 hour of fumigation.^[32] Fumigation with garlic peel, turmeric powder, ajwain seed powder and loban significantly reduces airborne bacteria. In addition, only 3 g of the four herbal materials resulted in nearly 60–70% reduction in airborne bacteria. 15 g of *Devadaru* (*Cedrus deodara*) resulted in around 96% reduction in airborne bacteria. 3 g of garlic peel reduced the airborne bacteria by 71% in a much larger room. Elemental analysis of garlic peel indicates the presence of sulfur, and the ethyl acetate extract of garlic peel exhibits antibacterial activity against *Colletotrichum acutatum*. This data indicates that fumigation with each of these herbal products has significantly improved the

microbiological quality of air by significantly reducing the cfu/m3 of air.^[31] Although this study indicates that fumigation with the tested herbs is efficient in disinfection, more research should be carried out to understand the effect of various parameters such as humidity, temperature and exposure time on the disinfection ability.

Drugs used for fumigation in Ayurveda

In Ayurveda, the use of a single drug as well as a combination of various drugs is used for fumigation. Like *Dhoopan* with *Agaru* is recommended for *Sheeta Jwara*, *Sarvgrahhra Dhoopa*, *Vishamjwara Hra Dhoopa*.^[33] Classically, the drugs selected for fumigation are predominant in *Agni* or *Vayu Mahabhoote*. E.g. *Guggul*, *Nimba*, *Vacha*, *Sarshapa*, *Haridra*, *Ghee*, *Chandna*, *Ushira*, *Ela*, *Aguru*, *Devdaru*, *Sarjrassa*.^[35]

Classical Ayurvedic References on Fumigation (*Dhoopana*) Practices

Atharveda – *Guggula*, *Ajashringi* for *Kriminashana*^[35]

Charaka Samihta – *Krimighana Mahakasaya* (*Guduchi*, *Karkatshringi*, *Hingu*, *Ingudi*, *Kantakari*, *Twak*, *Nimba*, *Patol*, *Apamarga*, *Guggul*)^[36,37]

Shushruta Samhita – *Rakshoghna Gana* - *Guggul*, *Agaru*, *Sarjras*, *Vacha*, *Gaur Sarshapa*, *Lavan*, *Nimbapatra*, *Ghrut*.^[38]

Kashyapa Samhita – *Rakshoghna Drvays* (Capable of killing demons)- *Ghrita*, *Hingu*, *Akshata*, Skin of Reptile (Snake), *Siddhartak* (*Brassica alba*), *Dev Nirmalya* (flowers of herbs offered to god), *Akshata* (unbroken rice), *Sarpa tvak* (shed skin snake) and clothes of old Buddhist^[39], *Sarvaroghra Dhoopa* (Destroy all diseases)– *Ghrita*, *Nimba*, *Tulasi Patra*, *Ashwagandha Patra*, Cow hair, Aries hair, Goat Hair.^[40] Apart from this, Acharya Kashyapa has mentioned 40 *Dhoopana Yogas*, and various *Dhoopana* formulations, according to clinical conditions, are given by different Acharyas. For example, in *Kustha*, fumigation with *Vidanga* and *Khadira*, fumigation with *Guggulu*, *Neemba*, *Sarshapa*, *Vacha*, and *Ghee* is indicated in *Vishamjwara*.^[40]

Table 3: Properties of *Dravya* used for Fumigation.^[34]

S.No	Dravya	Properties	Part used	Active Principle	Mode of action
1.	<i>Jatamansi</i> (<i>Nardostachys jatamansi</i> DC) Family- Caprifoliaceae	<i>Rasa</i> - <i>Tikta</i> , <i>Kashaya</i> , <i>Madhura Guna</i> - <i>Laghu</i> , <i>Snigdha Vipaka</i> - <i>Katu</i> , <i>Virya</i> - <i>Sheeta</i>	Root	Essential oil (Sesquiterpoids)	Insecticidal properties ^[41]
2.	<i>Guggula</i> (<i>Commiphora</i>)	<i>Rasa</i> - <i>Tikta</i> , <i>Katu</i> , <i>Guna</i> - <i>Laghu</i> , <i>Sugandhi</i>	Gum-resin	Diterpenoids, Alkaloids,	<i>Krimighna</i> (Anti-bacterial against

	<i>mukul</i> Hook ex Stocks) Family- Burseraceae	<i>Vipaka - Katu</i> <i>Virya - Ushna</i>		Glycosides, Oleo-gum resins, Amino Acids	gram- positive bacteria and gram-negative bacteria) which helps increasing the growth of pathogens by destroying their intracellular fluids
3.	<i>Neemba</i> (<i>Azadirachta indica</i> A. Juss) Family- Meliaceae	<i>Rasa - Tikta, Kashaya</i> <i>Guna - Laghu</i> <i>Vipaka - Katu</i> <i>Virya - Sheeta</i>	Flower, Leaf, Bark, Seeds	Azadirachtin, Nimbin, Nimbinin, Nimbosterol	<i>Krimighna</i> , <i>Vishgna</i> (Anti-microbial, Anti-bacterial property of Nimba against pyogenic bacteria e.g. <i>staphylocooccus aureus</i> & <i>staphylocooccus pyogenus</i> and antifungal agent) which helps to dry up the intracellular fluid present inside the bacterial wall& hampers the growth of the bacteria.
4.	<i>Vacha</i> (<i>Acorus calamus</i> Linn.) Family- Acoraceae	<i>Rasa - Katu,</i> <i>Tikta</i> <i>Guna - Laghu, Tikshana</i> <i>Vipaka - Katu</i> <i>Virya - Ushna</i>	Rhizome	Asarynidehyde	<i>Krimighna</i> (Anti-bacterial agent against bacterial strains of <i>Salmonella typhi</i> , <i>Pseudomonas aeruginosa</i> , <i>Klebsiella pneumonia</i> and <i>Staphylococcus aureus</i>) helps to stop the bacterial growth
5.	<i>Sarshap</i> (<i>Brassica campesteris</i> Linn.) Family- Brassicaceae	<i>Rasa - Katu, Teekta,</i> <i>Guna- Tikshana, Ruksha</i> <i>Vipaka - Katu</i> <i>Virya - Ushna</i>	Seed	Allylisothiocyanate	<i>Krimighna</i> (Bactericidal)
6.	<i>Haridra</i> (<i>Curcuma longa</i> Linn.)	<i>Rasa - Tikta, Katu,</i> <i>Guna - Laghu, Ruksha</i> <i>Vipaka - Katu</i>	Rhizome	Curcumin, Several curcuminoids	<i>Krimighna</i> (Anti-bacterial properties against gm+ve and

	Family- Zingiberaceae	<i>Virya - Ushna</i>			gm-ve bacteria)
7.	<i>Chandana</i> (<i>Santalum album</i> Linn.) Family- Santalaceae	<i>Rasa- Tikta, Madhura,</i> <i>Guna-Laghu, Ruksha</i> <i>Vipaka - Katu</i> <i>Virya - Sheeta</i>	Heart wood	Volatile oil Santalol	<i>Krimighna</i> (Anti-microbial& Anti-fungal) and increases the effect of Dhoopan karma due to aroma.
8.	<i>Usheera</i> (<i>Viteveria</i> <i>zizanioides</i> Linn) Family- Poaceae	<i>Rasa-Tikta, Madhura</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Sheeta</i>	Root	Volatile oil	<i>Krimighna</i> and increases the effect of Dhoopan karma due to aroma.
9.	<i>Ela</i> (<i>Eletteria</i> <i>cardamomum</i> Maton.) Family- Zingiberaceae	<i>Rasa-Katu, Madhura</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka-Madhura</i> <i>Virya- Sheeta</i>	Seed	Camphene cyaniol	<i>Krimighana</i> (Antibacterial)
10.	<i>Agaru</i> (<i>Aquilaria</i> <i>agallocha</i> Roxb) Family- Thymelaeaceae	<i>Rasa-Katu,, Tikta</i> <i>Guna- Laghu, Ruksha,</i> <i>Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Heartwood	Agarospirol	<i>Krimighna</i> (anti-bacterial & anti-inflammatory) & special use in Sutikagara
11.	<i>Khadira</i> (<i>Acacia</i> <i>catechu</i> Willd.) Family- Fabaceae	<i>Rasa-Tikta, Kashaya</i> <i>Guna-Laghu, Ruksha</i> <i>Vipaka-Katu</i> <i>Virya- Sheeta</i>	Bark	Catechin	Bark is Insecticidal ^[43]
12.	<i>Devdaru</i> (<i>Cedrus</i> <i>deodara</i> (<i>Roxb</i>) Loud.) Family- Pinaceae	<i>Rasa- Tikta</i> <i>Guna- Laghu, Snigdha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Bark	Essential oil Sesquiterpene	Anti-larvicidal ^[44] Ethanol extracts from cones, leaves, wood anti-viral activity ^[45]
13.	<i>Hingu</i> (<i>Ferula</i> <i>assa-foetida</i> L.) Family- Apiaceae	<i>Rasa- Katu</i> <i>Guna- Laghu, Snigdha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Gum-resin	Oleo-resin gum	Anti-microbial ^[42]
14.	<i>Kantkari</i> (<i>Solanum</i> <i>virginianum</i> L.) Family- Solanaceae	<i>Rasa- Tikta, Katu</i> <i>Guna- Laghu, Ruksha,</i> <i>Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Whole plants	Alkaloids, Glycosides	Anti-microbial Insecticidal ^[46]
15.	<i>Tulsi</i> (<i>Ocimum</i> <i>sanctum</i> Linn.) Family- Lamiaceae	<i>Rasa- Katu, Tikta</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Whole plants	Eugenol, Methyl eugenol,	Anti-bacterial Anti-microbial Insecticidal ^[47]
16.	<i>Karkatshringi</i> (<i>Pistacia</i> <i>integerrima</i> J.L. Stewart) Family- Anacardiaceae	<i>Rasa- Kashaya, Tikta</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Gall	Camphene Volatile oil	Anti-bacterial ^[48]

17.	Kapoor (<i>Cinnamomum camphora</i> Nees. & Eberm.) Family- Lauraceae	<i>Rasa- Tikta, Katu, Madhura</i> <i>Guna- Laghu, Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Sheetaa</i>	Gum resin	Essential oil	Insecticidal activity ^[49] Anti-bacterial ^[50]
18.	Kapoor Kachri (<i>Hedychium spicatum</i> Buch-Ham.) Family- Zingiberaceae	<i>Rasa- Katu, Tikta, Kashaya</i> <i>Guna- Laghu, Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Rhizome	Essential oil	Insecticidal ^[51] Anti-microbial ^[52]
19.	Tagar (<i>Tabernaemontana divaricata</i> (L.) R.Br.ex.Roem & Schult.) Family- Caprifoliaceae	<i>Rasa- Tikta, Katu, Kashaya</i> <i>Guna- Laghu, Snigdha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Root	Indole alkaloids	Anti-microbial ^[53] Anti-bacterial ^[54]
20.	Apamarga (<i>Achyranthes aspera</i> Linn.) Family- Amaranthaceae	<i>Rasa- Katu, Tikta</i> <i>Guna- Laghu, Ruksha, Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Whole plant	Flavonoids Tannins Taxifolin	Anti-bacterial ^[57] Insecticidal ^[58]
21.	Sarjaka (<i>Vateria indica</i> Linn.) Family- Dipterocarpaceae	<i>Rasa- Kashaya, Madhura</i> <i>Guna- Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Sheetaa</i>	Root	Flavonoids Tannins Volatile oil	Anti-bacterial, larvicidal ^[59] Anti-microbial ^[60]
22.	Kutki (<i>Picrorhiza kurroa</i> Royle ex Benth.) Family- Plantaginaceae	<i>Rasa- Tikta</i> <i>Guna- Ruksha, Laghu</i> <i>Vipaka- Katu</i> <i>Virya- Sheetaa</i>	Rhizome	Kutkiol Kutkin Picrorhizin Picroside Terpenes	Anti-microbial, insecticidal ^[62]
23.	Durva (<i>Cynodon dactylon</i> Pers.) Family- Poaceae	<i>Rasa- Kashaya, Madhura</i> <i>Guna- Laghu</i> <i>Vipaka- Madhura</i> <i>Virya- Sheetaa</i>	Leaves	Cyanidin Glycosides	Anti-microbial, Anti-parasitic ^[63]
24.	Chorpushpi (<i>Bidens pilosa</i> Linn.) Family- Asteraceae	<i>Rasa- Katu, Kashaya</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Whole plant	Flavonoids Terpenoids Aromatic compounds	Insecticidal ^[64] Anti-microbial ^[65]
25.	Haritaki (<i>Terminalia chebula</i> Retz.) Family- Combretaceae	<i>Rasa- Pancha-rasa (Except Lavana)</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka- Madhura</i> <i>Virya- Ushna</i>	Fruit	Chebulagic acid Chebulinic acid Corilagin	Insecticidal ^[66]
26.	Yava (<i>Hordeum vulgare</i> (L.)) Family- Poaceae	<i>Rasa- Kashaya, Madhura</i> <i>Guna- Ruksha, Guru</i> <i>Vipaka- Katu</i>	Seed	Hordenine Luteolin glycoside	Anti-bacterial ^[67]

		Virya- Sheeta			
27.	<i>Ativisha</i> (<i>Aconitum heterophyllum</i> Wall.) Family- Ranunculaceae	<i>Rasa-Katu, Tikta</i> <i>Guna-Laghu,</i> <i>Ruksha</i> <i>Vipaka-Katu</i> <i>Virya-Ushna</i>	Tuber	Alkaloids, Flavonoids	Anti-microbial ^[42]
28.	<i>Arjuna</i> (<i>Terminalia arjuna</i> (Roxb.) W. & A.) Family- Combretaceae	<i>Rasa- Kashaya</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Sheeta</i>	Bark	Arjunolic acids, Tannins, Glycosides	Acts as antimicrobial ^[42]
29.	<i>Asana</i> (<i>Pterocarpus marsupium</i> Roxb.) Family- Fabaceae	<i>Rasa- Kashaya, Tikta</i> <i>Guna- Laghu-Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Sheeta</i>	Bark	Bark; alkaloids, glycosides, flavonoids, phenols, terpinoids	Anti-bacterial, Anti-viral, Anti-fungal ^[42]
30.	<i>Bhallataka</i> (<i>Semecarpus anacardium</i> Linn.) Family- Anacardiaceae	<i>Rasa- Katu, Tikta,</i> <i>Kashya</i> <i>Guna- Laghu, Snigdha,</i> <i>Tikshna</i> <i>Vipaka-Madhura</i> <i>Virya- Ushna</i>	Seed	Biflavonoids, phenolic compounds, bhilawanols	Anti-microbial, Anti-termites ^[42]
31	<i>Vidanga</i> (<i>Embelia ribes</i> Burm.f.) Family- Myrsinaceae	<i>Rasa- Katu, Kashya</i> <i>Guna- Laghu, Ruksha,</i> <i>Tikshana</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Seed	Benzoquinone derivative embelin,	Anti-bacterial, Anthelmintic, Anti-fungal ^[42]
32	<i>Kebuka</i> (<i>Costus speciosus</i> (Koeing) Sm.) Family- Costaceae	<i>Rasa- Tikta, Kashaya</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Sheeta</i>	Root	Diosgenins, Benzoquinones	Anti-microbial ^[42]
33.	<i>Indravaruni</i> (<i>Citrullus colocynthis</i> Schrad.) Family- Cucurbitaceae	<i>Rasa- Tikta</i> <i>Guna- Laghu, Ruksha,</i> <i>Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Root Seed	Flavonoids, Tannins, Terpinoids	Anti-microbial ^[42]
34.	<i>Ingudi</i> (<i>Balanitis aegyptiaca</i> Linn.) Family-	<i>Rasa- Tikta, Katu</i> <i>Guna- Laghu, Snigdha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Seed Bark	Saponins, Glycosides	Anti-bacterial, Anthelmintic ^[42]
35.	<i>Kalajaji</i> (<i>Nigella sativa</i> Linn.) Family- Ranunculaceae	<i>Rasa- Katu, Tikta</i> <i>Guna- Laghu, Ruksha,</i> <i>Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Seed	Thymoquinone	Anti-bacterial ^[42]

36.	<i>Karanja</i> (<i>Pongamia pinnata</i> Pierre.) Family- Fabaceae	<i>Rasa- Tikta, Katu, Kashaya</i> <i>Guna- Laghu, Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Seed	Flavonoids	Anti-bacterial ^[42]
37.	<i>Kosataki</i> (<i>Luffa acutangula</i> (Linn.) Roxb.) Family- Cucurbitaceae	<i>Rasa- Tikta</i> <i>Guna- Laghu, Ruksha,</i> <i>Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Seed	Terpenoids, Flavonoids, Glycosides	Anti-bacterial, Anti-fungal ^[42]
38.	<i>Plakasha</i> (<i>Ficus lacor</i> Buch. - Ham) Family- Moraceae	<i>Rasa- Kashaya</i> <i>Guna- Guru, Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Sheetaa</i>	Bark Root	Aerial root rich in phenolics	Anti-bacterial, latex is Anti-fungal ^[42]
39.	<i>Rasona</i> (<i>Allium sativum</i> Linn.) Family- Amaryllidaceae	<i>Rasa- Madhura, Lavana, Katu, Tikta)</i> <i>Guna- Tikshna, Guru</i> <i>Vipaka- Katu</i> <i>.Virya- Ushna</i>	Bulb	Allicin	Work against bacteria, fungi, viruses, nematodes, insect repellent ^[42]
40.	<i>Mallika</i> (<i>Jasminum sambac</i> Linn.) Family- Oleaceae	<i>Rasa- Tikta, Kashaya</i> <i>Guna- Laghu, Snigdha, Mridu</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Flower	Alkaloids, Glycosides, Flavonoids, Tri-terpenes, saponin, tannins, resin and salicylic acids	Anti-bacterial, Anti-fungal, Anthelmintic ^[42]
41.	<i>Maricha</i> (<i>Piper nigrum</i> Linn.) Family- Piperaceae	<i>Rasa- Katu</i> <i>Guna- Laghu, Tikshna</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Seed	Volatile oils	Anti-bacterial ^[42]
42.	<i>Nirgundi</i> (<i>Vitex negundo</i> Linn.) Family- Lamiaceae	<i>Rasa- Katu, Tikta</i> <i>Guna- Laghu, Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Leaves	Alkaloids (Nishindin and Hydrocotylene)	Anti-bacterial ^[42]
43.	<i>Pippali</i> (<i>Piper longum</i> Linn.) Family- Piperaceae	<i>Rasa- Katu,</i> <i>Guna- Laghu, Snigdha,</i> <i>Tikshna</i> <i>Vipaka- Madhura</i> <i>Virya- Anushnasheetaa</i>	Seed	Resin, Alkaloids, Terpenoids	Anti-bacterial, Anthelmintic ^[42]
45.	<i>Tilah</i> (<i>Sesamum indicum</i> Linn.) Family- Pedaliaceae	<i>Rasa- Madhura</i> <i>Guna- Guru, Snigdha</i> <i>Vipaka- Madhura</i> <i>Virya- Ushna</i>	Seed	Sesamol, sesamolin, sesamin	Anti-bacterial, Anti-fungal ^[42]
46.	<i>Dhoopa</i> (<i>Jurinea dolomiaeae</i> Boiss) Family- Asteraceae	<i>Rasa- Katu</i> <i>Guna- Laghu,</i> <i>Ruksha</i> <i>Vipaka- Katu</i> <i>Virya- Ushna</i>	Rhizome	Alkaloids, Flavonoids	Anti-microbial ^[68] , Anti-bacterial ^[69]

<i>Pistacia integerrima</i> J.L. Stewart		<i>Cinnamomum camphora</i> Nees. & Eberm		<i>Hedychium spicatum</i> Buch-Ham.	
<i>Tabernaemontana divaricata</i> (L)R.Br.ex.Roem.&Schult.		<i>Achyranthes aspera</i> Linn.		<i>Vateria indica</i> Linn.	
<i>Picrorhiza kurroa</i> Royle ex Benth.		<i>Cynodon dactylon</i> Pers.		<i>Bidens pilosa</i> Linn.	
<i>Terminalia chebula</i> Retz.		<i>Hordeum vulgare</i> (L.)		<i>Aconitum heterophyllum</i> W.	
<i>Terminalia arjuna</i> (Roxb.) W. & A.		<i>Pterocarpus marsupium</i> Roxb.		<i>Semecarpus anacardium</i> Linn.	

Figure 3. Herbal Drugs used for Fumigation.

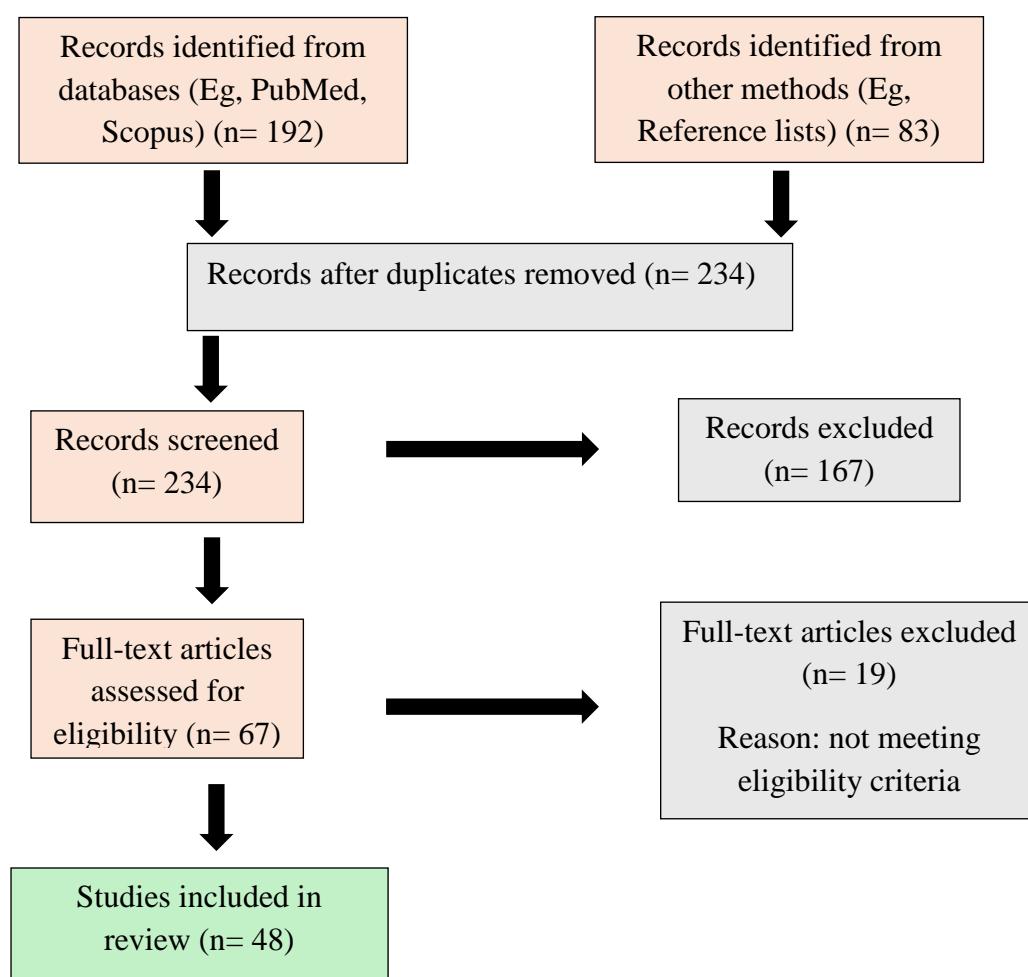

<i>Embelia ribes</i> Burm.f.		<i>Costus speciosus</i> (Koeing) Sm.		<i>Citrullus colocynthis</i> Schrad.	
<i>Balanitis aegyptiaca</i> Linn.		<i>Nigella sativa</i> Linn.		<i>Pongamia pinnata</i> Pierre.	
<i>Luffa acutangula</i> (Linn.) Roxb.		<i>Ficus lacor</i> Buch. -Ham.		<i>Allium sativum</i> Linn.	
<i>Jasminum sambac</i> Linn.		<i>Piper nigrum</i> Linn.		<i>Vitex negundo</i> Linn.	
<i>Piper longum</i> Linn.		<i>Sesamum indicum</i> Linn.		<i>Jurinea dolomiaeae</i> Boiss.	

Figure 4. Herbal Drugs used for Fumigation.

RESULTS

1. Literature Search Outcomes

The comprehensive literature search yielded a total of 473 records from databases including PubMed, Google Scholar, ScienceDirect, and SpringerLink. After removing 63 duplicates, 410 records remained for screening. Title and abstract screening excluded 280 articles due to irrelevance or insufficient focus on air purification or traditional practices. Out of the remaining 130 full-text articles assessed for eligibility, 85 studies met the inclusion criteria and were included in the final review. These included both original research and review papers on phytoremediation, Ayurvedic *Dhoopana* practices, and the medicinal use of plants for indoor environmental well-being. The study selection process is summarised in the PRISMA flow diagram (**Figure 5**).

Figure 5. PRISMA Results.

2. Thematic Classification of Included Studies

The 85 selected articles and sources were grouped thematically into the following categories:

- Indoor Air Pollutants and Health Impact (n=12): Articles highlighted the effects of pollutants such as PM2.5, VOCs, carbon monoxide, and microbial contamination on respiratory and systemic health.
- Scientific Basis of Air-Purifying Plants (n=25): These included NASA studies, phytoremediation research, and plant physiology data showing VOC absorption, microbial neutralisation, and oxygen release mechanisms.
- Traditional Ayurvedic Fumigation Practices (n=20): Studies and classical texts detailing *Dhoopana* formulations, their mode of action, and environmental benefits were reviewed.
- Ethnobotanical and Ayurvedic Literature (n=15): These records provided regional and traditional knowledge of herbs used for purification and ritualistic practices.
- Bioactive Properties of Specific Plants (n=13): This category covered antibacterial, antifungal, antioxidant, and insecticidal activity of key plants such as *Tulsi*, *Neem*, *Tagara*, and *Guggulu*.

3. Source Composition and Reference Diversity

Among the 85 studies

- 61 were peer-reviewed scientific papers (45 research articles and 16 reviews),
- 15 were classical Ayurvedic references and commentaries,
- 9 were grey literature, including government reports, theses, and validated online archives.

4. Integration of Traditional and Modern Evidence

The review demonstrates a notable convergence between modern scientific findings and traditional Ayurvedic practices. Several herbs traditionally used in *Dhoopana*, such as *Haridra*, *Tagara*, and *Loban*, have shown measurable antimicrobial and air-purifying properties in experimental studies. Furthermore, Ayurvedic fumigation methods align with modern bioaerosol management techniques, providing a valuable bridge between ancient wisdom and contemporary indoor air quality enhancement strategies.

DISCUSSION

Indoor air quality has emerged as a critical component of environmental and public health, particularly in urban and post-pandemic settings where indoor exposure exceeds 90% of human activity time. This review highlights the unique convergence of classical Ayurvedic knowledge and modern phytoremediation science, offering a holistic approach to indoor air detoxification.

The use of air-purifying plants such as *Sansevieria trifasciata*, *Chlorophytum comosum*, and *Areca catechu* has shown remarkable efficacy in absorbing volatile organic compounds (VOCs) such as formaldehyde, benzene, and xylene. These findings are strongly supported by the NASA Clean Air Study and subsequent phytoremediation trials. The presence of specialised enzymes and CAM (Crassulacean Acid Metabolism) physiology in some species enables continuous air filtration, even during night hours, making them suitable for closed environments like bedrooms, hospitals, and offices.

Ayurvedic *Dhoopana* (fumigation) practices, referenced in texts such as *Charaka Samhita*, *Sushruta Samhita*, and *Rasashastra granthas*, have long emphasised the use of herbal resins, barks, and volatile oils for disinfection, air purification, and spiritual cleansing. This review presents plants such as *Guggulu* (*Commiphora wightii*), *Nimba* (*Azadirachta indica*), *Haridra* (*Curcuma longa*), and *Vacha* (*Acorus calamus*) as classical components of *Dhoopana* formulations. Modern microbiological studies have validated the antibacterial, antifungal, antiviral, and insect-repellent properties of such formulations, demonstrating reductions in airborne pathogens and surface microbial load.

Furthermore, the integration of classical Ayurvedic wisdom with modern evidence-based research shows promise for sustainable, low-cost, and culturally relevant air purification systems. However, gaps still exist in terms of standardised protocols, comparative efficacy across environments, and long-term safety assessment. Not all plants or formulations have been thoroughly studied using modern tools such as GC-MS, FTIR, or clinical microbial assays.

This review also identifies a need to re-establish forgotten indigenous practices, revive ethnobotanical knowledge, and promote interdisciplinary research that bridges environmental science, Ayurveda, and pharmacognosy.

The findings of this review underscore a growing convergence between traditional Ayurvedic practices such as *Dhoopana* (medicinal fumigation) and modern phytoremediation science. Indoor air pollution, largely attributed to volatile organic compounds (VOCs), particulate matter (PM2.5), and microbial contaminants, is a pressing global health concern. This review documents how Ayurvedic *Dhoopana* formulations and air-purifying herbal plants offer integrative, natural solutions to address these challenges.

Classical Ayurvedic texts such as the *Charaka Samhita*, *Sushruta Samhita*, and *Ashtanga Hridaya* detail various *Dhoopana Yogas* for environmental purification, disinfection, and disease prevention. Herbs like *Haridra* (*Curcuma longa*), *Tagara* (*Valeriana wallichii*), *Guggulu* (*Commiphora wightii*), and *Vacha* (*Acorus calamus*) exhibit well-documented antimicrobial, antifungal, and aromatic properties. Modern phytochemical analyses support the presence of active constituents like curcumin, valerenic acid, guggulsterones, and β -asarone, which possess immunomodulatory and detoxifying actions. These formulations, when subjected to fumigation, have demonstrated potential in reducing microbial air load and neutralising airborne irritants.

Simultaneously, several plants evaluated under NASA's Clean Air Study and subsequent environmental research, *Sansevieria trifasciata*, *Aloe vera*, *Areca palm*, and *Spider plant*, are recognised for their ability to absorb pollutants like benzene, xylene, and formaldehyde through stomatal and rhizospheric pathways. Their compatibility with indoor conditions, low maintenance, and health-promoting benefits position them as effective phytoremediation agents.

Importantly, this review identified a category of 10 plants validated both in traditional Ayurvedic texts and contemporary scientific studies. These dual-validated plants hold the most promise for integrative air detoxification systems. However, limitations persist in the form of insufficient randomised clinical trials, a lack of standard protocols for *Dhoopana* preparation and delivery, and minimal inclusion of indoor plant strategies in public health policies.

This integrative approach offers not only environmental benefits but also cultural continuity, psychological wellness, and low-cost interventions particularly relevant for resource-limited settings and urban populations. Future research should focus on developing standardised formulations, conducting comparative indoor air quality studies, and exploring synergistic applications of *Dhoopana* and phytoremediation.

CONCLUSION

This review consolidates evidence that both Ayurvedic fumigation practices and scientifically validated indoor plants have substantial potential to improve indoor air quality by reducing microbial load, neutralising VOCs, and enhancing ambient oxygenation. By aligning classical Ayurvedic wisdom with modern scientific validation, these practices can offer accessible,

eco-friendly, and culturally rooted alternatives to chemical disinfectants and mechanical air purifiers.

While empirical support is growing, large-scale studies and standardised models are necessary to mainstream these practices into environmental health protocols. The integrative adoption of traditional *Dhoopana* and indoor herbal plants holds promise for sustainable living, preventive health, and environmental harmony.

FINANCIAL SUPPORT AND SPONSORSHIP

Nil.

Authors' Contribution

All authors contributed significantly to the conception, design, and preparation of this review.

- **Dr I. T.:** Conceptualisation, literature review, drafting, and manuscript writing.
- **Dr C. G.:** Analysis of relevant studies and critical revision of the manuscript.

CONFLICT OF INTEREST

There is no conflict of interest.

ACKNOWLEDGEMENT

The authors express their sincere gratitude to all scholars and researchers whose contributions in the field have provided the foundation for this review. We acknowledge the support of the Principal of RGGPG Ayu College and Hospital for providing the necessary resources throughout the preparation of this manuscript. The authors also extend their appreciation to peers and colleagues for their constructive suggestions, which helped refine the content of this article.

REFERENCES

1. [https://www.who.int/teams/environment-climate-change-and-health/air-quality-energy-and-health/sectoral-interventions/household-air-pollution/health-risks#:~:text=Over%203%20million%20people%20die,disease%3B%20other%20HAP%20data\).](https://www.who.int/teams/environment-climate-change-and-health/air-quality-energy-and-health/sectoral-interventions/household-air-pollution/health-risks#:~:text=Over%203%20million%20people%20die,disease%3B%20other%20HAP%20data).)
2. Gawrońska H, Bakera B. Phytoremediation of particulate matter from indoor air by *Chlorophytum comosum* L. plants. Air Qual Atmos Health, 2015; 8(3): 265-272. doi: 10.1007/s11869-014-0285-4. Epub 2014 Aug 9. PMID: 26052368; PMCID: PMC4449931.

3. [https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality#:~:text=Indoor%20Air%20Quality%20\(IAQ\)%20refers,risk%20of%20indoor%20health%20concerns](https://www.epa.gov/indoor-air-quality-iaq/introduction-indoor-air-quality#:~:text=Indoor%20Air%20Quality%20(IAQ)%20refers,risk%20of%20indoor%20health%20concerns)
4. Llewellyn, D. & Dixon, Mike. (2011). Can Plants Really Improve Indoor Air Quality? *Comprehensive Biotechnology*, 4: 331-338. 10.1016/B978-0-08-088504-9.00325-1.
5. <https://snakeplantinfo.com/how-snake-plants-improve-air-quality-at-home/>
6. Lalropeki Mualchin, Hilda Lalrinpuii. A Study on the Effect of Snake Plants on Indoor Air Quality and Human Well-being in a Private Hostel in Aizawl, Mizoram, 15 November 2024, PREPRINT (Version1) available at Research Square [https://doi.org/10.21203/rs.3.rs-5424729/v1]
7. https://ijsr.in/upload/1379402232Chapter_21.pdf
8. Giese M, Bauer-Doranth U, Langebartels C, Sandermann Jr H. Detoxification of formaldehyde by the spider plant (*Chlorophytum comosum* L.) and by soybean (*Glycine max* L.) cell-suspension cultures. *Plant Physiology*, 1994 Apr 1; 104(4): 1301-9.
9. Wolverton, B. C., Johnson, A., & Bounds, K. (1989). *Interior Landscape Plants for Indoor Air Pollution Abatement*. NASA Technical Report, NASA-JPL.
10. Qian, J., & Jiang, Z. *The Role of Indoor Plants in Improving Indoor Air Quality*. *International Journal of Environmental Research and Public Health*, 2013; 10(9): 4301-4311.
11. Hegde, A., & Rajendran, R. *Phytoremediation of Volatile Organic Compounds (VOCs) in Indoor Air*. In *Phytoremediation: Bioremediation of Toxic Metals*, 2015: 371-392. Springer.
12. Raj, S., & Bansal, M. *Phytoremediation: A Novel and Green Technology for Remediation of Pollutants*. *International Journal of Environmental Science and Technology*, 2014; 11(4): 855-870.
13. Wolverton BC, Wolverton JD. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment.
14. Liu, H., & Zhang, X. *Effects of Indoor Plants on Human Health: A Review*. *Journal of Environmental Protection*, 2017; 8(4): 549-559.
15. https://ijsr.in/upload/1379402232Chapter_21.pdf
16. <https://thebotanicaljourney.com/blogs/the-botanical-journey/what-is-lucky-bamboo-why-is-it-lucky#:~:text=The%20Most%20Popular%20House%20Plant,%2C%20rice%2C%20and%20other%20grains.>

17. <https://www.416-flowers.com/blog/index.php/2023/09/29/cultivating-luck-and-serenity-a-guide-to-lucky-bamboo-care/#:~:text=Its%20upright%20growth%20and%20vibrant,energy%2C%20creating%20a%20harmonious%20environment>
18. Bhargava, B., Malhotra, S., Chandel, A. et al. Mitigation of indoor air pollutants using Areca palm potted plants in real-life settings. *Environ Sci Pollut Res.*, 2021; **28**: 8898–8906. <https://doi.org/10.1007/s11356-020-11177-1>
19. <https://learn.allergyandair.com/houseplants-indoor-air-quality/#:~:text=Most%20commonly%20known%20as%20a%20Weeping%20Fig%20or%20Ficus%20tree,airborne%20formaldehyde%2C%20xylene%20and%20toluene>
20. Wolverton, B.C., & Wolverton, J.D. (1993). *Plants and Environmental Quality*. NASA.
21. Spangenberg, K., & Harris, R.J. (2010). *The Role of Plants in Improving Indoor Air Quality*. *Journal of Environmental Science and Technology*.
22. Wolverton, B.C. (1997). *How to Grow Fresh Air: 50 House Plants that Purify Your Home or Office*. Penguin Books.
23. Ghate, Seemaa. (2016). Assessment of Phytoremediating Potential of Aglaonema commutatum Schott for Indoor Pollutants. *International Journal of Plant and Environment*. 2. 10.18811/ijpen.v2i1-2.6622.
24. Kobayashi, K.D., Kaufman, A.J., Griffis, J. and McConnell, J., 2007. Using houseplants to clean indoor air.
25. Yajur Veda, Taittiriya Samhita, Shatapatha Brahmana.
26. Atharva Veda, Homa Prayers (Book 6, Hymn 61, and others).
27. Sharma, R.K. and Dash, V.B., 2008. Agnivesa's Charaka Samhitha-text with English Translation. *Varanasi: Chaukhambha Sanskrit Series Office*.
28. Susrutha, M.K., Susrutha Samhitha, English translation (20/8). *Chaukambha Orientalia. Varanasi. Chikitsa Sthana*, 2002; *4th Chapter*, 3: 98.
29. Vishnuprasad, C.N., Pradeep, N.S., Cho, Y.W., Gangadharan, G.G. and Han, S.S., Fumigation in Ayurveda: Potential strategy for drug discovery and drug delivery. *Journal of ethnopharmacology*, 2013; **149**(2): 409-415.
30. Vaidya K.K. Aggarwal's work on the Health Benefits of Agnihotra (2014).
31. Bhatwalkar, S.B., Shukla, P., Srivastava, R.K., Mondal, R. and Anupam, R., Validation of environmental disinfection efficiency of traditional Ayurvedic fumigation practices. *Journal of Ayurveda and Integrative Medicine*, 2019; **10**(3): 203-206.

32. Nautiyal, C.S., Chauhan, P.S. and Nene, Y.L., Medicinal smoke reduces airborne bacteria. *Journal of ethnopharmacology*, 2007; 114(3): 446-451.
33. Sahara Shrestha, Prashant Bedarkar, BJ Patgiri, Swapnil Y Chaudhari. Dhoopana Karma: A review through Brihatrayi. International Ayurvedic Medical Journal, 2017; (3): 316-325.
34. Sawarkar, P. and Sawarkar, G., 2021. Dhoopana-A Concept of Fumigation in Ayurveda. *Journal of Pharmaceutical Research International*, 33(36A): 225-248.
35. Ath. 4th kanda, sukta 37, 1-3.
36. Shastri Kaashinath, Chaturvedi Gorakhnaath, editor. Charak Samhita of Agnivesa Elaborated by Charaka and Dridhbala with the Ayurved Dipika Commentary by Chakrapani. Vol. I, Sutra Sthana, Chapter 4, verse 15. Reprint ed. Varanasi, India: Chaukhamba Publication. 2009; 149.
37. Raghuveer, Nageshwara Rao V. Ayurvedic concept of krmi. *Journal of Biotechnology and Biosafety*, 2(5): 150-155.
38. Sharma Anantram, editor. Sushruta Samhita of Sushruta, Volume I, 1st ed. Varanasi, India: Chaukhamba Surbharati Prakashan, 2004; 49.
39. Bhishagcharya Shrisatyapal, editor. Kashyapa Samhita of Vrudhhjivajaka, fourth ed. Kalpa sthana, 1st adhyaya, Dhoopa kalpa adhyaya Varanasi, India: Chaukhamba Sanskrit Sansthan. 1992; 170.
40. Sharma Hemraj, editor. Kashyapa Samhita of Vrudhhjivajaka, fourth ed. Kalpa sthana, 1st adhyaya, Dhoopa kalpa adhyaya Varanasi, India: Chaukhamba Sanskrit Sansthan. 1992; 72.
41. Liu XC, Liu ZL. Evaluation of insecticidal activity of Nardostachys jatamansi essential oil against some grain storage insects. *Journal of Entomology and Zoology Studies*. 2014; 2(4): 335-40.
42. Nene YL. Fumigation of plants in Vrikshayurveda. Asian Agri-History Foundation. 2014; 18(1): 23-41.
43. Khatun M, Talukder D, Hye A. Insecticidal activity of Acacia catechu bark extract against four stored product pests. *Int J Sustain Crop Prod*. 2011 Apr; 6(1): 1-5.
44. Chaudhary A, Sharma P, Nadda G, Dhananjay Kumar T, Bikram S. Chemical composition and larvicidal activities of the Himalayan cedar, Cedrus deodara essential oil and its fractions against the diamondback moth, *Plutella xylostella*. *Journal of Insect Science*, 2011 Jan 1; 11(1): 157.

45. Sarkar S, Singh BM. The Rationality of Dhupana Karma (Fumigation) as a Protective Measure for Neonatal Care in Kumaragara (Infant's Abode and NICU).
46. HL R, MR R, HC A, GN A, KN K. Antimicrobial, insecticidal, and antiradical activity of *Solanum virginianum* l.(solanaceae). Asian J Pharm Clin Res., 2017; 10(11): 163-7.
47. Rathnayaka RM. Antibacterial activity of *Ocimum sanctum* extracts against four food-borne microbial pathogens. Scholars Journal of Applied Medical Sciences. 2013; 1(6): 774-7.
48. Batool K, Sultana S, Akhtar N, Muhammad H, Naheed A. Medicinal plants combating against human pathogens: A review. Int J Biotechnol Food Sci., 2018 Sep 14; 6(3): 42-51.
49. Guo S, Geng Z, Zhang W, Liang J, Wang C, Deng Z, Du S. The chemical composition of essential oils from *Cinnamomum camphora* and their insecticidal activity against the stored product pests. International journal of molecular sciences, 2016 Nov 4; 17(11): 1836.
50. Chen J, Tang C, Zhang R, Ye S, Zhao Z, Huang Y, Xu X, Lan W, Yang D. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of *Cinnamomum camphora* (Linn.) Presl. Journal of Ethnopharmacology, 2020 May 10; 253: 112652.
51. Rawat A, Prakash OM, Nagarkoti K, Kumar R, Verma AK, Kumar S, Srivastava RM, Latwal M, Pandey G. Chemical composition, pesticidal activities and in-silico investigation of *Hedychium spicatum* Sm. chloroform extract. Anais da Academia Brasileira de Ciências, 2023 Jul 17; 95(suppl 1): e20220964.
52. Huong LT, Huong TT, Dai DN, Ogunwande IA. Chemical compositions, mosquito larvicidal and antimicrobial activities of essential oils of *Hedychium stenopetalum* Lodd. and *Hedychium villosum* Wall. of Zingiberaceae from Vietnam. Journal of Essential Oil Bearing Plants, 2022 Jul 4; 25(4): 924-38.
53. Raju M, Rao YV. Study of Catalase, Protease, Antioxidant and Antimicrobial Activities of *Tabernaemontana divaricata* Latex. Journal of Medicinal plants and By-Products, 2021 Apr 1; 10(Special): 61-8.
54. Nor Azman NS. *Antiparasitic, antibacterial, antioxidant, and cytotoxic activities of six Malaysian medicinal plants and identification of their active constituents* (Doctoral dissertation, University of Nottingham).
55. Liu XC, Liu ZL. Evaluation of insecticidal activity of *Nardostachys jatamansi* essential oil against some grain storage insects. Journal of Entomology and Zoology Studies, 2014; 2(4): 335-40.

56. Gupta P, Naudiyal N, Raypa P, Kumar VA. Pharmacognostic Profile of a Potent Medicinal Herb: Nardostachys Jatamansi. InThe Chemistry inside Spices & Herbs: Research and Development: 2024 Jul 8; 4: 117-146). Bentham Science Publishers.

57. Tamta G, Malik N, Gauri V, Nand V. Phytochemical Analysis and in vitro Antioxidant and Antibacterial Activities of Ethanolic Leaf Extract of Achyranthes aspera L.

58. Elumalai D, Ashok K, Suresh A, Hemavathi M. Green synthesis of silver nanoparticle using Achyranthes aspera and its larvicidal activity against three major mosquito vectors. Engineering in Agriculture, Environment and food, 2016; 9(1): 1-8.

59. Senadeera SP, Wijayarathna CD, Weerasinghe IS, Kulatunga KA. Antibacterial and larvicidal activities of Sri Lankan endemic plant, Vateria copallifera. Pharmacognosy Journal, 2011 Jan 1; 3(19): 75-81.

60. John R, Manilal A, Varghese LS, Govindarajan S. Chemical composition, antimicrobial and antioxidant activities of Vateria indica L. oleo-gum resin (white dammar) essential oil. Journal of Essential Oil Bearing Plants, 2024 Dec 5: 1-8.

61. Matamela T. *Determination of the antibacterial, antioxidant activity, isolation and characterisation of active compounds from the leaves of Rhys Leptodictia plant* (Doctoral dissertation).

62. HL R, MR R, HC A, GN A, KN K. Antimicrobial, insecticidal, and antiradical activity of Solanum virginianum l.(solanaceae). Asian J Pharm Clin Res., 2017; 10(11): 163-7.

63. Singh S, Verma K. A STUDY ON ANTIMICROBIAL PROPERTY OF CYNADON DACTYLON (L.) PERS, -A REVIEW. Journal of Advanced Scientific Research, 2019 Aug 10; 10(03): 16-21.

64. Shrestha KK, Paudel YN, Manandhar KD, Ghimire GP, Choi S, Shrestha S. 13. Bio-prospecting of plant resources for validation of indigenous knowledge and the search for novel herbal drugs in Nepal. Knowing our Lands and Resources, 2017 Dec 31: 156.

65. Phytotoxic potential of Chrysopogon aciculatus (Retz.) Trin. (Poaceae)

66. Veni T, Pushpanathan T, Mohanraj J. Larvicidal and ovicidal activity of Terminalia chebula Retz.(Family: Combretaceae) medicinal plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Journal of Parasitic Diseases, 2017 Sep; 41(3): 693-702.

67. Duan Y, Han M, Grimm M, Schierstaedt J, Imani J, Cardinale M, Le Jean M, Nesme J, Sørensen SJ, Schikora A. Hordeum vulgare differentiates its response to beneficial bacteria. BMC Plant Biology, 2023 Oct 4; 23(1): 460.

68. Dwivedi SD, Wagay SA. Antimicrobial activity of leaf extracts of Jurinea dolomiaeae plant against clinical and phytopathogenic bacteria. Chemical and Process Engineering Research, 2014; 24: 9-13.
69. Singh P, Singh R, Sati N, Sati OP, Kumar N. Antioxidant and antibacterial activity of Jurinea dolomiaeae Boiss extracts. International Journal of Life-Sciences and Scientific Research, 2015 Oct; 1(2): 74-8.