

DEVELOPMENT AND VALIDATION OF AN RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF METHYLPARABEN AND PROPYLPARABEN IN HERBAL CREAM FORMULATION

Unmesh Keshwar*, Pranali Ingole, Anjali Charde, Sharad Dhurde and B. K. Shrikhande

Siddhayu Ayurvedic Research Foundation Pvt. Ltd, Nagpur, 441204, Maharashtra, India.

ABSTRACT

Article Received on 05 Dec. 2025,
Article Revised on 25 Dec. 2025,
Article Published on 01 Jan. 2026,

<https://doi.org/10.5281/zenodo.18152621>

*Corresponding Author

Unmesh Keshwar

Siddhayu Ayurvedic Research Foundation Pvt. Ltd, Nagpur, 441204, Maharashtra, India.

How to cite this Article: Unmesh Keshwar*, Pranali Ingole, Anjali Charde, Sharad Dhurde and B. K. Shrikhande (2026). Development And Validation Of An Rp-Hplc Method For Simultaneous Estimation Of Methylparaben And Propylparaben In Herbal Cream Formulation. World Journal of Pharmaceutical Research, 15(1), 1399-1412. This work is licensed under Creative Commons Attribution 4.0 International license.

Preservatives play a crucial role in maintaining the microbiological stability and safety of cosmetic and herbal formulations. Methylparaben (MP) and propylparaben (PP) are widely used preservatives; however, their accurate and simultaneous determination in complex herbal matrices remains analytically challenging. The present study describes the development and validation of a simple, rapid, and reliable reverse-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous estimation of methylparaben and propylparaben in an herbal cream formulation. Chromatographic separation was achieved on a C18 column (250 × 4.6 mm, 5 µm) using a mobile phase consisting of potassium dihydrogen phosphate buffer, methanol, and triethylamine in the ratio of 347:650:3 (v/v/v), at a flow rate of 1.0 ml/min with UV detection at 272 nm. The retention times for methylparaben and propylparaben were found to be approximately 3.95 and 6.28 minutes, respectively,

with good resolution and peak symmetry. The developed method was validated in accordance with ICH Q2(R1) guidelines for system suitability, specificity, linearity, accuracy, precision, range, and robustness. The method showed excellent linearity with correlation coefficients greater than 0.999 for both analytes. Accuracy studies demonstrated recoveries in the range of 98–102%, while precision studies yielded %RSD values below 2%. The method was found to be robust against small deliberate variations in chromatographic conditions. The validated

RP-HPLC method is suitable for routine quality control analysis of methylparaben and propylparaben in herbal cream formulations.

KEYWORDS: Methylparaben, Propylparaben, herbal cream formulation, RP-HPLC.

INTRODUCTION

Preservatives are indispensable components of cosmetic and personal-care formulations, safeguarding products from microbial contamination and ensuring stability throughout their intended shelf life. Among these, parabens particularly methylparaben (MP) and propylparaben (PP) remain the most widely used due to their broad-spectrum antimicrobial activity, chemical stability, and cost-effectiveness. Their inclusion is especially common in water-based formulations such as creams, lotions, shampoos, and other emulsions, where the risk of microbial growth is inherently high. Regulatory authorities, including the U.S. Food and Drug Administration (FDA), recognize methylparaben and propylparaben as safe within established permissible limits, restricting their concentrations to 0.4% for individual parabens and 0.8% for combinations to balance preservative efficacy and consumer safety.^[1-2]

Methylparaben is the methyl ester of p-hydroxybenzoic acid and occurs naturally in some fruits. It functions as an antimicrobial and antifungal agent and is also used as a food and pharmaceutical preservative. Propylparaben, the propyl ester of p-hydroxybenzoic acid, demonstrates similar preservative properties and is frequently utilized in both cosmetics and foods.^[3-4] Their extensive use, however, has prompted increasing scrutiny regarding potential health implications, particularly at higher concentrations or with prolonged exposure. The World Health Organization (WHO) has also emphasized the importance of monitoring the stability of preservatives throughout the shelf-life of herbal formulations.^[5-9]

Consequently, accurate determination of MP and PP in cosmetic formulations especially in herbal creams, where complex plant matrices may interfere with analytical performance has become an important quality and safety requirement. Although several analytical procedures have been reported for the estimation of parabens in different cosmetic matrices, simultaneous determination of MP and PP in multicomponent herbal formulations often faces challenges related to chromatographic resolution, peak interference, and matrix complexity. High-Performance Liquid Chromatography (HPLC) remains the preferred analytical platform due to its sensitivity, precision, and suitability for routine quality control; however, method adaptability for herbal creams is limited in existing literature.^[10-16]

In response to these analytical gaps, the present work reports the development and validation of a robust Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC) method for the simultaneous quantification of methylparaben and propylparaben in an herbal cream formulation. The method has been validated following the International Council for Harmonization (ICH) Q2(R1) guidelines to ensure its reliability for routine quality control applications.^[17]

MATERIALS AND METHODS

Instrumentation

Instrumentation details are mentioned in below Table 1.

Table 1: Instrumentation details.

Sr. No.	Instruments	Specification
1	HPLC instrument	Waters Arc HPLC
2	Detector	Photo diode Array Detector (2998 PDA)
3	wavelength range	210 nm to 800 nm
4	Software	Empower
5	Balance	Mettler Toledo
6	pH meter	Toshnival
7	Sonicator	Tempo

Reagents and Materials

All chemicals used throughout this work were of analytical grade or HPLC grade purchased from Merck Chemicals, India. Water used for the analytical work is of Type 1 purified water. Reference standard Methylparaben and Propylparaben were purchased from Sigma Aldrich, India.

Preparation of Standard-stock Solution for Methylparaben

The standard solution prepared by weighing 5.0 mg Methylparaben (MP) reference standard and then transferred to 10 ml volumetric flask and volume was adjusted with diluent (Methanol) to obtain concentration 500 µg/ml (500 ppm).

Preparation of Standard-stock Solution for Propylparaben

The standard solution prepared by weighing 7.5 mg of Propylparaben (PP) reference standard and then transferred to 10 ml volumetric flask and volume was adjusted with diluent (Methanol) to obtain concentration 750 µg/ml (750 ppm).

Preparation of Working-standard Solution

From the standard stock solution 2 ml solution Methylparaben and 1 ml Propylparaben was pipette out and diluted with diluent (Methanol) up to 50 ml in volumetric flask to obtain concentration of 15 μ g/ml (15 ppm) for PP and 20 μ g/ml (20 ppm) for MP. This solution was used as working standard solution.

Preparation of test solution (Herbal Cream Formulation)

Accurately 1000 mg of cream sample was weighed in 100 ml of volumetric flask. About 80 ml of diluent (Methanol) was added and solution was sonicated on ultrasonic water bath for 15 min and warm on water bath for 10 min. The solution was allowed to cool at room temperature. Further, volume was made up to the mark with diluent (Methanol). The solution was filtered through 0.45 μ syringe filter and used as test solution.

Preparation of Buffer Solution

Buffer Solution was prepared by dissolving 6.8 g of Potassium dihydrogen phosphate in water (1000 ml).

Mobile Phase Preparation

Mobile phase was prepared by using Buffer solution, Methanol and Triethylamine in the ratio 347:650:3 v/v/v.

Method Development

Various mobile phases were tried to obtain the simultaneous elution of both the components PP and MP with good resolution and sharp peak. After various trials, the mobile phase containing Buffer solution, Methanol and Triethylamine in the ratio 347:650:3 v/v/v meets the criteria and finalised for the analysis. Quantification was carried out using a photodiode array detector at 272 nm.

Chromatographic Conditions

The details of optimized parameters of chromatographic conditions for estimation of PP and MP are mentioned in Table 2.

Table 2: Optimized chromatographic conditions.

Sr. No.	Parameter	Optimized conditions
1	Mobile Phase	Buffer Solution, Methanol and Triethylamine
2	Ratio	(347:650:3 v/v/v)
3	Column	C18 (5 μ m 4.6 x 250 mm)
4	Flow rate	1.0 ml/min
5	Wavelength	272 nm
6	Injection Volume	20 μ l
7	Column Temperature	25°C
8	Sample Temperature	25°C

Assay of Methylparaben and Propylparaben in Herbal Cream Formulation

Herbal Cream Formulation was analysed for the assay of MP and PP as per the developed and optimised method. Sample and standard solution were injected under the same conditions. Sample solution was analysed in triplicate.

Analytical Method Validation

The developed RP-HPLC method was validated for the parameters like system suitability specificity, linearity, accuracy, range, precision, and robustness as per the International Conference on Harmonization (ICH) guidelines Q2 (R1). The details of the analytical method validation are as follows.

System suitability

System suitability was performed on standard MP and PP having concentration 5 ppm and 10 ppm respectively. Retention time, resolution, peak shape, theoretical plates, tailing factor and % RSD were ascertained for the suitability of the instrument for getting accurate and precise results.

Specificity

The Specificity was proved by chromatographic comparison of blank, Placebo solution, standard solutions and the test solution. No interference in the peak observed from blank and placebo solution at the Retention time of Reference standard solutions confirms the specificity.

Linearity

Linearity for MP and PP standard solution was performed by evaluating minimum five concentrations. The slope, intercept and correlation coefficient should be reported by plotting the linearity graph of peak area against concentration of standards.

Accuracy

The accuracy was carried out by the standard addition technique by spiking the analyte into the matrix of the sample (placebo). Accuracy was assessed by minimum 9 determinations over a minimum of 3 concentration levels (3 Concentration / 3 replicate) covering the specified range by adding known amount of actives in placebo solution. These analysed samples and obtained results were compared with expected results.

Range

The range was derived from the linearity studies and accuracy. Range of an analytical method is the interval between the upper and lower concentration of analyte in the sample (including these concentrations) for which it has been demonstrated that the analytical procedure has a suitable level of precision, accuracy, and linearity.

Precision

Precision was evaluated in terms of system precision, method precision and intermediate precision. The system precision was determined by six measurements of mix standard solution of MP and PP containing each analyte at 100% of target concentration on the same day. The method precision includes repeatability and intermediate precision. They were determined by six measurements of sample solution containing each analyte at approximately 100 % of target concentration on the same day and on two different days, respectively. Overall RSD of 12 samples was calculated by taking precision and intermediate precision into consideration.

Robustness

The influence of slightly changed parameters of the chromatographic conditions was tested according to ICH guidelines to demonstrate sufficient robustness of the method. For assessment of the robustness of developed analytical method parameters like flow rate, detector wavelength and mobile phase composition were deliberately changed.

RESULTS AND DISCUSSION

The RP-HPLC method was successfully developed for the simultaneous estimation of MP and PP having retention time 3.95 and 6.28 minutes respectively with good resolution and sharp peak.

Assay Results

Assay of MP and PP as per the developed and optimised method was performed in triplicate and results were incorporated in the Table 3.

Table 3: Results of assay.

Sample ID	MP		PP	
	Assay (%)	Mean	Assay (%)	Mean
Test Sample-1	0.2006	0.2007	0.1523	0.1536
Test Sample-2	0.2017		0.1583	
Test Sample-3	0.1997		0.1502	

Validation Results

This developed method was also validated as per the International Conference on Harmonization (ICH) guidelines of which results are mentioned and discussed below.

System suitability Assessment

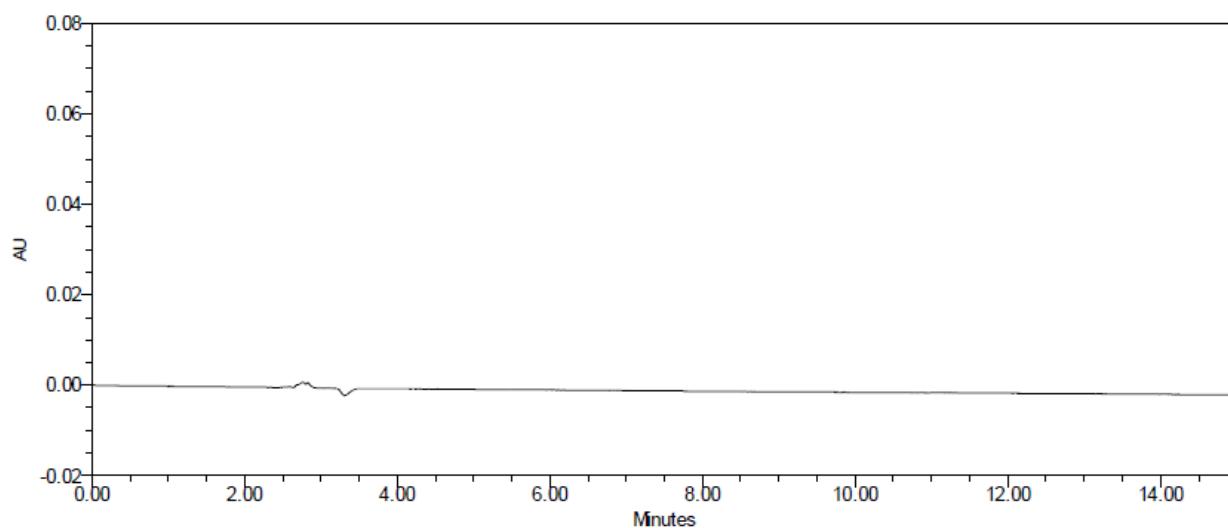
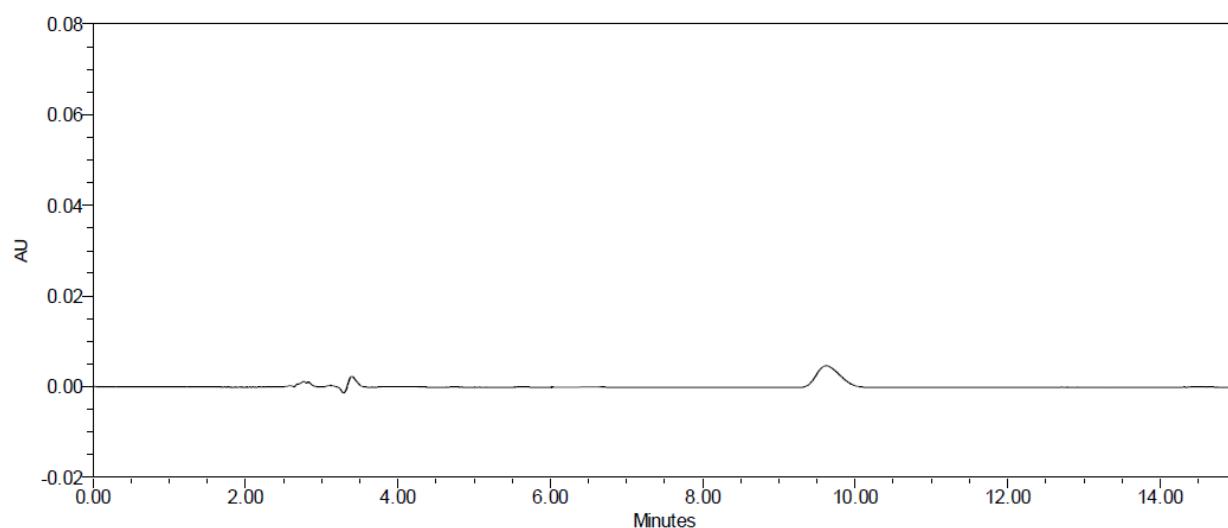

Standard Solution of MP and PP as per developed method were prepared and injected into HPLC system. Retention time, resolution, peak shape, theoretical plates, tailing factor and % RSD were evaluated and results were tabulated in the following Table 4.

Table 4: Results of system suitability.


Sr. No.	Name of Analyte	Retention Time (RT)	Mean Peak Area	Theoretical Plates	Tailing Factor	% RSD	Resolution
1	PP	6.28	474992	2904	1.29	0.3	6.8
2	MP	3.95	733674	3199	1.28	0.2	

Specificity Assessment

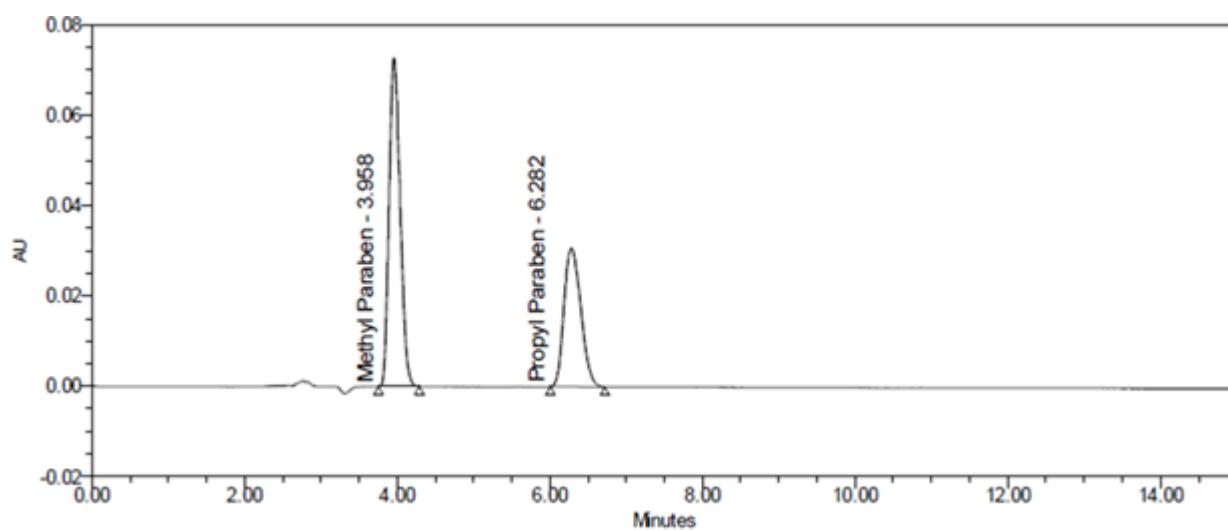
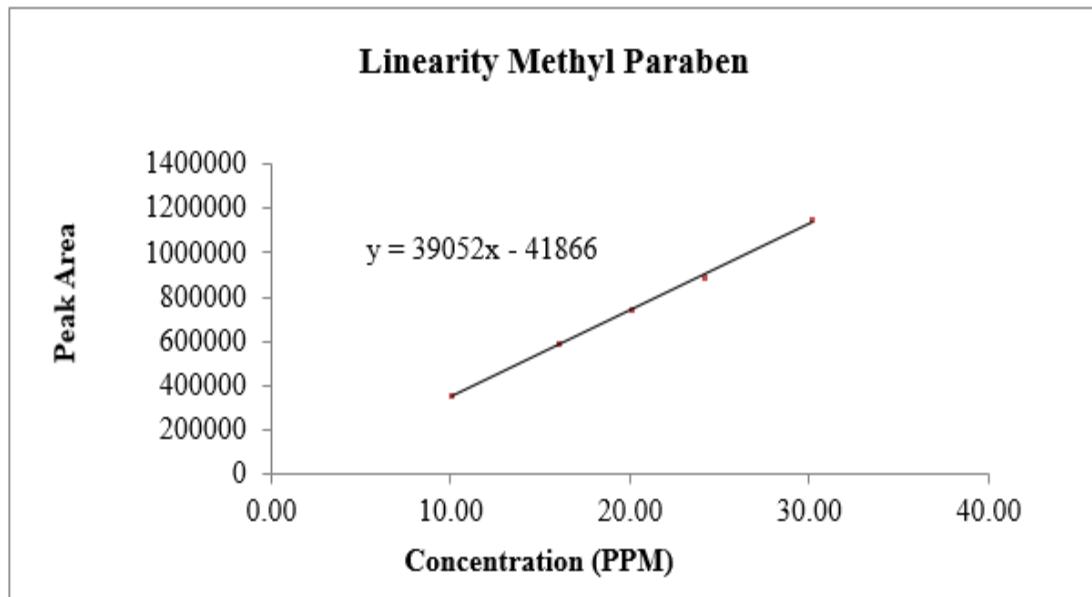
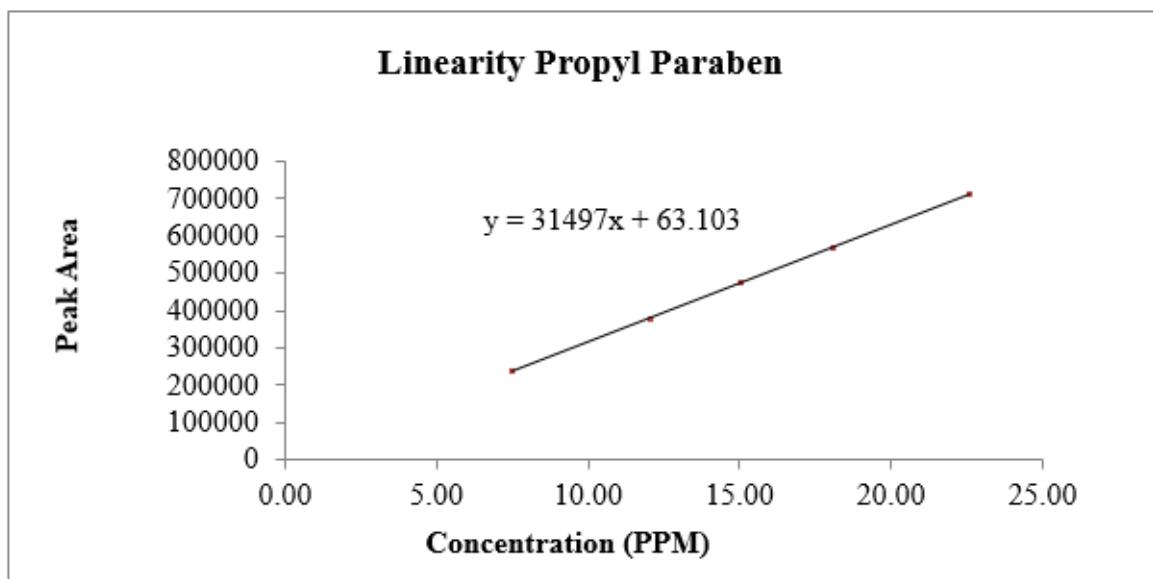

Blank Solution, Placebo Solution, Standard Solution and Test Solution were injected and chromatograms were recorded. The Retention time was observed at 6.28 and 3.95 minutes for MP and PP respectively in Standard Solution. No peak interference was observed in blank and placebo at the retention time MP and PP. No peak purity flag was observed in Standard and Sample solution. The chromatograms are given below in “Fig. 1-4”.


Figure 1: Chromatogram of Blank Solution.

Figure 2: Chromatogram of Placebo Solution.


Figure 3: Chromatogram of Standard Solution.


Figure 4: Chromatogram of Sample solution.

Linearity Assessment

The method gave linear response with concentrations of 10.05, 16.09, 20.1, 24.13 and 30.16 ppm for MP and 7.52, 12.04, 15.05, 18.06 and 22.57 ppm for PP. Linearity curve was obtained by plotting a graph of peak area vs. concentration. All data were calculated and given in Table 5 and "Fig. 5, 6".

Figure 5: Linearity Graph of Methylparaben.

Figure 6: Linearity Graph of Propylparaben.**Table 5: Results of linearity.**

Sr. No.	Parameter	Results	
		Methylparaben	Propylparaben
1	Linearity Range ($\mu\text{g/ml}$)	10.05-30.16	7.52-22.57
2	Correlation coefficient (R)	0.999	1.000
3	y-intercept	-41866.2	31497.3
4	Slope	39052.3	63.1

Precision Assessment

System precision was determined by performing the 6 replicates of standard MP and PP. The RSD of peak area was less than 2.0 % and performance of chromatographic system, represented by Retention time, number of theoretical plates and tailing factors were found well within the acceptable limits. The results are shown in Table 6.

In terms of method precision, the RSD of assay results for MP and PP in evaluation of repeatability, intermediate precision and overall RSD of 12 samples was less than 2.0 %, as shown in Table 7, 8. Therefore, the results showed that the method is precise.

Table 6: Results of system precision parameter.

Sr. No.	Name of Standard	Retention time	Theoretical Plates	Tailing Factor	% RSD
1	MP	3.95	3199	1.28	0.2
2	PP	6.28	2904	1.29	0.3

Table 7: Results of method precision parameter.

Sr. No.	Name of Analyte	Mean Assay (%)	% RSD
1	MP	0.2088	1.4
2	PP	0.1566	0.7

Table 8: Results of intermediate precision parameter.

Sr. No.	Name of Analyte	% RSD for Set-1	% RSD for Set-2	Overall % RSD
1	MP	1.4	1.4	1.3
2	PP	0.7	1.1	0.9

Accuracy Assessment

The accuracy study was carried out by spiking known amount of standards into placebo solution at 50 %, 100 % and 150 % of working concentration, respectively. The overall recovery percent were calculated. The results of recovery studies gave the recovery rate from 98.3 % to 101.4 % for PP and 98.8 % to 100.9 % for MP at all three levels for all the two analytes. The details are mentioned in Table 9 and 10.

Table 9: Results of accuracy study for methylparaben.

Recovery level	Spiked Conc. (µg/ml)	Mean Area	Recovered Conc. (µg/ml)	% Recovery
(50 %) Level_1_1	10.02	237016	10.07	100.5
(50 %) Level_1_2	10.02	235015	9.98	99.6
(50 %) Level_1_3	10.02	237456	10.09	100.7
(100 %) Level_2_1	20.04	466035	19.80	98.8
(100 %) Level_2_2	20.04	471424	20.03	100.0
(100 %) Level_2_3	20.04	470011	19.97	99.7
(150 %) Level_3_1	30.07	710953	30.20	100.4
(150 %) Level_3_2	30.07	714421	30.35	100.9
(150 %) Level_3_3	30.07	711531	30.23	100.5

Table 10: Results of accuracy study for propylparaben.

Recovery level	Spiked Conc. (µg/ml)	Mean Area	Recovered Conc. (µg/ml)	% Recovery
(50 %) Level_1_1	7.54	237016	7.58	100.5
(50 %) Level_1_2	7.54	239015	7.64	101.3
(50 %) Level_1_3	7.54	231956	7.41	98.3
(100 %) Level_2_1	15.08	467935	14.96	99.2
(100 %) Level_2_2	15.08	471424	15.07	99.9
(100 %) Level_2_3	15.08	476011	15.21	100.9
(150 %) Level_3_1	22.62	710953	22.72	100.4
(150 %) Level_3_2	22.62	717421	22.93	101.4
(150 %) Level_3_3	22.62	698531	22.33	98.7

Robustness Assessment

The robustness of RP-HPLC method was evaluated by analyzing the influence of minor modifications in HPLC conditions by varying the parameters like flow Rate (± 0.2 ml/min), pH of mobile phase buffer (± 0.2) and mobile phase composition ($\pm 2\%$). The method is found to be robust as there is no such variation (RSD less than 2.0 %) was found in the results after alteration of the evaluated parameters. The details are given in Table 11.

Table 11: Results of Robustness.

Standard Solutions	Parameter condition	RT	Mean Area	SD	% RSD	Average % RSD
Flow Rate (± 0.2 ml/min)						
MP	0.8 ml/min	5.39	0.8 ml/min	3951.4687	0.8 ml/min	0.7
	1.0 ml/min	6.28	1.0 ml/min	1325.5150	1.0 ml/min	
	1.2 ml/min	6.88	1.2 ml/min	4270.2749	1.2 ml/min	
Change in Detector wavelength (± 2 nm)						
MP	270 nm	6.10	270 nm	297.3654	270 nm	0.3
	272 nm	6.28	272 nm	1325.5150	272 nm	
	274 nm	6.41	274 nm	2116.1731	274 nm	
Mobile phase composition ($\pm 2\%$)						
MP	327:670:3	5.12	327:670:3	395.7225	327:670:3	0.2
	347:650:3	6.28	347:650:3	1325.5150	347:650:3	
	367:630:3	7.13	367:630:3	1461.2470	367:630:3	
Flow Rate (± 0.2 ml/min)						
PP	0.8 ml/min	3.23	0.9 ml/min	3749.1416	0.9 ml/min	0.3
	1.0 ml/min	3.95	1.0 ml/min	1567.7333	1.0 ml/min	
	1.2 ml/min	4.66	1.2 ml/min	1813.0269	1.2 ml/min	
Change in Detector wavelength (± 2 nm)						
PP	270 nm	3.69	270 nm	332.9019	270 nm	0.1
	272 nm	3.95	272 nm	1567.7333	272 nm	
	274 nm	4.01	274 nm	1603.5823	274 nm	
Mobile phase composition ($\pm 2\%$)						
PP	327:670:3	3.09	327:670:3	1683.5383	327:670:3	0.2
	347:650:3	3.95	347:650:3	1567.7333	347:650:3	
	367:630:3	4.91	367:630:3	387.7035	367:630:3	

CONCLUSION

A simple, rapid, and reliable RP-HPLC method was successfully developed and validated for the simultaneous separation and quantification of methylparaben and Propylparaben in a herbal cream formulation. The developed method demonstrated good resolution between both preservatives, confirming its suitability for simultaneous analysis in a complex herbal matrix. Method validation was carried out in accordance with ICH guidelines, and the results established that the method is specific, precise, accurate, and robust across the tested

parameters. Owing to its simplicity, reproducibility, and consistent performance, the proposed RP-HPLC method is well suited for routine quality control analysis of methylparaben and Propylparaben in herbal cream formulations.

ACKNOWLEDGEMENTS

The authors extremely grateful to the Management of Siddhayu Ayurvedic Research Foundation Pvt. Ltd, Nagpur, India for providing all the research facilities and guidance. The authors also sincerely thanks to all R&D staff of Siddhayu Ayurvedic Research Foundation Pvt. Ltd, Nagpur, India for giving support during the study.

REFERENCES

1. U.S. Food & Drug Administration. Parabens in Cosmetics. Available at: <https://www.fda.gov/cosmetics/cosmetic-ingredients/parabens-cosmetics>
2. Elchemy. Propylparaben and Methylparaben in Preserving Products. Available at: <https://elchemy.com/blogs/personal-care/propylparaben-and-methylparaben-in-preserving-products>.
3. PubChem. Methylparaben. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/Methylparaben>
4. PubChem. Propylparaben. Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/Propylparaben>.
5. Pierce Adrianne A. Alaba, Edjay D. Cañete, Bin Salih S. Pantalan, Joanna Marie C. Taguba, Lovely Dianne I. Yu, Erwin M. Faller. Toxic Effects of Paraben and its Relevance in Cosmetics: A Review. International Journal of Research Publication and Reviews, May 2022; 3(5): 3425-3466.
6. Mohamed Rafi S, Saleh Sayeed Al Jabri Hazrami Z, Nayeem M, Richard RM, Rizwan S, Korrapati NH. Understanding parabens - A literature review. Cosmo Derma, 2024; 4: 33.
7. Alisha Janiga-MacNelly, Mackenna McGraw, Maria Teresa Fernandez-Luna, Ramon Lavado. Assessment of the toxic effects of parabens, commonly used preservatives in cosmetics, and their halogenated by-products on human skin and endothelial cells. NAM Journal, 2025; 100011.
8. Safe Cosmetics. Parabens. Available at: <https://www.safecosmetics.org/chemicals/parabens/>.
9. World Health Organization. WHO guidelines on good manufacturing practices (GMP) for herbal medicines. Geneva, 2007; 1-72.

10. The United States Pharmacopoeia. USP 41 NF36, Volume III, Rockville, MD, 2018; 5450-5451.
11. The United States Pharmacopoeia. USP 41 NF36, Volume III, Rockville, MD, 2018; 5547-5548.
12. The Pharmacopoeia of India. Government of India, Ministry of Health Pharmacopoeia of India, Volume II, The Indian commission Gaziabad, 2018; 2568-2569.
13. The Pharmacopoeia of India. Government of India, Ministry of Health Pharmacopoeia of India, Volume III, The Indian commission Gaziabad, 2018; 3029-3030.
14. Sandra Zinoski, Zorica Arsova Sarafinovska, Rumenka Petkovska, Lidija Petrushevska Tozi, Liljana Anastasova. Determination of methylparaben and propylparaben in cosmetic products using HPLC. Macedonian pharmaceutical bulletin, 2025; 71(1): 71-78.
15. Basima Arous, Mohammad Amer Al-Mardini. Development of A Validated HPLC Method for the Analysis of Two Preservative Agents “Methylparaben & Propylparaben” in Topical Creams Containing Steroids in the Patient’s Terms of Use. Int. J. Pharm. Sci. Rev. Res., Sep – Oct 2013; 22(2): n° 36, 200-205.
16. R. Hajkova, P. Solich, J. Dvorak, J. Sicha. Simultaneous determination of methylparaben, propylparaben, hydrocortisone acetate and its degradation products in a topical cream by RP-HPLC. Journal of Pharmaceutical and Biomedical Analysis, 2003; 32: 921-927.
17. International Council for Harmonisation (ICH). Validation of Analytical Procedures: Text and Methodology Q2(R1).