

PHARMACEUTICO-ANALYTICAL STUDY OF *BALAGODHUMADI* *KASHAYA*

Dr. Anjitha K.R.¹, Dr. Leena K.C. MD (Ayu.)^{2*}

¹Third Year of Post Graduate Scholar Department of Rasashastra and Bhaishajya Kalpana
Government Ayurveda College, Kannur, Pariyaram, Kerala, 670502.

²Professor & HOD Dept. of Rasashastra and Bhaishajya Kalpana Govt. Ayurveda College,
Kannur, Kerala, 670502.

Article Received on 09 Jan. 2026,
Article Revised on 29 Jan. 2026,
Article Published on 01 Feb. 2026,

<https://doi.org/10.5281/zenodo.18479093>

*Corresponding Author

Dr. Leena K.C. MD (Ayu.)

Professor & HOD Dept. of
Rasashastra and Bhaishajya Kalpana
Govt. Ayurveda College, Kannur,
Kerala, 670502.

How to cite this Article: Dr. Anjitha K.R.¹, Dr. Leena K.C. MD (Ayu.)^{2*} (2026). Pharmaceutico-Analytical Study of Balagodhumadi Kashaya. World Journal of Pharmaceutical Research, 15(3), 1288–1298.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Aim: To authenticate the raw materials, prepare *Balagodhumadi Kashaya* as per classical guidelines and establish its analytical profile through pharmacognostical, pharmaceutical, physicochemical, phytochemical, microbiological, heavy metal and HPTLC evaluations.

Methods: All crude drugs were pharmacognostically identified according to API standards. The *Kashaya* was prepared following *Sharangadhara Samhita Kwatha Vidhi* using 90 g of raw drugs and 1,440 mL of water, reduced to one-eighth. Analytical parameters assessed included organoleptic features, pH, specific gravity, Brix value, total solids, microbial load, phytochemical constituents, heavy metals (ICP–OES) and HPTLC finger printing at 254 nm and 366 nm. **Results:** The prepared *Kashaya* exhibited pale brown colour, astringent–bitter taste and slightly viscous consistency. Physicochemical results were: pH **4.55**, specific gravity **1.00**, Brix value **1.88**,

and total solids **1.96 % w/v**. Microbial analysis showed low bacterial (160 cfu/g) and fungal (40 cfu/g) counts, with complete absence of *E. coli*, *S. typhi*, *P. aeruginosa* and *S. aureus*. Phytochemical screening confirmed the presence of glycosides, flavonoids, phenols, tannins, saponins, alkaloids, steroids and terpenoids. Heavy metals—arsenic, cadmium, lead and mercury were within permissible limits. HPTLC analysis displayed **10 peaks at 254 nm** and **3 peaks at 366 nm**, establishing the fingerprint profile. **Conclusion:** *Balagodhumadi*

Kashaya prepared according to classical standards is authenticated, safe and analytically validated. Its rich phytochemical profile, acceptable physicochemical characteristics, low microbial load and compliant heavy metal levels confirm its quality and suitability for therapeutic use in cardiac disorders. The established HPTLC fingerprint further strengthens its standardization and supports future quality control studies.

KEYWORDS: *Balagodhumadi kashaya*, HPTLC, Brix value, Heavy metals, Phytochemical profile.

INTRODUCTION

Kashaya Kalpana is one of the most fundamental and widely practiced dosage forms in Ayurveda. The process of preparing *Kashaya* helps extract water-soluble active principles and thermostable volatile constituents from crude drugs, ensuring rapid therapeutic action. Owing to its quick absorption and ease of digestion, *Kashaya Kalpana* plays a vital role in the management of acute and chronic ailments. In the context of *Hridroga* (cardiac disorders), *Kashaya* preparations hold special significance due to their ability to balance *Vata* and *Kapha doshas*, improve *Rasavaha* and *Raktavaha srotas* (circulatory channels) and enhance cardiac function by supporting *Hridaya marma*.

The *Balagodhumadi kashaya* described in *Arogyaklapadruma Hridroga prakarana*. *AarogyaKalpadruma*, also known as *Aarogya Raksha Kalpadruma*, is a classical Sanskrit text focused on Ayurvedic Pediatric care as practiced in Kerala.^[1]

The text was authored by Kaikkulangara Rama Warrier, who originally composed the material in Malayalam, which was later translated into English and published in the Devanagari script.^[2]

The *Kashaya* having 15 ingredients. Most of the ingredients in *Balagodhumadi Kashaya* have already been shown to possess cardioprotective properties. Notably, *Kola* (*Ziziphus jujuba*) is one of the key ingredients and is also included in *Charaka's Hridya Mahakashaya*^[3]

Moreover, the use of *Praksepaka dravyas* such as *Saindhava*, *Sarpi* or *Madhu* allows for customization based on the dominant *dosha* involved in the disease. By altering the adjuvant accordingly, this formulation can effectively address dosha-specific cardiac conditions, whether they are *Vataja*, *Pittaja* or *Kaphaja Hridaya Rogas*.

MATERIALS AND METHODS

1. Pharmacognostical Study

The raw drugs for *Balagodhumadi Kashaya* were collected from genuine, authenticated vendors and verified as per Ayurvedic Pharmacopoeia of India standards.^[4] Each ingredient underwent macroscopic evaluation by observing colour, odour, taste, size, texture and surface features to confirm external authenticity, followed by microscopic examination of thin transverse sections stained with safranin and mounted in glycerine. Diagnostic characters such as vessels, fibres, trichomes, stone cells, starch grains, resin ducts and cork cells were identified under a compound microscope, ensuring correct botanical identity and detecting any adulteration or substitution. This combined macroscopic and microscopic pharmacognostical analysis confirmed the purity and authenticity of the raw drugs used, ensuring the quality, efficacy and reproducibility of *Balagodhumadi Kashaya*.

Table 1: Ingredients of the *Balagodhumadi Kashaya*.

	Drugs	Parts used	Botanical name	Part
1.	<i>Brihati</i>	Root	<i>Solanum indicum</i>	1 Part
2.	<i>Kantakari</i>	Root	<i>Solanum xanthocarpum</i>	1 Part
3.	<i>Saliparni</i>	Root	<i>Psuedatelia viscosa</i>	1 Part
4.	<i>Prishniparni</i>	Root	<i>Desmodium gangeticum</i>	1 Part
5.	<i>Gokshura</i>	Root	<i>Tribulus terrestris</i>	1 Part
6.	<i>Bala</i>	Root	<i>Sida cordifolia</i>	1 Part
7.	<i>Godhuma</i>	Fruit	<i>Triticum aestivum</i>	1 Part
8.	<i>Vilwa</i>	Root	<i>Aegle marmelos</i>	1 Part
9.	<i>Angnimantha</i>	Root	<i>Premna integrifolia</i>	1 Part
10.	<i>Eranda</i>	Root	<i>Ricinus communis</i>	1 Part
11.	<i>Punarnava</i>	Root	<i>Boerhavia diffusa</i>	1 Part
12.	<i>Yava</i>	Fruit	<i>Hordeum vulgare</i>	1 Part
13.	<i>Kola</i>	Fruit	<i>Ziziphus jujube</i>	1 Part
14.	<i>Devadaru</i>	Root	<i>Cedrus deodara</i>	1 Part
15.	<i>Kulatha</i>	Fruit	<i>Dolichos biflorus</i>	1 Part

2. Pharmaceutical study

The pharmaceutical study was carried out strictly according to the *Kashaya Kalpana* principles described in *Sharangadhara Samhita, Madhyama Khanda*. All raw drugs were procured from authenticated vendors, cleaned thoroughly to remove dust and foreign matter and the dried plant materials were chopped into small pieces for efficient extraction. Cereals and legumes such as *Yava*, *Godhuma*, and *Kulatha* were dehusked, washed, shade-dried and stored separately in airtight, labelled containers to avoid moisture exposure and cross-contamination. For the preparation of *Balagodhumadi Kashaya*, a total of 90 g of coarsely

powdered raw drugs (6 g each of 15 ingredients) was taken in a clean stainless-steel vessel, to which 180 ml distilled water was added and marked the level, to this remaining 1260mL of distilled water was added, maintaining the classical proportion of 1:16 (drug:water). The mixture was boiled on mild fire with continuous stirring to prevent charring and reduced to one-eighth of the total volume (about 180 mL) as per the level marked before heating. Once the required reduction was reached, the decoction was filtered through clean muslin cloth to obtain a clear filtrate and stored in a sterile, airtight container for further analytical evaluation. All procedures were performed under hygienic conditions using standard laboratory equipment to ensure accuracy, reproducibility and adherence to classical Ayurvedic pharmaceutical standards.

3. Analytical Study

A) Oranoleptic characters

- Colour
- Taste
- Odour
- consistency.

B) Physico chemical parameters^{[5],[6]}

1. PH
2. Specific gravity
3. Brix value
4. total solids (% w/v)

C) Microbiology analysis^[7]

D) Test for specific pathogens^[8]

E) HPTLC^[9]

F) ICP –OES -tests for heavy metals^{[10],[11]}

G) Test for phytoconstituents: Tests for Glycosides, Terpenoids, Flavonoids, Tannins, Steroids, saponins, Alkaloids & Phenols.^[12]

Table 2: the Tests for Phytoconstituents.^[13]

Phytoconstituent	Test & Procedure	Inference
Glycosides ^[14]	Alcoholic extract + water + few drops NaOH. Observe colour.	Yellow colour → Glycosides present.
Terpenoids	Chloroform extract + conc. H ₂ SO ₄ added along tube wall.	Red coloration in chloroform layer.
Flavonoids	Extract + 2% NaOH → yellow, then add dil. HCl.	Yellow turns colourless after HCl.
Tannins / Phenols	Extract + FeCl ₃ solution.	Blue/green colour formation.
Steroids	Chloroform extract + conc. H ₂ SO ₄ (Salkowski).	Red ring at interface; greenish lower layer.
Saponins	Extract shaken vigorously in test tube.	Persistent stable foam.
Alkaloids	Extract + Wagner's reagent.	Reddish-brown precipitate.

RESULTS

The raw drugs of the Balagodhumadi Kashayam are evaluated both macroscopically and microscopically.

1. Pharmaceutical study

The preparation of Balagodhumadi Kashayam took approximately 1hr 05 minutes.

2. Analytical study

A) Organoleptic Characters

- Color: Pale brown
- Taste: Astringent to bitter
- Odour: characteristic smell
- Consistency: Thicker than water.

B) Physico Chemical Features

- pH :4.55
- Specific gravity: 1.00
- Brix value: 1.88
- Total solids (% w/v) :1.96

C) Microbiology analysis

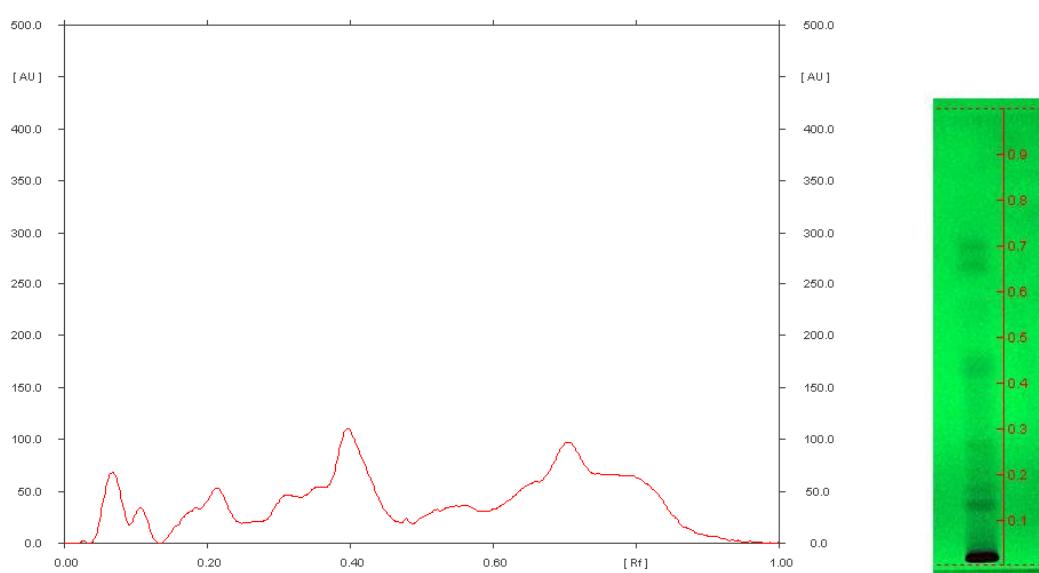
- Total bacterial count: 160 (cfu/g)
- Total yeast and mould count: 40 (cfu/g).

D) Test for specific pathogens

- *Escherichia coli*: *Absent*
- *Salmonella typhi*: *Absent*
- *Pseudomonas aeruginos* : *Absent*
- *Staphylococcus aureus*: *Absent*

E) Tests for phytoconstituents

Glycosides, Terpenoids, Flavonoids Tannins, Steroids, saponins, Alkaloids& Phenols were present.


F) ICP –OES – heavy metals

- A. Arsenic- nil
- B. Cadmium- 0.05
- C. Lead- 0.36
- D. Mercury- 0.13

G) HPTLC**Overview graph of *balagodhumadi Kashaya* sample at 254nm**

Total peak no – 10

Total area – 22045.3 (au).

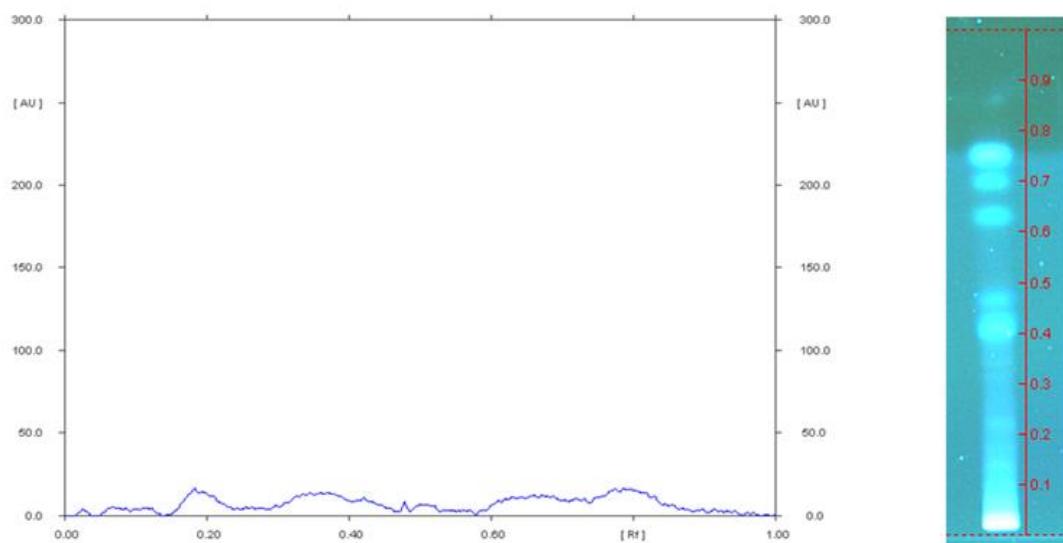


Figure 1: Overview graph of balagodhumadi kashaya sample at 254 nm.

Overview graph of balagodhumadi kashaya sample at 366nm

Total peak no – 03

Total area – 1567.9 (au).

Figure 2: Overview graph of balagodhumadi kashaya sample at 366 nm.

DISCUSSION

The preparation and evaluation of *Balagodhumadi Kashaya* were carried out with rigorous adherence to classical Ayurvedic principles and modern analytical standards to ensure authenticity, safety and therapeutic reliability. All raw drugs were procured from reliable suppliers and underwent systematic pharmacognostical authentication following the standards of the *Ayurvedic Pharmacopoeia of India*. This ensured the correct botanical identity, purity and absence of adulteration, which is essential for maintaining the therapeutic efficacy of herbal formulations.

The *Kashaya* preparation strictly followed the *Kwatha Vidhi* described in *Sharngadhara Samhita (Madhyama Khanda)*. The decoction was prepared over a mild flame to facilitate uniform extraction without degrading heat-sensitive constituents. The total preparation time was around 65 minutes, allowing optimal extraction of phytochemicals. Careful stirring prevented charring and ensured proper reduction to one-eighth of the initial volume. After filtration through muslin cloth, the decoction displayed clarity and uniformity. Samples for microbiological and analytical evaluations were collected in sterile containers and transported immediately to avoid deterioration or contamination. These controlled procedures significantly contributed to the reliability and reproducibility of the formulation.

Organoleptic evaluation revealed that *Balagodhumadi Kashaya* possessed characteristic features expected of a classical decoction. Its pale brown colour indicated adequate extraction of tannins and polyphenols. The astringent-bitter taste corresponded to the natural rasa of its ingredients. A slightly viscous consistency suggested the presence of soluble extractives, while the characteristic odour confirmed freshness and absence of spoilage.^[15] Such sensory attributes reflect proper preparation quality and serve as preliminary markers for standardization.^[16] The physicochemical findings further reinforced the quality of the formulation. The pH was mildly acidic (4.55), promoting stability and discouraging microbial growth. The specific gravity of 1.00 indicated correct concentration. A Brix value of 1.88 reflected appropriate levels of dissolved solids including tannins, sugars and phytochemicals. The total solids content of 1.96% w/v confirmed efficient extraction and adequate strength of the decoction. Together, these parameters demonstrate that the *Kashaya* was prepared under optimal conditions that support its therapeutic efficiency and consistency in future batches.^[17] Microbiological evaluation showed very low bacterial (160 cfu/g) and fungal (40 cfu/g) counts, both within permissible limits for Ayurvedic preparations. The absence of pathogens *Escherichia coli*, *Salmonella typhi*, *Pseudomonas aeruginosa* and *Staphylococcus aureus* confirmed that the *Kashaya* was prepared and handled under hygienic conditions, making it safe for internal use. Maintaining low microbial load is essential in herbal decoctions as contamination can compromise efficacy and safety.^[18]

Preliminary phytochemical screening indicated the presence of glycosides, terpenoids, flavonoids, tannins, alkaloids, saponins, steroids, and phenols. These bioactive compounds collectively contribute to the formulation's therapeutic role in *Hridroga* (cardiac disorders).^[19] Flavonoids and phenols impart antioxidant and cardioprotective effects, tannins provide astringent and anti-inflammatory actions, while saponins and glycosides support cardiac tone and circulation.^[20]

The presence of such diverse secondary metabolites highlights the pharmacological richness of the formulation and validates its traditional indications.

Assessment of heavy metals (ICP–OES) confirmed that arsenic was not detected, and cadmium (0.05 ppm), lead (0.36 ppm), and mercury (0.13 ppm) were within permissible limits. This ensures the formulation's safety, as heavy metal contamination poses serious health risks.

HPTLC fingerprinting generated chromatograms with 10 peaks at 254 nm and 3 peaks at 366 nm, reflecting the presence of multiple UV-absorbing and fluorescent phytoconstituents. These chromatographic profiles serve as reliable markers for future standardization, authenticity verification, and batch-to-batch consistency.^[21]

Overall, the comprehensive analytical evaluation establishes that *Balagodhumadi Kashaya* is a safe, standardized and pharmacologically potent formulation. It meets both classical Ayurvedic standards and contemporary quality control parameters, supporting its suitability for therapeutic application in cardiac disorders.

CONCLUSION

The present study confirms that *Balagodhumadi Kashaya*, when prepared in accordance with classical Ayurvedic principles and evaluated using modern analytical techniques, fulfills essential criteria of authenticity, safety, and quality. Organoleptic, physicochemical, microbiological, phytochemical, heavy metal, and HPTLC analyses collectively demonstrated optimal preparation, absence of contamination, and the presence of therapeutically relevant bioactive constituents. The established analytical profiles provide reliable reference parameters for standardization and batch-to-batch consistency. Overall, the findings scientifically validate the traditional use of *Balagodhumadi Kashaya* in *Hridroga* and support its safe and effective application in clinical practice.

ACKNOWLEDGEMENT

I extend my heartfelt and profound gratitude to *Dr. Sanila V.K. MD (Ayu), Associate Professor, Department of Rasashastra and Bhaishajya Kalpana, Government Ayurveda College, Kannur, Pariyaram,..* for being my constant source of strength throughout the study.

Funding –Nil

REFERENCES

1. Kaikkulangara Ramavaryar, Aryogyakalpadruma, compiled by Dr. B. Shyamala, MD, PHD, Samrat Ayurveda Series: 72.
2. Sujnana VS, Shreevaths M. A review on Ārogya Rakṣā Kalpadrumaḥ (text with English translation). *Anc., Sci., Life.* 2016 Jan-Mar; 35(3): 180–2. PMCID: PMC4850780.

3. Charaka. Charaka Samhita, Sutra Sthana, Chapter 4, Sloka 7. In: Shastri K, Chaturvedi G, editors. Charaka Samhita of Agnivesha with Charaka Chandrika Hindi Commentary. 1st ed., Varanasi: Chaukhambha Surbharati Prakashan; 2018: 69.
4. Yao R, Heinrich M, Zhang B, Wei X, Qi Y, Gao W. Single botanical drugs in the Ayurvedic Pharmacopoeia of India—a quantitative ethnobotanical analysis. *Frontiers in Pharmacology*. 2023 May; 14: 1136446.
5. United States Pharmacopeia. pH, general chapter. In: United States Pharmacopeia and National Formulary (USP-NF). 32nd ed. Rockville (MD): United States Pharmacopeial Convention; [quoted chapter] 313.
6. Honwad SV. A Hand Book of Standardization of Ayurvedic Formulations. Varanasi (India): Chaukhambha Orientalia; 2018: 208 ISBN: 978-8176372640.
7. United States Pharmacopeial Convention. Microbial Enumeration Tests, Chapter 61. In: United States Pharmacopeia and National Formulary (USP-NF). 32nd ed. Rockville (MD): United States Pharmacopeial Convention.
8. United States Pharmacopeial Convention. Tests for Specified Microorganisms: *Pseudomonas aeruginosa*, Chapter 62. In: United States Pharmacopeia and National Formulary (USP-NF). 32nd ed. Rockville (MD): United States Pharmacopeial Convention.
9. Singh S, Kumar P. HPTLC in herbal medicine standardization: A review. *J Sci., Innovat Res.*, 2013; 2(4): 1086–1094.
10. Radu T, Diamond D. Applications of inductively coupled plasma-optical emission spectroscopy (ICP-OES) for trace metal analysis in environmental samples. *Applied Spectroscopy Reviews*. 2009; 44(3): 229-267. <https://doi.org/10.1080/05704920902721095>
11. Li R, Liu Z, Wu Y. Determination of trace heavy metals (As, Cd, Pb, Hg) in food and environmental samples by ICP-OES: A review. *Journal of Analytical Atomic Spectrometry*. 2018; 33(12): 1973-1987. <https://doi.org/10.1039/C8JA00243B>
12. Harborne JB. *Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis*. 3rd ed. London: Chapman and Hall; 1998.
13. Onwukaeme DN, Okeke CU, Ezike AC. Phytochemical constituents and antimicrobial activity of some medicinal plants. *Fitoterapia*. 1999; 70(5): 495–8. doi:10.1016/S0367-326(99)00052-2.
14. Glycoside test: A small portion of alcoholic extract dissolved in water is treated with

aqueous NaOH—yellow coloration indicates glycosides. *Int J Curr., Pharm., Res.*, Godlewska K, Pacyga P, Najda A, Michalak.

15. Kokate CK, Purohit AP, Gokhale SB. *Pharmacognosy*. 55th ed. Pune: Nirali Prakashan; 2019: 25–32.
16. World Health Organization. *Quality control methods for herbal materials*. Geneva: WHO Press; 2011: 14–20.
17. Government of India, Ministry of AYUSH. *The Ayurvedic Pharmacopoeia of India. Part I, Vol I*. New Delhi: Pharmacopoeia Commission for Indian Medicine & Homoeopathy; 2016: 140–145.
18. World Health Organization. *Quality control methods for herbal materials*. Geneva: WHO Press; 2011: 61–68.
19. Pandey A, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. *Oxid., Med., Cell., Longev.*, 2009; 2(5): 270–8.
20. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. *ScientificWorldJournal*. 2013; 2013: 162750.
21. Reich E, Schibli A. High-performance thin-layer chromatography for the analysis of medicinal plants. Stuttgart: Thieme., Medical Publishers; 2007; 1–12: 85–98.