

PERSONALIZED MEDICINE AND THE EXPANDING ROLE OF CLINICAL PHARMACISTS: FROM SCIENTIFIC FOUNDATIONS TO REAL WORLD IMPLEMENTATION

¹A. Sai Shanthi, ^{1*}D. Deekshith, ¹Dr. Padige Sri Varsha

¹Pharm-D 4th Year, Malla Reddy College of Pharmacy, Dhulapally, Secunderabad, Telangana, 500100 (Affiliated to Osmania University).

^{*1}Pharm-D 4th Year, Malla Reddy College of Pharmacy, Dhulapally, Secunderabad, Telangana, 500100 (Affiliated to Osmania University).

¹Associate Professor, Department of Clinical Pharmacy Practice, Malla Reddy College of Pharmacy, Dhulapally, Secunderabad, Telangana, 500100 (Affiliated to Osmania University).

ABSTRACT

Article Received on 31 Dec. 2025,
Article Revised on 20 Jan. 2026,
Article Published on 01 Feb. 2026,

<https://doi.org/10.5281/zenodo.1842818>

*Corresponding Author

D. Deekshith

Pharm-D 4th Year, Malla Reddy College of Pharmacy, Dhulapally, Secunderabad, Telangana, 500100 (Affiliated to Osmania University).

How to cite this Article: ¹A. Sai Shanthi, ^{1*}D. Deekshith, ¹Dr. Padige Sri Varsha (2026). Personalized Medicine And The Expanding Role Of Clinical Pharmacists: From Scientific Foundations To Real World Implementation. World Journal of Pharmaceutical Research, 15(3), 400-418. This work is licensed under Creative Commons Attribution 4.0 International license.

Personalized medicine, or precision medicine, is a concept that represents a major change in the direction of medicine. It means that instead of treating patients according to their population, medication is being prescribed based on individual patient characteristics which might include genetic, phenotypic, clinical, and environmental factors. Fast progress in biomarker discovery, pharmacogenomics, therapeutic drug monitoring, and clinical informatics over the last 20 years has guaranteed personalized medicine to move from just a conceptual framework to an actionable approach over many therapeutic areas. Because of their educational background, clinical pharmacists are the ones who are most qualified to apply personalized medicine in day-to-day practice; they possess skills that relate to pharmacogenomics, pharmacodynamics, medication safety, and interdisciplinary care coordination. In spite of this, the uptake of pharmacist-enabled personalized medicine services remains irregular in different healthcare

systems sharing a similar situation. Shortages in professional training, incomplete clinical infrastructure, fewer reimbursement options, different regulations, and unequal access to

decision-support technologies are some of the reasons that still hinder broad implementation. This article takes a critical view of the scientific bases on which personalized medicine stands and at the same time, takes a close look at the more important part that clinical pharmacists have in turning precision tools into everyday care. The main activities of pharmacists such as choosing and interpreting pharmacogenomic tests, dosing guided by genotype, monitoring drug therapy, preventing adverse drug reactions, educating patients and healthcare providers, and managing expensive targeted therapies are discussed in the context of the major therapeutic domains. Moreover, the available evidence about clinical outcomes, economic impact, and patient-centered advantages resulting from the participation of pharmacists is summed up together with the ongoing difficulties in implementing it. Besides, tactical methods that will empower pharmacist-led personalized medicine have been suggested, which include the education, informatics, policy development, research, and ethical oversight. This review underlines the crucial role of clinical pharmacists in moving personalized medicine from the theoretical realm to day-to-day clinical practice.

KEYWORDS: Besides, tactical methods that will empower pharmacist-led personalized medicine have been suggested, which include the education, informatics, policy development, research, and ethical oversight.

1. INTRODUCTION

In the past, pharmacotherapy was based on empiric prescribing methodologies that were derived from population-wide data and were under the premise that most patients would react in the same way to standard drug regimens.^[1] However, the great interindividual differences in drug reaction—noteworthy as suboptimal effectiveness, adverse drug reactions (ADRs), or drug-related toxicity—have been constantly raising the question of this traditional model. Personalized medicine is the solution to the patients' variability by the means of drug selection and dosing according to the specific characteristics of the patient such as genetic makeup, biochemical markers, presence of other diseases, organ function, lifestyle, and environmental exposure.^[2]

The increasing accessibility of pharmacogenomic testing, biomarker-driven treatments, and therapeutic drug monitoring has revolutionized the existing medical practice, most of all in oncology, cardiology, psychiatry, transplantation, and infectious diseases. Clinical pharmacists claim very central and influential positions within the rapidly changing therapeutic landscape. They are very professionally trained, and their training includes drug

metabolism, mechanisms of action, exposure–response relationships, drug–drug interactions, and medication safety—their competencies are of utmost importance for the successful transfer of complex diagnostic information into individualized therapeutic decisions.^[3]

But still, even though there is this strong conceptual alignment, pharmacist-led personalized medicine integration remains at an uneven pace. On the one hand, there are academic institutions and integrated healthcare systems that established standard pharmacogenomics and precision dosing programs while on the other hand, many practice areas especially community pharmacies and low-resource settings have not taken full advantage of the potential yet. This article provides an overview of the sufficient role of clinical pharmacists in personalized medicine by compiling scientific foundations, current practice models, clinical applications, implementation challenges, and future directions.^[4]

2. SCIENTIFIC FOUNDATIONS OF PERSONALIZED MEDICINE

2.1 Pharmacogenomics and Pharmacogenetics

The main focus of pharmacogenomics is to find out how inherited genetic variations affect not only drug absorption, distribution, metabolism, and elimination but also pharmacologic response. Genetic polymorphisms in genes that encode drug-metabolizing enzymes, transporters, and molecular targets can be very influential in changing drug exposure and thus affecting clinical outcomes significantly. Variants that influence cytochrome P450 enzymes (like CYP2D6 and CYP2C19), for instance, drug transporters (like SLCO1B1), and drug targets (like VKORC1) are amongst the most common illustrations of this kind of phenomenon.^[5]

If a physician has knowledge about a patient's genotype for a particular drug, he or she may, for instance, assume the patient's phenotype as poor, intermediate, normal, or ultra-rapid metabolizer and thus prescribe accordingly. One of the biggest contributors to the dispense based on genetic testing is clinical guidelines, which are made by organizations such as the Clinical Pharmacogenetics Implementation Consortium. Such guidelines provide a structured link between the genetic test result and the medication dosage or alternative medication selection. Pharmacy professionals are among the pivotal staff members that comprehend and apply these recommendations in the context of other factors related to the patient's clinical scenario.^[6]

2.2 Biomarkers and Companion Diagnostics

Oncoplastic surgery necessity comprises an interplay of both germline and somatic genetics as well as patient-related factors, among others. In fact, the entire spectrum of cancer treatment, from surgery to adjuvant chemotherapy or radiotherapy, can be affected by molecular markers being tested, when not directly influencing selection of treatment by specificity. Moreover, in the case of some agents, their exacting use is strictly bound by the availability of companion diagnostics.^[7]

Pharmacists involved in biomarker-led treatment are also required to have a deep comprehension of the tests' characteristics, their limitations in the clinical setting, and the change in the evidence over time. For instance, tumor heterogeneity, loss of the biomarker, and continual change in the definition of the biomarker are aspects of pharmacogenomics that need to be beared in mind by the pharmacist. The expertise of the pharmacist assures that the diagnostic results are connected to the therapeutic approaches in the right manner and that any off-label or investigational applications are reviewed critically based on the existing evidence.^[8]

2.3 Integrative and Multi-Omics Approaches

The emerging personalized medicine approaches combine genomics with other "omics" disciplines like transcriptomics, proteomics, and metabolomics along with real-world clinical data. Even though the majority of multi-omics implementations are still primarily confined to research, pharmacogenomics and the therapeutic drug monitoring are the areas that can be readily translated into clinical practice as tools with immediate applicability. Clinical pharmacists have a unique opportunity to connect new scientific breakthroughs with patient-centered care by selectively adopting validated tools while ensuring a strong emphasis on safety and clinical significance.^[9]

3. CLINICAL PHARMACISTS AS CORE ENABLERS OF PERSONALIZED THERAPY

Clinical pharmacists take part in all the stages of personalized medicine, from the very start of diagnostics to the continual optimizing of therapy. Their engagement makes the difficult data sets converted into patient-specific treatment plans that are not only actionable but also effective.

3.1 Test Selection, Pre-Test Counselling, and Operational Coordination

The clinical benefit from the tests is to be reaped only through the right test selection, and at the same time, the unnecessary costs and interventions are to be avoided. The evaluation of medication regimens, therapeutic objectives, and patient-specific risk factors for the appropriateness of pharmacogenomic or biomarker testing usually comes from the pharmacists' side. Pre-test counseling is very often led by pharmacists who deal with patient concerns, addressing patient expectations, potential benefits, limitations, privacy concerns, and implications for future treatment decisions.

In the established practice models, pharmacists coordinate the operational aspects of test ordering, specimen handling, laboratory communication, and clinical documentation. All these activities make the workflows more efficient, reduce the burden on the prescribers, and assure that the diagnostic results are available in a timely manner.^[10]

3.2 Interpretation and Clinical Translation of Diagnostic Results

Pharmacogenomic and biomarker data interpretation is a service of high value in cognitive aspect. Pharmacists merge genetic finding and judicially come up with the patient's renal and hepatic function, new medications, coexisting diseases, and previous treatment. This integrative method reinforces that suggestions based on the genotype will be used in the right way and not be treated as separate cases.^[11]

The medical professionals are more open to the recommendations through the pharmacists structured medical consult notes, which elaborate on the clinical rationale, the supporting evidence, and the practical implications of personalized therapy adjustments being made.^[12]

3.3 Therapeutic Drug Monitoring and Precision Dosing

Therapeutic monitoring of drugs is very much one of the personalized medicine applications that have been accepted the most widely. Pharmacist-managed TDM programs for medications that are characterized by having a narrow therapeutic range like vancomycin, aminoglycosides, anticonvulsants, and immunosuppressants have all been linked to the consistently better attainment of target concentration and less toxicity.

The latest development in precision dosing based on models is combining population pharmacokinetic models with individualized patient data for further refinement of dosing

strategies. It is the pharmacists who are best qualified to manage these tools ensuring that there is a proper interpretation and clinical use.^[13]

3.4 Medication Safety and Prevention of Adverse Drug Reactions

Adverse drug reactions are still one of the major causes of poor health and increased healthcare costs. Pharmacogenomic information allows the early and proactive identification of patients who are at a higher risk of experiencing either toxicity or even failure of the therapy. Pharmacists apply this knowledge in their practice to promote safer medication selection, individualized dosing, and greater monitoring strategies.

The incorporation of genotype-guided alerts into the electronic patient records, together with pharmacist-conducted medication reviews, has quite a lot to do with the further minimization of the occurrence of preventable medication-related harm.^[14]

3.5 Education of Healthcare Professionals and Patients

Knowledge gaps among healthcare providers continue to be the most significant barrier to the implementation of personalized medicine. Clinical pharmacists take the role of educators through conducting targeted training for physicians, nurses, and interns. In addition, they provide patient-centered counseling that interprets diagnostic findings in simple terms, encourages compliance, and addresses ethical issues connected with genetic data.^[15]

4. CLINICAL APPLICATIONS OF PERSONALIZED MEDICINE: EXPANDED ROLE OF CLINICAL PHARMACISTS

Personalized medicine has gone from its theoretical promise to a practical application in several therapeutic areas. Nevertheless, the extent of the implementation differs depending on the disease's intricacy, the presence of reliable biomarkers, and the institution's infrastructure. In all these scenarios, the clinical pharmacists are acting as the most important mediators—connecting the diagnostic insights, the therapeutic guidelines, and the individual patient factors to the successful outcome of the process.

4.1 Oncology: Precision Pharmacotherapy in Cancer Care

Oncology has been recognized as the foremost field where personalized medicine is applied. The molecular profiling of the tumor has become a prerequisite for cancer management, and oncologists have a range of targeted therapies and immunotherapies at their disposal. In the

traditional dispensing role, pharmacy staff are already involved in precision oncology programs.^[16]

Pharmacists are involved in the molecular diagnostic reports interpretation that contains complicated genomic information, such as mutations, gene amplifications, translocations, tumor mutational burden, and microsatellite instability. Pharmacists also provide identification of the profiles of drug targets that are accepted either by the authorities or are supported by clinical evidence.^[17]

Anticancer drugs that are targeted usually have their own special side effects, a narrow range of effectiveness, and a high likelihood of interactions with other drugs. The pharmacist's involvement in medication reviews helps to lower the incidence of toxicity and prevent treatment failures that are related to interactions, especially with oral agents that are metabolized by cytochrome P450 enzymes.^[18]

The pharmacist is responsible for the whole process of dose individualization, monitoring for side effects, and adherence support in the case of elderly patients, those with organ dysfunction, or individuals undergoing combination therapy. Contributing to the molecular tumor boards is another way pharmacist's participation is extended, as they will be involved in the evaluation of off-label therapy, clinical trial eligibility, and pharmacoeconomic considerations.^[19]

4.2 Cardiovascular Medicine: Genotype-Guided Therapy Optimization

Cardiovascular pharmacotherapy has been gradually incorporating personalized medicine approaches especially in antithrombotic therapy, lipid management, and heart failure treatment. The insights from pharmacogenomics have pointed to a significant potential of these areas to greatly improve the patient safety and therapeutic efficacy ratio through the application of pharmacogenetics.

Genotype-guided antiplatelet therapy in patients undergoing percutaneous coronary intervention is one of the most well-studied areas. Genetic differences that affect the activation of the prodrug can lead not only to insufficient platelet inhibition but also to increased risk of thrombosis. Clinical pharmacists are pivotal in the process of genotype-guided antiplatelet selection through their roles in the interpreting of test results, as well as

the modification of therapeutic interventions during both acute and outpatient care scenarios, besides their continual involvement in making these changes.^[20]

Pharmacists are the professional group that has always been basically leading the battle against thrombosis through the management of anticoagulation via clinics. Their efforts have been further enhanced by the incorporation of genetic factors that impact the dosing of the patient's drug in the practitioners' deciding when and how much they should increase or decrease the drug. Although the results of the randomized trials have been undeniably different, real-life data show that pharmacist-managed, genotype-informed anticoagulation protocols really do improve safety, limit extreme dosing, and make the workflow more efficient.

Regarding lipid management, pharmacists take the role of helping in the identification of patients with a higher risk of developing statin-associated myopathy by considering an individual's genetic background along with other clinical risk factors. Hence, the healthcare provider gets a clearer picture of the situation and can decide on the best option - which can be dose adjustment, close monitoring, or timely switching to an alternative lipid-lowering therapy - that will not only achieve the intended effect but also support the patient in the long run and reduce the overall cardiovascular risk.^[21]

4.3 Psychiatry and Neurology: Minimizing Trial-and-error Prescribing

The prescribing of psychiatric drugs has always been a difficult practice characterized by using empirical medicine and long periods of trial-and-error, leading to delayed symptom control as well as bringing about unwanted effects and noncompliance with treatment. The development of personalized medicine has made it possible to get closer to the therapeutic accuracy in the area of mental health.

Pharmacists who practice in conjunction with psychiatry are the ones who are usually tasked with applying pharmacogenomic data in making the choice of antidepressants and antipsychotics, especially with patients who are resistant to treatment, unable to tolerate certain drugs, or taking multiple medications. Genetic polymorphism in the drug-metabolizing enzymes has a very pronounced influence on the serum levels, acceptability, and therapeutic response; thus, it is the pharmacists that recommend the alternative agents or the individualized dose adjustments.^[22]

The pharmacists, in addition to pharmacogenomics, performed thorough medication reviews to determine the total anticholinergic burden and sedative load and to assess the risk of drug interactions. This overall appraisal of the patient's condition results in safe medication practices and improved patient functionality; the elderly and neurologically challenged patients are the primary beneficiaries of this.^[23]

The systematic reviews confirm that the participation of the pharmacists in the pharmacogenomic-guided psychiatric care increases the prescribing confidence and the satisfaction of the patients. However, the long-term clinical outcomes are still being assessed. In addition, pharmacists ensure the patients are educated and able to distinguish between the realistic expectations and the misinterpretations of genetic test results.^[24]

4.4 Infectious Diseases: Precision Dosing and Antimicrobial Stewardship

Infectious diseases are the pharmacists' long-established domain for personalized medicine through therapeutic drug monitoring and antimicrobial stewardship programs. Thus, Individualized dosing is critical for achieving the best antimicrobial efficacy while at the same time avoiding toxicity and resistance developments.^[25]

Clinical pharmacists use pharmacokinetic-pharmacodynamic principles to select the best antimicrobial therapy, especially in patients who are critically ill and have altered physiology. For example, in the case of vancomycin and aminoglycosides, pharmacist-managed monitoring programs reliably indicate achieving the target and having less nephrotoxicity.

The innovative techniques include model-informed precision dosing, which combines patient-specific variables including drug concentration data to refine the dosing recommendations. Pharmacists are supervising these platforms, which means they are interpreting very correctly and at the same time they are preventing the reliance on the automated outputs to a great extent.^[26]

Pharmacists in stewardship programs, adapt the antimicrobial regimens according to the pathogen susceptibility, and infection site, as well as considering the patient's specific risk factors. The use of this tailored method not only prevents the unnecessary use of wide-spectrum antibiotics but also contributes to the global effort in the fight against antimicrobial resistance.^[27]

4.5. Transplantation and Immunosuppression: Balancing Efficacy and Toxicity

Transplant medication therapy is the best example of the necessity of very precise dosing because if the dosing is insufficient, the rejection risk will be increased, while on the other hand, serious toxicity will result from overdosage. Clinical pharmacists are the most important and indispensable members of transplant teams, and they are the ones managing very complicated immunosuppressive treatments.^[28]

Pharmacists are the ones who coordinate the therapeutic drug monitoring of immunosuppressants, interpret the concentration trends, and also adjust the doses according to the interactions of the medications and the changes in organ function. The use of genetic information that shows one's individual metabolism of the drug has even made it easier to determine the dosing, especially during the very early post-transplant periods.^[29]

The long-term involvement of the pharmacist has a positive effect on maintaining correct medication intake, decreasing the rate of hospital admissions, and at the same time fostering better graft outcomes, which further confirms the clinical value of the pharmacist's personalized medicine in high-risk populations.^[30]

5. BENEFITS AND EVIDENCE FOR PHARMACIST-LED PERSONALIZED CARE

In the end, the effect of personalized medicine is evaluated through the lens of the improvement in clinical outcomes, patient safety, healthcare efficiency, and patient engagement, and the clinical pharmacists' role is the major factor throughout all these areas. To some extent, the results of large randomized trials are still limited, but, at the same time, they confirm the positive effects of pharmacist-led personalized interventions through real-world studies and health-system evaluations.

5.1 Clinical Outcomes and Therapeutic Effectiveness

Clinical pharmacists, by means of their precise interpretation and proper use of personalized medicine data, are the ones who get the most out of the therapy. Only when the information obtained through pharmacogenomics, biomarkers, and therapeutic drug monitoring is comprehended by the physician does it become clinically relevant. This is the case with the pharmacist's role as a bridge.^[31]

In the most diverse care settings, the evidence points out that pharmacists taking care of the patients by using personalization's manage to reach the professional goals faster, do not cause

any preventable adverse drug reactions, good medication appropriateness, and even a good flow of care during changes. Moreover, the model of pharmacist consultations also removes the problem of therapeutic inertia by converting the complicated data into straightforward, doable recommendations.^[32]

5.2 Medication Safety and Reduction of Adverse Drug Reactions

One of the most appealing aspects of personalized medicine is that it allows for the proactive identification of the patient groups who are most at risk for adverse drug reactions. The role of the pharmacist in such a case is to combine pharmacogenomic data with traditional medication safety measures and thus to make the preventive approach work. Genotype-informed alerts, individualized dosing, and enhanced monitoring being parts of the programs lead to measurable reductions in serious adverse drug events.

The medication reconciliation process further gets benefited by the fact that the genotype-informed profiles are kept intact throughout the care transitions, meaning that the risk of inappropriate reinitiation of high-risk therapies is diminished.^[33]

5.3 Economic Impact and Cost-Effectiveness

From the standpoint of the health system, the personalized medicine trailblazed by pharmacists through their interventions to hold costs down by blocking downstream complications like hospitalizations, treatment failures, and adverse reactions. Economic evaluations have repeatedly shown cost avoidance, better utilization of high-cost targeted therapies, and shorter hospital stays for selected groups.

The activity of pharmacists ensures that advanced diagnostics and targeted therapies are deployed wisely, thereby enhancing cost-effectiveness—especially when diagnostic data influence multiple therapeutic decisions over a period of time.^[34]

5.4 Patient Satisfaction, Engagement, and Adherence

Clinical pharmacists are the facilitators of patient engagement when they do so by interpreting complex diagnostic findings in layman's terms and giving patients reassurance in terms of safety, privacy, and long-term effects. Studies report high patient satisfaction rates when pharmacists provide personalized counseling accompanied by better trust, confidence in therapy, and adherence.^[35]

6. CHALLENGES AND BARRIERS TO IMPLEMENTATION

In spite of the benefits being proved, the adoption of pharmacists' personalized medicine models is still limited due to the challenges posed by the health system's structure, education, economy, and regulations.^[36]

- **Workforce Training and Confidence:** The major obstacles are poor training and limited experience. The differences in undergraduate curriculum and postgraduate specialization lead to uneven preparedness among pharmacists.^[37]
- **Informatics and Decision Support Limitations:** Several electronic health records do not include the necessary pharmacist-friendly decision support tools. Alert fatigue, poor usability, and lack of customization reduce the effectiveness and scalability of the system.
- **Laboratory and Operational Constraints:** The different access to validated testing, the variable times of processing and the inconsistent reports pose a serious challenge to the implementation especially in non-academic centers.^[38]
- **Reimbursement and Financial Sustainability:** The major problem remains the inconsistency of payment for both laboratory tests and pharmacist cognitive services, especially in outpatient and community settings.^[39]
- **Ethical, Law, and Regulatory Issues:** The testing of genes is a process that is fraught with ethical issues that revolve around informed consent, privacy, data stewardship, and regulatory variability. Pharmacists are to make sure that the sensitive data is used ethically and responsibly.^[40]

7. STRATEGIES TO STRENGTHEN PHARMACIST-LED IMPLEMENTATION

Education and Credentialing: The incorporation of personalized medicine into PharmD curriculum, as well as the development of postgraduate training and credentialing pathways, is essential to standardize competence.

Informatics Development: The participation of pharmacists in the design of clinical decision support has a positive impact on the usability, accuracy, and integration of the workflow.^[41]

Service Models and Workflows Integration: The standardization of consult workflows and the incorporation of pharmacists in specialized teams result in improved efficiency and better acceptance of recommendations.

Policy and Economics Advocacy: The demonstration of positive outcomes and the production of economic evaluations are the two main requirements for the reimbursement and policy recognition of pharmacist-led services to become established.^[42]

8. COMMUNITY PHARMACY AND LOW-RESOURCE SETTINGS

Community pharmacies create a highly convenient and easily accessible platform for personalized medicine delivery. The pilot programs show that the testing and counseling done in a targeted manner are indeed feasible. In the resource-challenged areas, the very high-impact measures like therapeutic drug monitoring can still be considered as the pragmatic entry points.^[43]

9. FUTURE PERSPECTIVES

- **Preemptive Testing and Longitudinal Stewardship:** Pharmacists are the best people to manage the lifetime of diagnostic data that will be used in various therapeutic decisions.
- **Model-Informed Precision Dosing and Artificial Intelligence:** The pharmacists will have to supervise the advanced dosing platforms so that there is a safe and clinically appropriate application.
- **Workforce Evolution:** More pharmacists will be adopting the roles of precision medicine consultants, informatics specialists, and educators.^[44]

CONCLUSION

Personalized medicine has gone through a remarkable change from theory to practice among the different specialties of oncology, cardiology, psychiatry, infectious diseases, and transplantation. Clinical pharmacists are the change drivers by their knowledge in pharmacogenomics, precision dosing, safety, and education, which results in better outcomes, fewer ADRs, cost savings, and higher adherence.

Still, issues like training gaps, informatics limits, and reimbursement continue to exist, but advanced curriculum, AI tools, workflows, and policy advocacy represent offer solutions. Community pharmacies and low-resource settings could start with targeted TDM to make an impact.

Preemptive testing, AI dosing, and evolving roles are positioning pharmacists as precision stewards. With support, they make personalized medicine normal, equitable care-minimizing risks and maximizing efficacy for all patients.

REFERENCES

1. Tamblyn R, Perreault R. Prescription drug use and seniors. Canadian Journal on Aging/La Revue canadienne du vieillissement, 2000 Jul; 19(S1): 143-75.

<https://www.cambridge.org/core/journals/canadian-journal-on-aging-la-revue-canadienne-du-vieillissement/article/abs/prescription-drug-use-and-seniors/957D063D812C7F228EEFC4D1126BCE9E>

2. Mini E, Nobili S. Pharmacogenetics: implementing personalized medicine. Clinical cases in mineral and bone metabolism, 2009 Jan; 6(1): 17. <https://pmc.ncbi.nlm.nih.gov/articles/PMC2781211/>
3. Hays P. Advancing healthcare through personalized medicine. Crc Press, 2017 Feb 24. <https://www.taylorfrancis.com/books/mono/10.1201/9781315381268/advancing-healthcare-personalized-medicine-priya-hays>
4. SHARMA D, KAUR A, VERMA BK. Modern Pharmacy Practice: Innovations, Roles and Ethical Challenges. <https://store.additionbooks.com/wp-content/uploads/2024/09/23.pdf>
5. Oldenburg J, Bevans CG, Fregin A, Geisen C, Müller-Reible C, Watzka M. Current pharmacogenetic developments in oral anticoagulation therapy: the influence of variant VKORC1 and CYP2C9 alleles. Thrombosis and haemostasis, 2007; 98(09): 570-8. <https://www.thieme-connect.com/products/ejournals/abstract/10.1160/TH07-07-0454>
6. American College of Clinical Pharmacy, Hume AL, Kirwin J, Bieber HL, Couchenour RL, Hall DL, Kennedy AK, LaPointe NM, DO Burkhardt C, Schilli K, Seaton T. Improving care transitions: current practice and future opportunities for pharmacists. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 2012 Nov; 32(11): e326-37. <https://accpjournals.onlinelibrary.wiley.com/doi/abs/10.1002/phar.1215>
7. Care P. Principles of Oncology and Medicine for MRCP, 2020 Mar 23: 315. https://books.google.co.in/books?hl=en&lr=&id=K7vyDwAAQBAJ&oi=fnd&pg=PA315&dq=Oncoplastic+surgery+necessity+comprises+an+interplay+of+both+germline+and+omatic+genetics+as+well+as+patient-related+factors,+among+others.+In+fact,+the+entire+spectrum+of+cancer+treatment,+from+surgery+to+adjuvant+chemotherapy+or+radiotherapy,+&ots=H5DYZjNs5d&sig=74EefNMsdZGOwaYo_QjKxXdZl-c&redir_esc=y#v=onepage&q&f=false
8. Rodríguez-Antona C, Taron M. Pharmacogenomic biomarkers for personalized cancer treatment. Journal of internal medicine, 2015 Feb; 277(2): 201-17. <https://onlinelibrary.wiley.com/doi/full/10.1111/joim.12321>
9. Krassowski M, Das V, Sahu SK, Misra BB. State of the field in multi-omics research: from computational needs to data mining and sharing. Frontiers in Genetics, 2020 Dec

10; 11: 610798.
<https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2020.610798/full>

10. Pre-test counseling is very often led by pharmacists who deal with patient concerns, addressing patient expectations, potential benefits, limitations, privacy concerns, and implications for future treatment decisions.
<https://onlinelibrary.wiley.com/doi/full/10.1002/jgc4.1612>

11. Singh DB. Pharmacogenomics: clinical perspective, strategies, and challenges. In *Translational bioinformatics and its application* 2017 Apr 1 (pp, 299-333). Dordrecht: Springer Netherlands.
https://link.springer.com/chapter/10.1007/978-94-024-1045-7_13

12. Walker R. *Clinical pharmacy and therapeutics E-Book*. Elsevier Health Sciences, 2011 Oct 24.
https://books.google.co.in/books?hl=en&lr=&id=CcDRAQAAQBAJ&oi=fnd&pg=PP1&dq=The+medical+professionals+are+more+open+to+the+recommendations+through+the+pharmacists+structured+medical+consult+notes,+which+elaborate+on+the+clinical+rationale,+the+supporting+evidence,+and+the+practical+implications+of+personalized+therapy+adjustments+being+made.+&ots=9nKHCXa44I&sig=EGzWFyxAuu_4FUjmNyHgqVnakg&redir_esc=y#v=onepage&q&f=false

13. Downes KJ, Goldman JL. Too much of a good thing: defining antimicrobial therapeutic targets to minimize toxicity. *Clinical Pharmacology & Therapeutics*, 2021 Apr; 109(4): 905-17.
<https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1002/cpt.2190>

14. Cacabelos R, Cacabelos N, Carril JC. The role of pharmacogenomics in adverse drug reactions. *Expert Review of Clinical Pharmacology*, 2019 May 4; 12(5): 407-42.
<https://www.tandfonline.com/doi/abs/10.1080/17512433.2019.1597706>

15. Saseen JJ, Ripley TL, Bondi D, Burke JM, Cohen LJ, McBane S, McConnell KJ, Sackey B, Sanoski C, Simonyan A, Taylor J. ACCP clinical pharmacist competencies. *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy*, 2017 May; 37(5): 630-6.
<https://accpjournals.onlinelibrary.wiley.com/doi/abs/10.1002/phar.1923>

16. Wistuba II, Gelovani JG, Jacoby JJ, Davis SE, Herbst RS. Methodological and practical challenges for personalized cancer therapies. *Nature reviews Clinical oncology*, 2011 Mar; 8(3): 135-41.
<https://www.nature.com/articles/nrclinonc.2011.2>

17. Sokolenko AP, Imyanitov EN. Molecular diagnostics in clinical oncology. *Frontiers in molecular biosciences*, 2018 Aug 27; 5: 76. <https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolt.2018.00076/full>
18. Shapiro LE, Shear NH. Drug interactions: proteins, pumps, and P-450s. *Journal of the American Academy of Dermatology*, 2002 Oct 1; 47(4): 467-88. <https://www.sciencedirect.com/science/article/abs/pii/S0190962202000841>
19. Crimini E, Repetto M, Tarantino P, Ascione L, Antonarelli G, Rocco EG, Barberis M, Mazzarella L, Curigliano G. Challenges and obstacles in applying therapeutical indications formulated in molecular tumor boards. *Cancers*, 2022 Jun 29; 14(13): 3193. <https://www.mdpi.com/2072-6694/14/13/3193>
20. Strisciuglio T, Franco D, Di Gioia G, De Biase C, Morisco C, Trimarco B, Barbato E. Impact of genetic polymorphisms on platelet function and response to anti platelet drugs. *Cardiovascular Diagnosis and Therapy*, 2018 Oct; 8(5): 610. <https://pmc.ncbi.nlm.nih.gov/articles/PMC6232354/>
21. Chatzizisis YS, Koskinas KC, Misirli G, Vaklavas C, Hatzitolios A, Giannoglou GD. Risk factors and drug interactions predisposing to statin-induced myopathy: implications for risk assessment, prevention and treatment. *Drug safety*, 2010 Mar; 33(3): 171-87. <https://link.springer.com/article/10.2165/11319380-000000000-00000>
22. Islam F. *Towards Precision Medicine in Psychiatry: Characterizing Genetic and Epigenetic Contributions to Antidepressant and Antipsychotic Response, Adverse Drug Reactions, and Pharmacokinetics* (Doctoral dissertation, University of Toronto (Canada)). <https://www.proquest.com/openview/83d6adffaa3607fc95df915d011b97a0/1?pq-origsite=gscholar&cbl=18750&diss=y>
23. Al Rihani SB, Deodhar M, Darakjian LI, Dow P, Smith MK, Bikmetov R, Turgeon J, Michaud V. Quantifying anticholinergic burden and sedative load in older adults with polypharmacy: a systematic review of risk scales and models. *Drugs & aging*, 2021 Nov; 38(11): 977-94. <https://link.springer.com/article/10.1007/s40266-021-00895-x>
24. Squassina A, Manchia M, Manolopoulos VG, Artac M, Lappa-Manakou C, Karkabouna S, Mitropoulos K, Zompo MD, Patrinos GP. Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice. *Pharmacogenomics*, 2010 Aug 1; 11(8): 1149-67. <https://www.tandfonline.com/doi/abs/10.2217/pgs.10.97>

25. Dyar OJ, Huttner B, Schouten J, Pulcini C. What is antimicrobial stewardship?. *Clinical microbiology and infection*, 2017 Nov 1; 23(11): 793-8. <https://www.sciencedirect.com/science/article/pii/S1198743X17304895>

26. Powelet EA, Vinks AA, Mizuno T. Artificial intelligence and machine learning approaches to facilitate therapeutic drug management and model-informed precision dosing. *Therapeutic drug monitoring*, 2023 Apr 1; 45(2): 143-50. https://journals.lww.com/drug-monitoring/abstract/2023/04000/artificial_intelligence_and_machine_learning.5.aspx

27. Garau J, Bassetti M. Role of pharmacists in antimicrobial stewardship programmes. *International journal of clinical pharmacy*, 2018 Oct; 40(5): 948-52. <https://link.springer.com/article/10.1007/s11096-018-0675-z>

28. Chisholm MA, Mulloy LL, Jagadeesan M, DiPiro JT. Impact of clinical pharmacy services on renal transplant patients' compliance with immunosuppressive medications. *Clinical transplantation*, 2001 Oct; 15(5): 330-6. <https://onlinelibrary.wiley.com/doi/abs/10.1034/j.1399-0012.2001.150505.x>

29. Kurzawski M, Droździk M. Pharmacogenetics in solid organ transplantation: genes involved in mechanism of action and pharmacokinetics of immunosuppressive drugs. *Pharmacogenomics*, 2013 Jul 1; 14(9): 1099-118. <https://www.tandfonline.com/doi/abs/10.2217/pgs.13.89>

30. Taber DJ, Fleming JN, Su Z, Mauldin P, McGillicuddy JW, Posadas A, Gebregziabher M. Significant hospitalization cost savings to the payer with a pharmacist-led mobile health intervention to improve medication safety in kidney transplant recipients. *American Journal of Transplantation*, 2021 Oct 1; 21(10): 3428-35. <https://www.sciencedirect.com/science/article/pii/S1600613522087615>

31. Taherdoost H, Ghofrani A. AI's role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. *Intelligent Pharmacy*, 2024 Oct 1; 2(5): 643-50. <https://www.sciencedirect.com/science/article/pii/S2949866X2400087X>

32. Stevenson JG. Overcoming inertia: achieving more-rapid transformation of pharmacy practice. *American Journal of Health-System Pharmacy*, 2011 Apr 1; 68(7): 604-12. <https://academic.oup.com/ajhp/article-abstract/68/7/604/5129743>

33. Qahwaji R, Ashanyty I, Sannan NS, Hazzazi MS, Basabrain AA, Mobashir M. Pharmacogenomics: A genetic approach to drug development and therapy.

Pharmaceuticals, 2024 Jul 13; 17(7): 940.
<https://www.mdpi.com/1424-8247/17/7/940>

34. Higgins AM, Harris AH. Health economic methods: cost-minimization, cost-effectiveness, cost-utility, and cost-benefit evaluations. *Critical care clinics*, 2012 Jan 1; 28(1): 11-24.
[https://www.criticalcare.theclinics.com/article/S0749-0704\(11\)00067-4/abstract](https://www.criticalcare.theclinics.com/article/S0749-0704(11)00067-4/abstract)

35. ALHAMDI MA. Pharmacy Practice and Clinical Skills: Enhancing Patient-Centered Care.
<https://sjr-publishing.com/wp-content/uploads/2019/03/Pharmacy-Practice-and-Clinical-Skills.pdf>

36. Kalouguina V, Wagner J. Challenges and solutions for integrating and financing personalized medicine in healthcare systems: A systematic literature review. *Journal of Risk and Financial Management*, 2020 Nov 16; 13(11): 283.
<https://www.mdpi.com/1911-8074/13/11/283>

37. Bader L, Bates I. Research, development and evaluation strategies for pharmaceutical education and the workforce: a global report.
<https://discovery.ucl.ac.uk/id/eprint/10024658/>

38. Matalonga S, Amalfitano D, Doreste A, Fasolino AR, Travassos GH. Alternatives for testing of context-aware software systems in non-academic settings: results from a Rapid Review. *Information and Software Technology*, 2022 Sep 1; 149: 106937.
<https://www.sciencedirect.com/science/article/pii/S0950584922000878>

39. Houle SK, Grindrod KA, Chatterley T, Tsuyuki RT. Paying pharmacists for patient care: a systematic review of remunerated pharmacy clinical care services. *Canadian Pharmacists Journal/Revue des Pharmaciens du Canada*, 2014 Jul; 147(4): 209-32.
<https://journals.sagepub.com/doi/abs/10.1177/1715163514536678>

40. Balagurunathan Y, Sethuraman RR. An analysis of ethics-based foundation and regulatory issues for genomic data privacy. *Journal of The Institution of Engineers (India): Series B*, 2024 Aug; 105(4): 1097-107.
<https://link.springer.com/article/10.1007/s40031-024-01058-3>

41. Beks H, Namara KM, Manias E, Dalton A, Tong E, Dooley M. Hospital pharmacists' experiences of participating in a partnered pharmacist medication charting credentialing program: a qualitative study. *BMC Health Services Research*, 2021 Mar 19; 21(1): 251.
<https://link.springer.com/article/10.1186/s12913-021-06267-w>

42. Tonin FS, Aznar-Lou I, Pontinha VM, Pontarolo R, Fernandez-Llimos F. Principles of pharmaco-economic analysis: the case of pharmacist-led interventions. *Pharmacy Practice (Granada)*, 2021 Mar; 19(1). https://scielo.isciii.es/scielo.php?pid=S1885-642X2021000100021&script=sci_arttext

43. Alshorman K, Hussain R. Community pharmacy-led point-of-care testing (POCT): expanding roles and strengthening health systems in low-and middle-income countries (LMICs). *Journal of Pharmaceutical Policy and Practice*, 2025 Dec 31; 18(1): 2578803. <https://www.tandfonline.com/doi/full/10.1080/20523211.2025.2578803>

44. Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L, Silva I, Magalhães P, Schmidt S, Vale N. Advancing precision medicine: a review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare. *Pharmaceutics*, 2024 Feb 27; 16(3): 332. <https://www.mdpi.com/1999-4923/16/3/332>