

A REVIEW ON THE ROLE OF SADYOVIRECHAN WITH TRIVRIT AVLEHA IN THE MANAGEMENT OF ASRIGDARA (AUB E)

Dr. Anchal^{1*}, Dr. Reshal², Dr. Harpreet³, Dr. Janardhan Mishra⁴

¹PG Scholar – 3rd Year, *Prasuti Tantra Evum Stree Roga*, Shri Dhanwantri Ayurvedic College and Hospital, Sec 46 B Chandigarh.

²PG Scholar – 3rd Year, *Prasuti Tantra Evum Stree Roga*, Shri Dhanwantri Ayurvedic College and Hospital, Sec 46 B Chandigarh.

³Prof. and H.O.D, *Prasuti Tantra Evum Stree Roga*, Shri Dhanwantri Ayurvedic College and Hospital, Sec 46 B Chandigarh.

⁴Prof. and H.O.D, *Panchkarma*, Shri Dhanwantri Ayurvedic College and Hospital, Sec 46 B Chandigarh.

Article Received on 15 Dec. 2025,
Article Revised on 05 Jan. 2026,
Article Published on 16 Jan. 2026,
<https://doi.org/10.5281/zenodo.18264665>

*Corresponding Author

Dr. Anchal

PG Scholar – 3rd Year, *Prasuti Tantra Evum Stree Roga*, Shri Dhanwantri Ayurvedic College and Hospital, Sec 46 B Chandigarh.

How to cite this Article: Dr. Anchal^{1*}, Dr. Reshal², Dr. Harpreet³, Dr. Janardhan Mishra⁴. (2026). A Review On The Role Of Sadyovirechan With Trivrit Avleha In The Management Of Asrigdara (Aub E). World Journal of Pharmaceutical Research, 15(2), 498–505.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Asrigdara is defined as excessive or prolonged blood loss during menstruation with or without bleeding during the intermenstrual period. Due to similarity in manifestations, it can be correlated with Abnormal Uterine Bleeding (AUB). In the present developing era, clinical practice shows a rising trend in AUB cases, and approximately one-third of women experience AUB at some point in their lives. In Ayurvedic therapeutics, *Shamana Chikitsa* is recommended following *Shodhana* to maintain *dosha samata* and prevent recurrence. *Apanavrita Pitta* is a major causative factor for *Asrigdara*, and *Virechana* helps pacify *Apana Vayu* and *Pitta*. However, classical *Virechana* requires 10–15 days for the proper completion of *Purva Karma*, *Pradhana Karma*, and *Paschat Karma*. In today's busy schedule, this duration is often difficult to manage. To overcome this limitation and to provide quicker *Pitta-shamana*, *Sadyovirechana* is advocated. —a simplified and immediate *Shodhana Karma*—can be adopted. *Trivrit Avleha*, being a *Mridu Rechak Dravya*, is ideal for

Sadyovirechana due to its *Pittahara*, *Raktashodhaka*, and *Shothahara* properties, facilitating *Dosha Nirharana* and providing symptomatic relief in Asrigdara.

KEYWORDS: *Asrigdara*, *Sadyovirechana*, Abnormal Uterine Bleeding, *Trivrit Avleha*.

1. INTRODUCTION

Asrigdara is one of the most frequently reported gynecological complaints described in *Ayurveda*, characterized by excessive or prolonged menstruation. The condition significantly affects a woman's physical health, emotional wellbeing, and daily activities. Menstrual irregularities and abnormal heavy menstruation account for up to 25% - 30% of women. About 10%-25% of women experience episodes of AUB at some time during reproductive years of their lives.^[1] In *Charaka Samhita*, it is also termed *Pradara* due to *pradeerana of Rajas*.^[2] *Asrigdara* is formed from *Asrik* (menstrual blood) and *Dara* (excessive excretion), meaning excessive discharge of menstrual blood. In modern practice, the corresponding condition AUB is defined as bleeding from the uterine corpus that is abnormal in duration, volume, frequency and/or regularity.^[3] AUB due to endometrial cause is due to the defect in local endometrial haemostasis secondary to abnormal secretion of prostaglandin.^[1] AUB is increasing due to lifestyle, stress, and hormonal disturbances, making its effective management essential.

2. DISEASE REVIEW

2.1 Nidana

Charak Samhita	<i>Rasa - Lavana, Amla, Katu rasa</i> <i>Guna - Snigdha, Vidahi, Guru guna</i> <i>Aahar - Mamsa, Krishara, Payasa, Sura, Dadhi, Shukti, Mastu, Madya</i>
Madhav Nidana, Bhava Prakasha, Yoga Ratnakar	
<i>Aharaja Nidana</i>	<i>Viruddha bhojana, Atimadya sevan</i>
<i>Viharaja Nidana</i>	<i>Atimaithuna, Atimarga gamana, Atibharvahana, Diwaswapna.</i>
<i>Manasika Nidana</i>	<i>Shoka.</i>
<i>Others</i>	<i>Garbhapata,</i>

Classification (PALM–COEIN – FIGO)^[3]

Structural (PALM)	Non-Structural (COEIN)
<ul style="list-style-type: none"> • Polyp • Adenomyosis • Leiomyoma • Malignancy/Hyperplasia 	<ul style="list-style-type: none"> • Coagulopathy • Ovulatory dysfunction • Endometrial causes • Iatrogenic • Not yet classified

2.2 Samprapti (Pathogenesis)

Nidanas like Guru, Vidhahi, Snigdha, Diwaswapan and dadhi increase Kapha dosha. Amla, Lavana, and Drava increase Pitta dosha. Shoka, Chinta, and Atimaithuna increase Vata dosha. All these factors cause Agnimandya, which leads to the formation of vikrit Rasa dhatu. Since Artava is the upadhatu of Rasa, and Rakta is also formed from Rasa, the abnormal increase in Rasa leads to increased menstrual blood flow.^[2]

PATHOPHYSIOLOGY

AUB has different types, and the underlying pathology varies depending on the cause. Here is the pathology of AUB due to endometrial cause.

Normally, estrogen induces endometrial proliferation during the follicular phase, and progesterone from the corpus luteum converts it into the secretory phase after ovulation. In the absence of pregnancy, progesterone withdrawal leads to the release of Prostaglandin F₂α and Endothelin-1, causing spiral arteriole constriction and orderly shedding of the functional endometrium as menstruation.

Abnormal uterine bleeding of endometrial origin (AUB-E) occurs due to dysfunction in local endometrial hemostatic mechanisms, such as increased Prostaglandin E₂ with reduced Prostaglandin F₂α, impaired spiral arteriole vasoconstriction, increased fibrinolytic activity, excess local vasodilators (e.g., nitric oxide), and endometrial inflammation. These alterations result in excessive or prolonged bleeding despite normal ovulation and hormonal levels.

2.4 Lakshana

- *Raja Atipravritti*
- *Deerghakalanubandhi*
- *Anrutavapi*
- *Angamarda*

2.5 Samprapti Ghatakas

- **Dosha:** *Tridosha*
- **Dushya:** *Rasa, Rakta, Artava*
- **Agni:** *Jatharagni Mandya*
- **Srotas:** *Artavavaha, Rasavaha, Raktavaha*
- **Srotodushti:** *Atipravritti*

- **Adhishthana:** *Garbhashaya, Artavavaha Srotasa*

2.6 Upadrava^[4]

Daurbalya, Bhrama, Murcha, Tamas, Daha, Pralap, Pandutva, Tandra, Vataja roga.

3. TRIVRIT AVLEHA

Trivrit Avleha is described in *Ashtanga Hridaya* under *Hridaya Virechana*. The chief ingredient is *Trivrit*. *Charaka Samhita* classifies *Trivrit* as *Sukha-Virechaniya*. It possesses *Kapha-Pitta Prashamana, Rechaka, and Shothahara* properties.^[5]

Name	Latin Name	Ras Panchak	Karma
<i>Trivrit</i> ^[6]	<i>Operculina turpethum</i>	<i>Ras – Tikta, Katu Guna – Laghu, Ruksha Tikshan Viryा – Ushna Vipaka – Katu</i>	<i>Kapha Pitta Shamak</i>
<i>Twak</i> ^[6]	<i>Cinnamomum zeylanica</i>	<i>Ras – Katu, Tikta, Madhur Guna – Laghu, Ruksha Tikshan Viryा – Ushna Vipaka – Katu</i>	<i>Kapha Vata Shamak</i>
<i>Ela</i> ^[6]	<i>Elettaria cadamomum</i>	<i>Ras – Katu, Madhur Guna – Laghu, Ruksha Viryा – Sheet Vipaka – Madhur</i>	<i>Tridoshhara</i>
<i>Tamalpatra</i> ^[6]	<i>Cinnamomum tamala</i>	<i>Ras – Katu, Madhur Guna – Laghu, Ruksha Viryा – Sheet Vipaka – Madhur</i>	<i>Kapha Vata Shamak</i>
<i>Madhu</i>		<i>Ras – Madhur, Kshaya Guna – Laghu, Ruksha Suksham Viryा – Sheet</i>	<i>Pitta Kapha shamak</i>
<i>Shakara</i>		<i>Ras – Madhur Viryा – Sheet</i>	<i>Vata Pitta Shamak</i>

4. PHARMACOLOGY

Name	Chemical Constituents	Pharmacological Action
Trivrit	Turpethinic acids (A, B, C, D, and E) albumin, lignin salts, volatile oil, starch, ferric oxide, lupeol, α - and β -turpethein, α - and β -rhamnose, fructose, β -sitosterol, scopoletin, botulin ^[7]	<ul style="list-style-type: none"> Lupeol, a key constituent of <i>O. turpethum</i>, exerts strong anti-inflammatory effects by reducing prostaglandin levels and inhibiting COX-mediated pathways.^[8] Scopoletin suppresses inflammation through inhibition of the NF-κB and p38 MAPK pathways.^[9]
Twak	Cinnamaldehyde, eugenol, carvacrol, cinnamic acetate and thymol ^[10]	<ul style="list-style-type: none"> Eugenol markedly suppresses COX-2 expression and reduces PGE₂ production in LPS-stimulated RAW 264.7 macrophages.^[11] Carvacrol exhibits potent COX-2 inhibition, reducing PGE₂ synthesis with an IC₅₀ of approximately 0.8 μM.^[12] Cinnamaldehyde suppresses prostaglandin production by reducing IL-1β-induced COX-2 activity and lowering PGE₂ levels in rat cerebral microvascular endothelial cells in a dose-dependent manner.^[13,14] Thymol inhibits both COX-1 and COX-2 in vitro, leading to decreased PGE₂ biosynthesis.^[15]
Ela	1,8-cineole, linalool, α -terpinyl acetate ^[16]	<ul style="list-style-type: none"> Linalool significantly reduces inflammatory nitric oxide production, contributing to its antinociceptive action.^[18]
Tamalpatra	cineol, linalool, terpinolene, sabinene, and methyl eugenol ^[17]	<ul style="list-style-type: none"> Terpenes modulate major inflammatory pathways, including COX, NF-κB, and MAPK, supporting their therapeutic potential.^[19] Methyl eugenol suppresses IgE-mediated allergic inflammation by inhibiting mast-cell degranulation.^[20]

5. PROBABLE MODE OF ACTION

Samprapti-vighatana in *Asrigdara* can be effectively achieved by *Virechana*, which is described as “śreṣṭha” for Pitta as mentioned in *Sushrut Samhita*. *Trivrit* with its *Ushna Virya* and *Katu*, *Tikta*, *Kashaya Rasa* does *Ama Pachana* and *Agni Deepana* at the level of *Annavaha Srotas* and eliminates the aggravated *Pitta* from the *amashya* and helps in correcting *Jatharagni*. Through proper *niṣarana* of *mala*, it also promotes *Vata-anulomana*, thereby restoring the normal function of *Apana Vata*. *Trivṛit*, mentioned in *Bhavaprakasa Nighaṇṭu* as a *rechaka* and *Pitta–Rakta-samaka dravya*, possesses *Tikta rasa* which imparts *Deepana*, *Pachana*, *Rakta-prasadana* and *Daha-prasamana* effects. These actions further purify *Rakta* and cleanse the *Artavavaha srotas*. Thus, *Virechana* with *Trivṛit Avleha* breaks the *samprapti* of *Asrigdara* by reducing *Pitta–Rakta prakopa*, normalizing *Vata gati* and restoring balanced *artava pravṛtti*.

Phytoconstituents present in *Trivrit Avleha* help reduce heavy uterine bleeding primarily through their anti-inflammatory and anti-prostaglandin actions. Compounds such as lupeol, scopoletin, eugenol, cinnamaldehyde, carvacrol, thymol, linalool, and 1,8-cineole inhibit COX enzymes and suppress key inflammatory pathways like NF- κ B and MAPK, thereby lowering prostaglandin and nitric oxide levels that promote vasodilation and excessive bleeding. Together, these mechanisms may contribute to reduced endometrial blood flow and improved control of heavy menstrual bleeding.

6. DISCUSSION

The management of *Asrigdara* requires both *Shodhana* and *Shamana Chikitsa*, but the full *Virechana* procedure is often difficult for many women to undergo. Therefore, *Sadyovirechana* with *Trivrit Avleha* becomes a practical and effective choice. Its *rechak* action helps in the quick elimination of aggravated *Pitta* and correction of *Apana Vata*, thereby breaking the *samprapti* of excessive uterine bleeding. Pharmacological studies show that its phytoconstituents exert strong anti-inflammatory and anti-prostaglandin effects by inhibiting COX, NF- κ B, and MAPK pathways. *Trijata dravyas* further support the action through compounds that reduce PGE₂ levels and downregulate COX-2 expression, decreasing vasodilation and endometrial inflammation. These combined actions help control heavy bleeding and relieve pain. Thus, classical *Ayurvedic* principles along with modern evidence justify the use of *Sadyovirechana* with *Trivrit Avleha* in *Asrigdara*.

7. CONCLUSION

Thus, *Sadyovirechana* with *Trivrit Avleha* emerges as a *yukti*-based approach in *Asrigdara*, as its *mridu-virechana* action quickly eliminates vitiated *Pitta* and restores the normal *gati* of *Apana Vata*, leading to *samprapti-vighatana*. The supportive action of *Trijata dravyas* aids in *Raktaprasadana*, *Pittashamana*, and reducing the associated symptoms. Hence, both classical *Ayurvedic* principles and modern findings show its efficacy in the management of *Asrigdara*.

8. REFERENCES

1. Kumar Sunesh, Padubidri VG, Daftary N Shirish Shaw's Textbook of Gynaecology Abnormal Uterine Bleeding RELX India Pvt. Ltd, 2023; Page No. 125-139.
2. Shastri Kashinath Pt. and Chaturvedi Natha Gorakha Charaka Samhita vol-2 Chikitsasthan; Yoniyavapad Chiktsa Adhyaya: Chapter -30, verse 209, Varanasi: Chaukhamba Bharati Academy, 2020; p.792-794.

3. Munro, Malcolm and Critchley, Hilary and Fraser, Ian. (2018). The two FIGO systems for normal and abnormal uterine bleeding symptoms and classification of causes of abnormal uterine bleeding in the reproductive years: 2018 revisions. International Journal of Gynaecology and Obstetrics, 143. 10.1002/ijgo.12666. Page No. 393–408.
4. Shastri Kaviraj Ambikadutt, Susruta Samhita Volume 1, Sharir Sthan; Shukra Shonita Shudhi Sharir Adhyaya: Chapter -2 verse 20-21. Varanasi: Chaukhambha Sanskrit Sansthan, 2015; Page No.-15-16.
5. Chunekar KC. *Bhāvaprakāśa Nighaṇṭu of Bhāvamiśra* with commentary. Pandya GS, editor. Gudūcyādi Varga, Śloka 114. Varanasi: Chaukhambha Bharati Academy, 2015; p. 383.
6. Sharma PV. *Dravyaguṇa Vijñāna*. Vol. II. Varanasi: Chaukhambha Bharati Academy, 2013; p. 428,250,719.
7. Ved A, Gupta S. *Operculina turpethum* (Linn.) Silva Manso as a medicinal plant species: A review on bioactive components and pharmacological properties. *Pharmacognosy Reviews*, 2017; 11(22): 158.
8. Park YJ, Park DH, Bae JS. Anti-inflammatory effects of lupeol as a candidate for new drug development. *Am J Chin Med*, 2024; 52(6): 1759-1771. doi:10.1142/S0192415X2450068X.
9. Pereira Dos Santos Nascimento MV, Arruda-Silva F, Gobbo Luz AB, Baratto B, Venzke D, Mendes BG, et al. Inhibition of the NF-κB and p38 MAPK pathways by scopoletin reduces inflammation caused by carrageenan in a mouse model of pleurisy. *Immunopharmacol Immunotoxicol*, 2016; 38(5): 344-352. doi:10.1080/08923973.2016.1203929.
10. Chandula Weerasekera A, Samarasinghe K, Krishantha Sameera de Zoysa H, Chathuranga Bamunuarachchige T, Yashasvi Waisundara V. *Cinnamomum zeylanicum*: Morphology, Antioxidant Properties and Bioactive Compounds. In: *Antioxidants - Benefits, Sources, Mechanisms of Action* [Internet]. IntechOpen; 2021 [cited 2025 Dec 30]. Available from: <https://doi.org/10.5772/intechopen.97492>
11. Kim SS, Oh OJ, Min HY, Park EJ, Kim Y, Park HJ, et al. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. *Life Sci*, 2003; 73(3): 337-348. doi:10.1016/S0024-3205(03)00288-1.
12. Landa P, Kokoska L, Pribylova M, Vanek T, Marsik P. *In vitro anti-inflammatory activity of carvacrol: inhibitory effect on COX-2 catalyzed prostaglandin E₂ biosynthesis*. *Arch*

Pharm Res, 2009; 32(2): 301-305. doi:10.1007/s12272-009-1120-6. Carvacrol inhibited COX-2-mediated PGE₂ production with an IC₅₀ ≈ 0.8 μM.

13. Kim DH, Kim CH, Kim MS, Kim JY, Jung KJ, Chung JH, et al. Suppression of age-related inflammatory NF-κB activation by cinnamaldehyde. Biogerontology, 2007; 8(5): 545-554. doi:10.1007/s10522-007-9098-2.

14. Guo JY, Huo HR, Zhao BS, Liu HB, Li LF, Ma YY, et al. Cinnamaldehyde reduces IL-1β-induced cyclooxygenase-2 activity in rat cerebral microvascular endothelial cells. Eur J Pharmacol, 2006; 537(1-3): 174-180. doi:10.1016/j.ejphar.2006.03.002.

15. Marsik P, Kokoska L, Pribylova M, Vanek T, Landa P. *In vitro anti-inflammatory activity of thymol and related compounds: inhibitory effects on cyclooxygenase-1 and cyclooxygenase-2*. J Ethnopharmacol. 2005; 96(1-2): 365–370. Thymol showed inhibitory activity against COX-1 and COX-2, leading to decreased prostaglandin E₂ biosynthesis

16. Kuyumcu Savan E, Küçükbay FZ. Essential oil composition of *Elettaria cardamomum* Maton. J Appl Biol Sci, 2013; 7: 42-45.

17. Chowdhury J, Shaha GC, Begum F, Bhuiyan MNH, Rahim M. *Essential oil composition from fresh and dried leaves of Cinnamomum tamala Nees*. Bangladesh J Sci Ind Res, 2013; 48(2): 152–158. GC-MS analysis identified methyl eugenol, eugenol, and other volatile constituents in the essential oil of *C. tamala* leaves.

18. Peana AT, Marzocco S, Popolo A, Pinto A. (-)-Linalool inhibits in vitro nitric oxide formation: probable involvement in the antinociceptive activity of this monoterpene compound. Life Sci, 2006; 78(7): 719-723. doi:10.1016/j.lfs.2005.05.065.

19. Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, et al. Therapeutic applications of terpenes on inflammatory diseases. Front Pharmacol, 2021; 12: 704197. doi:10.3389/fphar.2021.704197

20. Tang F, Chen F, Ling X, Huang Y, Zheng X, Tang Q, et al. Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation in RBL-2H3 cells. Mediators Inflamm, 2015; 2015: 463530. doi:10.1155/2015/463530