

EXPLORING PHARMACOGNOSTIC, PHYTOCHEMICAL, PHYSICOCHEMICAL PARAMETERS OF *TINOSPORA CARDIFOLIA*

*¹Brij Raj Singh, ²Rajib Kr. Singh, ³Suresh Chandra

¹Department of Pharmacognosy, Malti Memorial Trust CSM Group of Institutions, Faculty of B. Pharmacy, 8th Mile Stone Rewa Road, Iradatganj, Prayagraj, U.P.-212111.

²Department of Pharmaceutical Chemistry, Shakti College of Pharmacy, Balrampur, U.P.

³Department of Pharmacology, Malti Memorial Trust CSM Group of Institutions, Faculty of B. Pharmacy, 8th Mile Stone Rewa Road, Iradatganj, Prayagraj, U.P.-212111.

ABSTRACT

Leaf is light green colour, bitter taste, heart shaped, length 8-12cm, width 7-11cm. Stem were greenish(fresh), brown(dry), slight characteristics bitter taste, cylindrical twisted in shape 0.5-6cm in diameter, smooth or rough and warty surface. Microscopic observations of leaf shows covering and glandular trichomes, single layer and straight upper epidermis where as single layer and wavy lower epidermis. Vascular bundle xylem and phloem, cambium, collenchyma. T.S. of stem show epidermis, cork, cortex, vascular tissue (xylem phloem), pith. Characteristics of stem powder: -Nature coarse powder, Colour Greenish-brown, Odour Slightly aromatic earthy, Bitter taste. Ethanolic soluble extractive value- 2.66%, water soluble extractive value- 3%, Total ash 5.33%, Water- soluble ash 6.34%, Acid- insoluble ash 1.16%, moisture content 2.03%, extract percentage yield 1.45%, phytochemicals screening reveals presence of Carbohydrates, alkaloids, glycosides tannin, proteins, flavonoids and saponin. TLC of ethanolic extract (Rf value 0.8, 0.86, 0.88).

Article Received on 05 Jan. 2026,
Article Revised on 25 Jan. 2026,
Article Published on 05 Feb. 2026

<https://doi.org/10.5281/zenodo.18481794>

*Corresponding Author

Brij Raj Singh

Department of Pharmacognosy,
Malti Memorial Trust CSM Group
of Institutions, Faculty of B.
Pharmacy, 8th Mile Stone Rewa
Road, Iradatganj, Prayagraj, U.P.-
212111.

How to cite this Article: *¹Brij Raj Singh, ²Rajib Kr. Singh, ³Suresh Chandra. (2026). Exploring Pharmacognostic, Phytochemical, Physicochemical Parameters of *Tinospora Cardifolia*. World Journal of Pharmaceutical Research, 15(3), 1943-1950.

This work is licensed under Creative Commons Attribution 4.0 International license.

KEYWORDS: Morphology, Microscopy, Physicochemical, phytochemical, Fluorescence analysis.

1. INTRODUCTION

Tinospora cordifolia is scientific name Giloy plant, it is also known as gaduchi, Amarbel, Amrita, etc. is the native herbal medicine of India. It is a woody climbing vine that grows faster with support from another plant like the Neem, Mango tree. It easily grows by its stem (fragmentation). *T. cordifolia* occurs throughout tropical regions of India, Bangladesh, Sri Lanka, Myanmar, China, Thailand, Philippines, Indonesia, Malaysia, Vietnam, North Africa, and South Africa. From ancient times, it has been usable as a traditional herbal medicine to stimulate immunity and hormones and used as an antioxidant, anti-arthritis, anti-diabetic, anti-asthma, anti-cancer, anti-toxic, anti-microbial and for chronic fever, weight loss, cardio protective. *Tinospora cordifolia* has been reported to possess a number of medicinal properties. Botanical extracts made directly from crude plant material show substantial variation in composition, quality, and therapeutic effects. Quality of a drug that is determined by identity, purity, content, and other chemical, physical, or biological properties, or by the manufacturing processes. An innovative research effort to define the advantage of the traditional system of medicine with respect to its safety and efficacy could result in a better utilization of these complementary systems of medicine. The main goal of this study was to provide standardized quality control parameters and to give a scientific validation to the phytoconstituents of *Tinospora cordifolia*.^[1,2,3,4,5,6]

2. MATERIALS AND METHODS

2.1 Plant Collection and authentication

Fresh leaves and stem of *T. cordifolia* were collected from a local area in Prayagraj, Uttar Pradesh, India. The plant material was identified and authenticated by the Botanical Survey of India (BSI), Prayagraj, Authentication No.2025-26/ 55.

2.2 Macroscopic studies

Morphological studies were conducted through the evaluation of organoleptic characteristics, including color, odor, taste, texture, shape, and size. These features were carefully observed and assessed for botanical identification and analysis.^[15,16]

2.3 Microscopic studies

Microscopic studies were carried out by cutting transversely thin sections of leaf & stem. The sections were mounted in glycerin water solution for further observations and specific microscopic diagnostic characteristics were point out. The powder characteristics were also carried out.^[7,8,9]

2.4 Physicochemical parameters

The dried leaves powder of plant was taken and various physicochemical analysis viz., foreign matter, moisture content, extractive value, ash value was carried out and values are recorded.^[10,11]

2.5 Phytochemical screening

100g powdered plant leaves crude drug powder was defatted with Pet. ether and then extracted with 95% ethanol in a soxhlet extractor. The liquid extract was concentrated & various qualitative chemical analyses were carried out and recorded.^[12,13,14]

2.6 Thin layer chromatography

Alcoholic extract of *T. cardifolia* leaves were evaluated by TLC for the presence of phenolic compounds using chloroform: methanol: water (55:35:10) specific solvent systems and Iodine saturated chamber were used as visualizing reagents.^[14,15]

3. RESULTS AND DISCUSSION

3.1 Macroscopical study

The macroscopic and organoleptic characteristics of the leaves include their color, odor, taste, shape, texture, margin, apex, and petiole. These features are essential for identifying and distinguishing plant species (See Figure 1 and Table 1). The color of the leaves varies, while their odor and taste may offer insights into their chemical composition. The shape and texture of the leaves whether smooth or rough, help in characterizing the plant, as do the margins, which may be smooth, serrated, or lobed. The apex (tip) of the leaf can be pointed, rounded, or notched, and the petiole (leaf stalk) can be long or short, contributing to the overall structure and identification.

Fig. 1: *T. cardifolia* leaf and whole plant.

Table no. 1: Morphology of leaf.

S.No.	Features	Observations
01	Upper surface	Green
02	Lower surface	Light green
03	Odour	Earthy, woody
04	Taste	Bitter
05	Shape	Heart shaped
06	Size	Length 8-12 cm, width 7-11 cm.

3.2 Microscopical study of leaves and Stem

Both epidermises were single layered, palisade cells were single layered on both the surface with thick cuticle. 3-5 layers of mesophyll were present. Vascular bundles were present in the mid region. Covering trichomes are present. Calcium oxalate crystals are prismatic. Anomocytic stomata with wavy subsidiary cells are shown in Table 2 and Figure 2. Thick walled single layered epidermis with Trichome was present. 2-4 layers of cork cell and polygonal lignified parenchyma cells surrounded to the vascular bundles. It consists of xylem vessels, tracheids and xylem fibers (see Table 3 and Figure 3).

Fig. 2: T.S. of leaf.**Fig. 3: T.S. of stem.****Table No. 2: T.S. of leaf.**

S.no.	Features	Observations
1	Trichome	Covering and glandular
2	Upper epidermis	Single layered, straight walled,
3	Lower epidermis	Single layered, wavy walled
4	Vascular bundle	Xylem and phloem, cambium
5	Collenchyma cells	Present
6	Parenchyma	Thin-walled, number of vascular bundles

Table No. 3: T.S. of stem.

S.no.	Features	Observations
1	Epidermis	Single-layered epidermis of rectangular cells.
2	Cork	Cork with thick walled brownish and compressed cells. Cork contains thin walled colourless, tangentially arranged cells.
3	Cortex	Cortex consists of chlorophyllous collenchymatous cells and inner zone has rounded parenchymatous cell in upper part and elongated parenchymatous cells in lower part.
4	Vascular tissue	Vascular zone is composed of wedge-shaped strips of xylem, externally surrounded by semi-circular strips of phloem.
5	Pith	Pith is composed of round to oval thin walled parenchymatous cells, loaded with starch grains.

3.3 Powder Microscopy

The dark green, fine, odorless powder with a bitter taste appears to be derived from a plant material, possibly an herbal or medicinal plant. Microscopic examination of the powder reveals various structural elements, including trichome (hair-like structures), stone cells (which provide mechanical support), fibers (likely for structural integrity), vascular bundles (which transport water and nutrients), and tracheids (part of the plant's xylem, involved in water conduction). These features are indicative of a plant source with well developed anatomical structures, possibly used for its medicinal or therapeutic properties.

3.4 Fluorescence analysis

Fluorescence analysis involves the study of the fluorescence properties of a sample when it is exposed to ultraviolet (UV) light or other specific wavelengths of light (Shown in Table 4). In the case of plant powders, fluorescence analysis can help identify specific chemical compounds or detect contaminants and adulterants based on their unique fluorescence characteristics. When a sample like the dark green, odourless powder is subjected to UV light, it may exhibit a specific fluorescence pattern due to the presence of certain compounds, such as alkaloids, flavonoids, or other secondary metabolites. These compounds often fluoresce under UV light, revealing their presence and helping in the identification and authentication of the plant material. The intensity, color, and nature of the fluorescence can provide valuable information about the chemical composition of the sample, aiding in quality control and botanical identification. Fluorescence analysis can also be used to detect the presence of harmful substances or adulterants by comparing the observed fluorescence spectrum with known standards.

Table 4: Fluorescence analysis of powder.

Treatment	Visible	Long U.V.254nm	Short U.V.365nm
Powder	Grey Brown	Dark green	greenish
Powder+Water	Pale yellow	Yellowish-green	Dark brown
Powder+5%NaOH	Light yellow	Greenish	Grew
Powder+FeCl ₃	Brown	Pale yellow	Dark brown
Powder+dil. H ₂ SO ₄	Brown	Greenish brown	Dark brown
Powder+dil. HCl	cream	Green	Blues Dark
Powder+dil. HNO ₃	Brownish	Green	Dark brown
Powder + Ethanol	cream	yellowish	Dark
Powder+KOH	Yellowish	Greenish blue	Dark

3.5 Physicochemical analysis

Physicochemical analysis refers to the evaluation of the physical and chemical properties of a substance to understand its composition, structure, and behavior under different conditions. In the context of plant materials, such as powders derived from herbs or medicinal plants, physicochemical analysis is crucial for determining the quality, purity, and potential therapeutic efficacy of the plant product shown in Table 5.

Table 5: Physico-chemical analysis of *T.cordifolia*.

Physico-chemical parameter	Percentage
Foreign matter	Nil
Percentage extractive	2.66%
A) Ethanol soluble	3%
B) Water soluble Ash value % w/w	5.33%
A) Total ash	1.16%
B) Acid-insoluble ash	6.34%
C) Water-soluble ash Moisture content	2.03%

3.6 Qualitative Phytochemical screening

Phytochemical screening of ethanolic extract of *T. cardifolia* leaves shows the presence of several secondary metabolites. Mayer's and Wagner's reagent tests show moderate content for alkaloids, while flavonoid tests have indicated strong positive results. Triterpenes were present in a good extent and tannins, saponins, steroids, and cardiac glycosides were also present in some contents.

Table no. 6: Qualitative Phytochemical screening of *T. cardifolia*.

Phytoconstituents	Extractive	
	Ethanol extractive	Aqueous extractive
Carbohydrates	-ve	+ve
Alkaloids	++ve	-ve
Glycosides	+ve	-ve
Tannin	+ve	-ve
Flavonoid	++ve	-ve
Steroids	-ve	+ve
Terpenoids	-ve	+ve
Proteins	+ve	-ve
Saponin	+ve	+ve

3.7 Thin Layer Chromatography of *T. cardifolia*

Thin Layer Chromatography (TLC) is a widely used analytical technique for separating and identifying the chemical components of a sample. TLC can be employed to profile its phytochemical constituents shown in Table 7.

Table 7: TLC analysis.

Extract	Mobile phase	Evaluation of the chromatogram		
		Visualization	No. of spots	Rf values
Ethanol	Chloroform: methanol: water (65:25:10)	Iodine saturated chamber	3	0.8
				0.86
				0.88

4. CONCLUSION

Tinospora cordifolia is a widely used medicinal plant in traditional systems like Ayurveda, known for its diverse therapeutic potential. It is a perennial climbing shrub with significant pharmacognostics and pharmacological importance. Pharmacognostic evaluation of the stem includes macroscopic features such as a grey-brown, cylindrical stem with a warty surface, and microscopic features like abundant starch grains, lignified fibers, calcium oxalate crystals, and xylem vessels with various thickenings. The leaf is hypostomatic with anomocytic stomata on the lower surface. Ash value studies reveal: Total ash: 5.33%, Acid-insoluble ash: 1.16%, Water-soluble ash: 6.34%. These values confirm the purity and low level of adulterants in the crude drug. Preliminary phytochemical screening shows the presence of important constituents such as alkaloids, glycosides, steroids, flavonoids, diterpenoids, and polysaccharides.

5. REFERENCES

1. Cragg GM, Newman DJ, Sander KM. Natural products in drug discovery and development. *J. Nat. Prod.*, 1997; 60: 52-60.
2. Coleman LM, Fowler LL, Williams ME. Use of unproven therapies by people with alzheimer's disease. *Journal of the American Geriatrics Society*, 1995; 43: 747-750.
3. Chopra A, Doiphode V. Ayurvedic medicine: Core concept, therapeutic principles and current relevance. *Med. Chin. North Am.*, 2002; 86: 75-89.
4. Dash B, Sharma BK. *CharakSamhita*. 7th ed. Varanasi (India). Chaukhamba Sanskrit Series Office, 2001.
5. Thatte UM, Dahanukar SA. *Tinospora cordifolia* and immune system; *Indian J Pharmacology*, 1997; 29: 306-309.
6. Sharma PV. *Dravyaguna Vijnana*. Varanasi: Chaukhamba Bharati Academy, 2005.
7. Trease, G.E. and Evans, WC. *Pharmacognosy*; 15th Edition, Saunders Publishers, London, 2002.
8. Khandelwal. *Practical Pharmacognosy*; 1st edition, Nirali Publications, 1995.
9. World Health Organization. *Quality control Methods for Medicinal Plant Materials*; Geneva. A.I.T.B.S. Publishers & Distributors, Delhi, 1998.
10. Indian Pharmacopoeia. Appendix 3.23, A47, 1996; II.
11. Harborne JB. *Phytochemical Methods*; 2nd ed; London New York, Chapman and Hall, 1984.
12. Vogel AI. *A text book of Macro and semi micro qualitative inorganic analysis*; Longman Green & Co. Ltd. London, 1953; 489-563.
13. Turner RA. *Screening Methods in Pharmacology*; Academic press, New York, 1965; 100-116.
14. Stahl Engon. *Apparatus and General Techniques in TLC*. Thin layer chromatography; edited by Egon Stahl. George Allen & Unwin Ltd. London, 1969; 52-86.
15. Wagner H, Bladet S, Zgainski EM. *Plant Drug Analysis, A TLC Atlas*; 1st ed. Springer Verlag Berlin Heidelberg New York, 1994.
16. Wallis TE. *Textbook of Pharmacognosy*; 5th ed. CBS Publishers & Distributors, New Delhi, 1985.