

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.453

Volume 14, Issue 6, 774-783.

Research Article

ISSN 2277-7105

PHYTOCHEMICAL AND ANTIBACTERIAL ACTIVITY OF PROSOPIS CINERARIA L.

Nathiya P.*1, Ramesh S.2 and N. Nithiya3

^{1,2,3}Department of Botany, Nehru Memorial College (Autonomous) Puthanampatti -621 007, Trichy. Dt, Tamil Nadu (Affiliated to Bharathidasan University, Tiruchirappalli - 620 024).

Article Received on 25 January 2025,

Revised on 14 Feb. 2025, Accepted on 06 March 2025

DOI:10.20959/wjpr20256-35798

*Corresponding Author Nathiya P.

Department of Botany,
Nehru Memorial College
(Autonomous)
Puthanampatti -621 007,
Trichy. Dt, Tamil Nadu
(Affiliated to Bharathidasan
University, Tiruchirappalli 620 024).

ABSTRACT

Prosopis cineraria is locally known as Khejri one of the most common tree in Indian desert and belonging to family Fabaceae. The aim of this study was to carry out for identification of bioactive compounds from the leaves of ethanolic extract of Coleus aromatics by Gas chromatography and Mass spectroscopy (GC-MS). The GC-MS analysis revealed the presence of various compounds like 1,2benzenedicarboxylic acid, diethyl ester, Phytol, Octadecenal, Dibutyl phthalate, 2-hexadecen-1-ol, 3,7,11,15-tetramethyl, hexadecanoic acid, methyl ester, oleic acid, 9,12,15-octadecatrienoic acid, 9,12,15-Octadecatrienoic acid, ethyl ester and solanesol in the ethanolic extract of Coleus aromaticus. These findings support the traditional use of Coleus aromatics in various disorders. The present study was carried out to investigate the antibacterial activity present in the leaves, of Prosopis cineraria in Agar well diffusion method. Six bacterial strains were used as test microbes. The study was revealed the plant *Prosopis cineraria* showed the inhibitory zone against the bacteria. The highest zone of inhibition was showed by P. cineraria leaves against

Aeromona shydrophilla (13.3 ± 0.92 mm) and by *P. cineraria* leaves against *Staphylococcus* aureus (9 ± 1.10 mm). *E.coli* (9.33 ± 2.05), *Streptococcus faecalis*, (12.9 ± 0.41) *Pseudomonas* aeruginosa (3.6 ± 0.92 mm).

KEYWORDS: *Prosopis cineraria*, Fabaceae, Medicinal uses, GC-MS, Antibacterial activity.

www.wjpr.net | Vol 14, Issue 6, 2025. | ISO 9001: 2015 Certified Journal | 774

1. INTRODUCTION

Herbal medicines are being used by about 80% of the world population primarily in the developing countries for primary health care. (Vandna Pathak, 2016). Prosopis cineraria L. Druce belongs to family Fabaceae commonly known as "Khejari" It is also known as the wonder tree and the king of desert. It is commonly found in dry and arid regions of north western and southern India. (Ashish Kumar Pareek, et al, 2015). Phytochemical investigations of the leaves on plant resulted in the presence of hydrocarbons, phenol, alkaloids, proteins, carbohydrates, flavonoids, saponins and tannins derivatives (Chaudhary, 2018, Grag, 2013)

Pharmaceutical application *P. cineraria* such as pain, high cholesterol level, diabetes, anemia, kidney, disorders (Preeti Khandelwal, 2016). The leaf is high nutrient content like carbohydrates, proteins, fats, minerals and vitamins. Leaf paste is applied on boils and blisters, including mouth ulcers in livestock. The smoke of the leaves is considered good for eye troubles. Leaf extracts of P. cineraria have shows antibacterial, anti-hyperglycemic, antihyperlipidemic and antioxidative activities. It is also used by native healers to manage multiple ailments including gastrointestinal, respiratory, and cardiovascular disorders. (Sachdeva, 2014, Shruti Malik, et al, 2012). The stem bark has folkloric repute to possess anti-inflammatory, anti rheumatic, tonic, and vermifuge properties present in the plant. It is used in the treatment of anxiety, asthma, bronchitis, dyspepsia, fever, dysentery, leprosy, piles, watering of the mind and tumors. (Sharma, 2012 Sharma, 2013).

2. MATERIALSANDMETHODS

Sample collection

Prosopis cineraria (L.) popularly known as Vanni tree one of the important medicinal plant. In the present study the plant leaves was collected in polythene bags during the November 2024 from in around **Pachamalai hills and Trichy** District Tamil nadu India.

Preparation of plant extract

The leaves were washed several times with distilled water to remove the traces of impurities. They were dried at room temperature and coarsely powdered. The powder was different extracted with for 48 hours. A semi solid extract was obtained after a complete elimination of solvent under reduced pressure. The leaves extract was stored in refrigerator until used.

GC –MS analysis

GC-MS analysis was carried out on a GC clarus 500 Perkin Elmer system comprising a AOC-20i auto sampler and gas chromatograph interfaced to a mass spectrometer instrument employing the following conditions: column Elite-1 fused silica capillary column 30 x 0.25mm ID x 1µMdf, composed of 100% Dimethyl polydiloxane, operating in electron impact mode at 70eV; Helium gas (99.999%) was used as carrier gas at a constant flow of 1 ml /min and an injection volume of 0.5 µI was employed split ratio of 10:1 injector temperature 250 °C ion-source temperature 280 °C. The oven temperature was programmed from 110 °C isothermal for 2 min, with an increase of 10 °C/min, to 200 °C, then 5 °C/min to 280 °C, ending with a 9min isothermal at 280 °C. Mass spectra were taken at 70eV a scan interval of 0.5 seconds and fragments from 40 to 450 Da. Total GC running time is 36min. The relative percentage amount of each component was calculated by comparing its average peak area to the total areas. Software adopted to handle mass spectra and chromatograms was a Turbo Mass Ver 5.2.0.

ANTIBACTERIAL ACTIVITY

AGAR WELL DIFFUSION METHOD

The antibacterial present in the given sample was allowed to diffuse out into the medium and interact in a plate freshly seeded with the test organisms. The resulting zones of inhibition will be uniformly circular as there will be a confluent lawn of growth. The diameter of zone of inhibition can be measured in millimeters. Nutrient Agar medium, Nutrient broth, Whatman filter paper No. 1, Gentamicin antibiotic solution, test samples, test tubes, beakers conical flaks, spirit lamp, double distilled water and petri-plates.

Culture medium (Nutrient Agar Medium)

The medium was prepared by dissolving 2.8 g of the commercially available Nutrient Agar Medium (Hi Media) in 100ml of distilled water. The dissolved medium was autoclaved at 15 lbs pressure at 121°C for 15 minutes. The autoclaved medium was mixed well and poured onto 100mm petri plates (25-30ml/plate) while still molten.

Nutrient broth

Nutrient broth was prepared by dissolving 2.8 g of commercially available nutrient medium (HiMedia) in 100ml distilled water and boiled to dissolve the medium completely. The medium was dispensed as desired and sterilized by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Petri plates containing 20ml nutrient agar medium were seeded with 24hr culture

of bacterial strains (*Aeromonas hydrophila*, *Staphylococcus aureus*, *E.coli*, *Streptococcus faecalis*, *Streptococcus faecalis*, *Proteus vulgari and*, *Pseudomonas aeruginosa*,. Well were cut and different concentration of sample A (500 μg/ml, 250 μg/ml, 100 μg/ml and 50 μg/ml) was added. The plates were then incubated at 37°C for 24 hours. The antibacterial activity was assayed by measuring the diameter of the inhibition zone formed around the wells. Gentamicin antibiotic was used as a positive control. The values were calculated using Graph Pad Prism 6.0 software (USA).

3. RESULTS AND DISCUSSION

Plant have an almost ability to synthesize many number of substances is present. GC-MS analysis fifty six compounds were identified in Coleus aromatic us by GC-MS analysis. The active principles with their retention time (RT), molecular formula, molecular weight (MW) and concentration (%) are presented. The GC-MS analysis revealed the presence of various compounds like 1,2-benzenedi-carboxylic acid, di-ethyl ester, phytol, oct-adecenal, di-butyl phthalate, 2- hexadecen-1-ol, 3,7,11,15-tetramethyl, hexa-decanoic acid, methyl ester, oleic acid, 9,12,15-octadecatrienoic acid, (z,z,z), 9,12,15-octadecatrienoic acid, ethyl ester, (z,z,z) and solanesol represents the activity of phytocomponents identified in the ethanolic extracts of the Coleus aromaticus leaves by GC-MS. in (Table-1 and Fig-1). In the previous study he screened for phytochemical compounds present in *Prosopis cineraria* and showed the presence of various secondary metabolites such as alkaloids, flavonoids, phenols, tannins and steroids. (Kolapo, 2009, Grag, 2013). The chemical constituent of plants is desirable because such information will be value for synthesis of complex chemical substances. It is recommended as a plant of phyto pharmaceutical importance on account of the abundance level of major phyto compounds that may be utilized by drug designer's following appropriate isolation and characterization procedures for the active compound present in the plant. (Pavithra, et al 2020, Malic, 2007.).

Preliminary screening of antimicrobial potential was evaluated by using Agar well diffusion method on different extracts of dried unripe pods of *Prosopis cineraria* presented in (Table-2 and Fig-2) respectively. Eethanolic extract shows significant results on all pathogens whereas no activity was recorded by ethyl acetate extract. Among the tested six gram negative bacteria, *Staphylococcus aureus* (9.9 \pm 0.43) was more susceptible to methanol, chloroform and aqueous extracts. Maximum zone of inhibition (13.0 \pm 1.0) was observed against *Aeromonas hydrophilla* in ethanolic extract, whereas (16.0 \pm 1.0) in chloroform extract and

 (5.3 ± 0.57) in aqueous extract. The minimum zone of inhibition (9.6 ± 0.57) was showed by methanol extract in E.coli. (9.33 ± 1.0) Standard antibiotics, Gintamycin was taken as a positive control. It was observed that ethanol the extract showed better results against all pathogens in comparison to standard antibiotics. (Table-2 and Fig -2). Earlier the antimicrobial properties were reported by researchers from stem, bark and leaflets of *Prosopis cineraria* and even from root, stem, bark, pods of the different species of *Prosopis julifera* and *Prosopis africana*. (Velmurugan, 2011). Therefore, this was the first attempt when dried unripe pods of *Prosopis cineraria* were screened for antimicrobial potential. (Tarachand, *et al* 2012, Velmurugan, 2010).

Table 1: Phytochemical studies on GC-MS Analysis of leaves extracts of *Prosopis cineraria* L.

Start Tm	End Tm	Ret.Time	StartRT	EndRT	Search	Name	
8.26	8.27	8.265	8.235	8.3	Done	1-DODECENE	
8.89	8.9	8.895	8.86	8.935	Done	Benzothiazole	
9.085	9.095	9.09	9.05	9.175	Done	Benzaldehyde, 4-(1-methylethyl)-	
9.455	9.465	9.46	9.43	9.495	Done	HEXADECANE, 2,6,10,14-TETRAMETHYL-	
9.74	9.75	9.745	9.7	9.815	Done	Phenol, p-tert-butyl-	
10.495	10.505	10.5	10.465	10.54	Done	3-CYCLOHEXENE-1-METHANOL, . ALPHA.,.ALPHA.,4-TRIMETHYL-, ACETATE	
11.055	11.065	11.06	11.02	11.1	Done	1-Pentadecene	
11.16	11.17	11.165	11.135	11.2	Done	TETRADECANE	
11.795	11.805	11.8	11.765	11.84	Done	QUINOLINE, 1,2-DIHYDRO-2,2,4- TRIMETHYL-	
12.3	12.31	12.305	12.28	12.335	Done	Eicosane	
12.44	12.45	12.445	12.42	12.475	Done	Pentadecane	
12.55	12.56	12.555	12.475	12.585	Done	PHENOL, 2,4-BIS(1,1-DIMETHYLETHYL)-	
13.54	13.55	13.545	13.5	13.565	Done	Diethyl Phthalate	
13.57	13.58	13.575	13.565	13.61	Done	1-Heptadecene	
13.66	13.67	13.665	13.61	13.695	Done	OCTADECANE	
14.815	14.825	14.82	14.785	14.85	Done	Heptadecane	
15.13	15.14	15.135	15.075	15.18	Done	BENZENE, ETHYLPHENOXY-	
15.535	15.545	15.54	15.46	15.58	Done	TETRADECANOIC ACID	
15.765	15.775	15.77	15.735	15.805	Done	Benzene, 1,1'-(3-methyl-1-propene-1,3-diyl)bis-	
15.835	15.845	15.84	15.805	15.88	Done	1-OCTADECENE	
15.91	15.92	15.915	15.885	15.935	Done	Octadecane	
16.04	16.05	16.045	15.935	16.095	Done	BENZENE, ETHYLPHENOXY-	
16.945	16.955	16.95	16.93	17.03	Done	Heneicosane	
17.06	17.07	17.065	17.03	17.1	Done	7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione	
17.19	17.2	17.195	17.1	17.245	Done	Hexadecanoic acid, methyl ester	
17.485	17.495	17.49	17.46	17.565	Done	Benzothiazole, 2-(2-hydroxyethylthio)-	
17.645	17.655	17.65	17.565	17.73	Done	n-Hexadecanoic acid	

<u>www.wjpr.net</u> | Vol 14, Issue 6, 2025. | ISO 9001: 2015 Certified Journal | 778

17.885	17.895	17.89	17.835	17.925	Done	n Tatrogogonal 1	
18.76	18.77	18.765	18.735	18.795	Done	n-Tetracosanol-1	
	18.905	18.9	18.875	18.93	Done	n-Tetracosanol-1 Octacosane	
	19.135	19.13	19.08	19.16	Done	Methyl stearate	
17.125	17.133	17.13	17.00	17.10	Done	[1,1'-BICYCLOHEXYL]-1-CARBOXYLIC	
19.185	19.195	19.19	19.16	19.22	Done	ACID,	
17.103	19.193	17.17	17.10	17.22	Done	2-(DIETHYLAMINO)ETHYL ESTER	
19.445	19.455	19.45	19.42	19.47	Done	Linoleic acid ethyl ester	
						9-OCTADECENOIC ACID (Z)-, ETHYL	
19.5	19.51	19.505	19.47	19.55	Done	ESTER (2) , ETTIE	
	19.705	19.7	19.63	19.73	Done	PHENOL, 4,4'-(1-	
19.695						METHYLETHYLIDENE)BIS-	
19.755	19.765	19.76	19.73	19.785	Done	Behenic alcohol	
	19.815	19.81	19.785	19.84	Done	DOCOSANE	
19.87	19.88	19.875	19.84	19.915	Done	Eicosyl acetate	
	20.305	20.3	20.27	20.34	Done	N ,N-DIMETYLPALMITAMIDE	
						(3R,3AS,4S)-3-HYDROXY-3-ISOPROPYL-6,8	
20.615	20.625	20. 62	20.59	20.65	Done	A-DIMETHYL-1,2,3,3A,4,5,8,8A-	
20.615	20.625	20.62		20.65		OCTAHYDRO-4-AZULENYL	
						4-METHOXYBENZOATE	
20.68	20.69	20.685	20.65	20.725	Done	Pentacosane	
21 205	21.215	21.21	21.17	21.25	Done	1,4-Benzenediamine, N-(1,3-dimethylbutyl)-N'-	
21.205						phenyl-	
21.43	21.44	21.435	21.4	21.465	Done	Hexanedioic acid, bis(2-ethylhexyl) ester	
21.52	21.53	21.525	21.465	21.555	Done	Tetracosane	
21.58	21.59	21.585	21.555	21.62	Done	Eicosyl acetate	
21.685	21.695	21.69	21.625	21.735	Done	Phenol, 2,4-bis(1-phenylethyl)-	
21.82	21.83	21.825	21.76	21.855	Done	Phenol, 2,4-bis(1-phenylethyl)-	
	21.885	21.88	21.855	21.92	Done	1,3-Diphenyl-1-(2-hydroxyphenyl)butane	
22.02	22.03	22.025	21.92	22.085	Done	4-(1,3-Diphenylbutyl)phenol	
22.29	22.3	22.295	22.21	22.315	Done	Phenol, 2,4-bis(1-phenylethyl)-	
22.325	22.335	22.33	22.315	22.37	Done	Pentacosane	
22.425	22.435	22.43	22.37	22.47	Done	Hexadecanoic acid, 2-hydroxy-1-	
					Done	(hydroxymethyl)ethyl ester	
22.585	22.595	22.59	22.56	22.62	Done	BIS(2-ETHYLHEXYL) PHTHALATE	
23.04	23.05	23.045	22.995	23.07	Done	2-(2H-BENZOTRIAZOL-2-YL)-4-(1,1,3,3-	
						TETRAMETHYL BUTYL)PHENOL	
23.1	23.11	23.105	23.07	23.14	Done	HEXACOSANE	
	23.665	23.66	23.615	23.695	Done	4,4'-((p-Phenylene)diisopropylidene)diphenol	
23.92	23.93	23.925	23.875	23.975	Done	HEXACOSANE	
-	24.505	24.5	24.47	24.53	Done	2-Methylhexacosane	
24.875	24.885	24.88	24.825	24.93	Done	HEXACOSANE	

www.wjpr.net | Vol 14, Issue 6, 2025. | ISO 9001: 2015 Certified Journal | 779

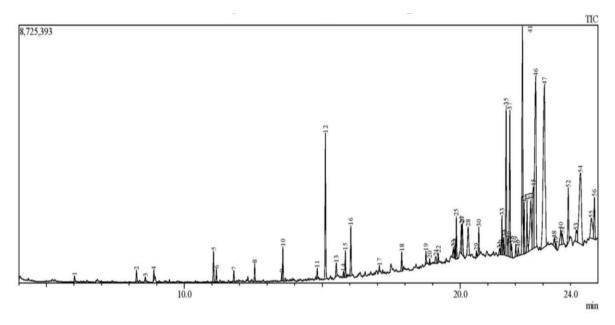
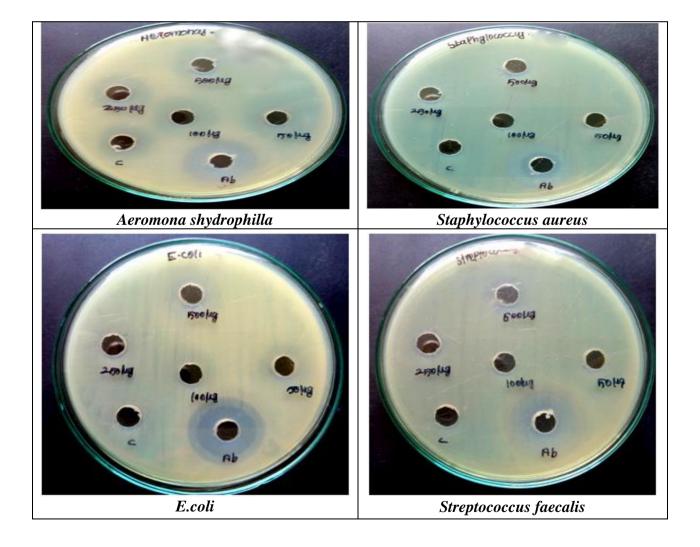



Fig -1 Phytochemical studies on GC-MS Analysis of leaves extracts of *Prosopis cineraria* L.

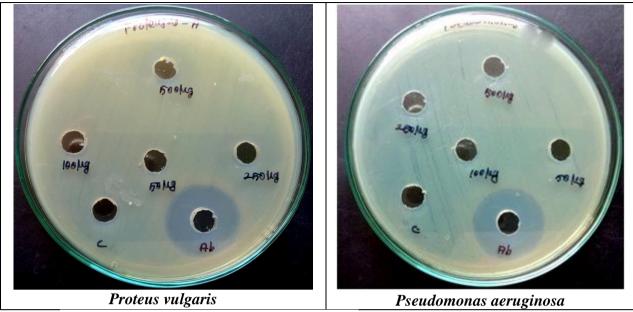


Fig 2: Means zone of inhibition obtained from sample against bacteria Aeromonas hydrophila, Staphylococcus aureus, E.coli, Streptococcus faecalis, Proteus vulgaris, and Pseudomonas aeruginosa.

Table 2: Means zone of inhibition obtained from sample against bacteria Aeromonas hydrophila, Staphylococcus aureus, E.coli, Streptococcus faecalis, Proteus vulgaris, and Pseudomonas aeruginosa.

S.NO	Name of the test micro	Zone of the inhibition (mm)					
	organisms	500μg/ml	250 μg /ml	100 μg /ml	50 μg /ml		
1	Aeromonas hydrophilla	13± 1.63	9.7 ± 0.57	6.33 ± 2.05	5.66 ± 2.49		
2	Staphylococcus aureus	9.9 ± 0.43	4 ± 1.63	3.93 ± 0.09	2.93 ± 0.09		
3	E.coli	9.33 ± 2.05	7.33 ± 1.24	7.16 ± 0.24	2.93 ± 0.09		
4	Streptococcus faecalis	12.9 ±0.41	3.66 ± 1.69	2.8 ± 0.21	3.39 ± 0.28		
5	Proteus vulgaris	4.33 ± 1.24	7.83 ± 0.41	5.83 ± 0.24	3.39 ± 0.28		
6	Pseudomonas aeruginosa	3.66 ± 1.69	5.93 ± 0.09	7.8 ± 0.29	4.56 ± 0.32		

CONCLUSION

Prosopis cineraria commonly used for various kinds of diseases is regarded as a plant of high medicinal value because of its leaves and bark. This plant was suggested various therapeutic use of plant were reported such as antidepressant, anticancer and anti-inflammation. *Prosopis cineraria* deals with a of phytochemical constituents including alkaloids, carbohydrates, phytosterols, saponins, phenols, tannins, flavonoids, terpenoids, phlobatannins, protein and free amino acids are present in the leaf material. The plant can be recommended extended for future investigation into the field of phytochemistry, ethnobotany, pharmacology and other biological action for drugs are present.

ACKNOWLEDGEMENT

We are would like to thank **THE PRESEDENT, ER. PON BALA SUBRAMANIAN and PON RAVI CHANDRAN** Secretary of Nehru Memorial College (Autonomous) Puthanampatti Trichy, Tamil nadu India. For providing all the facilities to carry out this research work.

REFERENCE

- 1. Ashish Kumar Pareek, Dr. Shiv Garg, Manoj Kumar, Sardar Mal Yadav. *Prosopis cineraria*: A Gift of Nature for Pharmacy. International Journal of Pharma Science and Research, June 2015; 6(6).
- Chaudhary K K, Kumar G, Varshney A, Meghvansi M K, Ali S F, Karthik K, Dhama K, Siddiqui S and Kaul RK: Ethnopharmacological and phytopharmaceutical evaluation of *Prosopis cineraria*: An overview and future prospects. Current drug metabolism, 2018; 19(3): 192-14.
- 3. Garg A, Mittal S K. (2013) Review on *Prosopis cineraria*: A potential herb of Thar Desert. Drug invention today, 5: 60-65.
- 4. Garg A, Mittal S K. 2013.Review on *Prosopis cineraria*: A potential herb of Thar Desert, Drug invention today, 5: 60-65.
- 5. Kalaipriya, P.V., Senthamilselvi, S., Govindaraju, M., 2021, A study on Phytochemical screening, Antioxidant and Antimicrobial activities of Leaf Extract of *Datura innoxia Asian Journal of Research in Biology*, 4(1): 24-30.
- 6. Khandelwal Preeti, Sharma Ram Avatar, Agarwal Mala (2015). Pharmacology phytochemistry and therapeutic application of *Prosopis cineraria* (L). Journal of plant science, 2015; 3(1-1): 33-39.
- 7. Kolapo A L, Okunade M B, Adejumobi J A and Ogundiya M O. Phytochemical Composition and Antimicrobial Activity of *Prosopis africana* Against Some Selected Oral Pathogens. World J. Agri. Sci, 2009; 5: 90-93.
- 8. Malik A, Kalidhar S B. Phytochemical investigation of *Prosopis cineraria* L. (Druce) leaves. Indian Journal of Pharmaceutical Science, 2007; 69: 576-578.
- 9. Pavithra, V.V., Sathibabu, U., Mathavan, S., Gobeeswaran, S., Ganapathy, V.S., 2020, identification of bioactive factors from *Abrus precatorius* by GC–MS, NMR and evaluation of its antioxidant activity Materials Today: Proceedings, 26(4): 3518-3521.

- 10. Preeti Khandelwal, R. A. Sharma, Mala Agarwal (2016). Phytochemical Analyses of Various Parts of *Prosopis cineraria*. International Journal of Pharmacy and Chemistry, 2(1): 6-9.
- 11. Sachdeva S, Kaushik V, Saini V. A. (2014). Review on Phytochemical and Pharmacological potential of *Prosopis cineraria*. International Journal of Ethnobiology & Ethnomedicine, 1(1): 1-4.
- 12. Sharma D, Singla Y P. 2013. Evaluation of Antihyperglycemic and Antihyperlipidemic activity of Prosopis cineraria (Linn.) in wistar rats. Journal of Scientific and Innovative Research, 2(4): 751-758.
- 13. Sharma R, Jodhawat N, Purohit S and Kaur S. (2012). Antibacterial activity and phytochemical screening of dried pods of *Prosopis cineraria*. International Journal of pharmaceutical Sciences Review and Research, 14(1): 15-17.
- 14. Shruti Malik, Sonia Mann, Deepika Gupta, Rajendra K. Gupta (2013). Nutraceutical Properties of *Prosopis cineraria* (L.) Druce Pods: A Component of "Panchkuta". Journal of Pharmacognosy and Phytochemistry, 2013; 2(2): 66-72.
- 15. Tarachand, Anil Bhandari, Bhupendra K. Kumawat, Ashok Shrma and Naveen Nagar. Physiochemical and Preliminary phytochemicals screening of pods of *Prosopis cineraria* (L.) Druce. Der Pharmacia Sinica, 2012; 3(3): 377-381.
- 16. Vandna Pathak and Pramod Kumar (2017). Phytochemical Screening of *Prosopis* cineraria (L.) Stem Bark and Leaves. International Journal of Innovative Science and Research Technology, 2(8): 306-317.
- 17. Velmurugan V, Arunachalam G, Ravichandran V. Anthelmintic potential of *Prosopis* cineraria (Linn.) Druce stem barks. Asian Journal of Plant Science and Research, 2011; 1(2): 88-91.
- 18. Velmurugan V, Arunachalam G, Ravichandran V. Antibacterial activity of stem bark of Prosopis cineraria (Linn.) Druce. Archives of Applied Science Research, 2010; 2(4): 147-150.