WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 11, Issue 9, 1760-1778.

Review Article

ISSN 2277- 7105

A REVIEW ON PHARMACOLOGICAL ACTION OF ARJUNA

(Terminalia arjuna (Roxb.) Wt. and Arn.)

Dr. Bhumika*¹, Dr. Sakshi Sharma² and Dr. Rajesh Sharma³

¹PG Scholar(Ayu.), Dravyaguna Department, Ayurvedic and Unani Tibbia College and Hospital, Karol Bagh, New Delhi.

²Senior Research Officer (Ayu.) Central Ayurveda Research Institute, West Punjabi Bagh, New Delhi.

³Associate Professor(Ayu.) and H.O.D, Dravyaguna Department, Ayurvedic and Unani Tibbia College and Hospital, Karol Bagh, New Delhi.

Article Received on 21 May 2022,

Revised on 11 June 2022. Accepted on 01 July 2022

DOI: 10.20959/wjpr20229-24978

*Corresponding Author Dr. Bhumika

PG Scholar(Ayu.), Dravyaguna Department, Ayurvedic and Unani Tibbia College and Hospital, Karol Bagh, New Delhi.

ABSTRACT

From ancient time medicinal plants have been a main source of therapeutic agents to cure diseases. In Ayurvedic classical texts, use of (Terminalia arjuna (Roxb.) Wt. and Arn. Combretaceae) has been described in various ailments skin disorders, hemorrhage, diabetes, cough, tumor, leucorrhoea, inflammation, leucoderma, ulcers, anemia. When the plant is used in combination with other traditional drugs it shows good safety result. As per classical texts (samhitas, samgraha granthas, nighantus) 125 formulations with ingredient Arjun has been described curing 20 diseases. Different parts of Arjuna is used in various dosage forms such as swarasa (juice), kwath(decoction), kshirapaka(milk decoction),

churna(powder), lepa(paste). Terminalia arjuna (Roxb.) Wt. and Arn have various therapeutic properties such as cardioprotective, anti-inflammatory, anti-asthmatic activity, anti tumor activity, anti-microbial activity. So, the present review is carried out to summarise information and knowledge about Terminalia arjuna (Roxb.) Wt. and Arn on aspects of pharmacological and clinical studies to know more divinity of Arjuna.

KEYWORDS: Arjuna, Terminalia arjuna, Ayurveda, Medicinal property, Pharmacological action.

INTRODUCTION

In Ayurveda many traditional drugs which are used are of plant, animal, metal and mineral origin, where maximum drugs are of plant origin. [1] Information about such drugs are available in the classical texts of Ayurveda named as Vedas (6000 BC), Samhitas (1500 BC – 600 AD), Nighantu and Samgraha granthas (800AD – 1900AD). [2] Medicinal plants has a great role in maintaining health and are the major raw materials for both traditional and conventional medicine preparations. Most of the people choose plant based or herbal medicines than conventional.^[3] Worldwide, the traditional knowledge system has expanded great importance in reference with conservation, sustainable growth and search for new application patterns of plant resources. Traditional medicinal system includes the knowledge, expertise and implementation based on the assumptions, beliefs and experiences of folk people to protect their health problems. So, Ethnobotanical studies are most important to know about the ancient times and current culture about plants in the world and preserving original knowledge of medicinal plants. The quantitative ethnobotanical studies were used to identify the plant uses as food, [6] human health care medicines, [7] veterinary medicine [8] and economically importantance. [9] In India, medicinal plants are the best source to get variety of drugs, and used to treat critical diseases. The different systems of Indian traditional medicines are Ayurveda, Siddha, Unani etc. The awareness is increasing about the importance of herbal medicine. Herbal drugs gained popularity because of their benefits such as easy availability, secure, low cost, very rare side effects and also have cultural preferences. The plants contain organic compounds providing physiological action on human body and the bioactive substances includes carbohydrates, terpenoids, steroids, alkaloids, tannins, flavonoids, phenols.[10]

Arjuna, a classical drug of herbal origin, botanically identified as *Terminalia arjuna (Roxb.) Wt. and Arn.*, belongs to the Combretaceae family has been earlier used by the Ayurvedic physicians, for the management of various disease conditions. It is a deciduous tree found throughout India with height of 60-90 feet. The thick, white to reddish grey bark has been used in India's native Ayurvedic medicine for over three centuries, in various diseases. In recent years, there has also been an increasing demand for nanoparticles derived from medicinal plants like *Terminalia* family due to their applications in various fields of research like medicine, catalysis, energy and materials. [11,12,13] It is seen that the saponin glycosides in *T. arjuna* may be responsible for its inotropic effects, while the flavonoids/phenolics may supply antioxidant activity as well as vascular amplification activity, in this manner

authenticating the multiple activities of this plant for its cardio-protective function. ^[14,15,16] The present review encompases morphological features, distribution, a few traditional and ethnomedicinal uses, pharmacological significance of Terminalia arjuna and can be referred for further scientific investigations on the bioactive secondary metabolites of the plant.

BOTANICAL DESCRIPTION

It is a large evergreen deciduous tree with height 60-80 feet in height. Leaves are simple, subopposite, oblong or elliptical, cordate, shortly acute or obtuse at the apex, 5-25,4-9 cm. The base is rounded in shape or sometimes cordate. The petiole is short (2-4cm long), sericeous with 2 (or 1) prominent two glands at the petiole apex, immediately below the leaf. This character represents a unique pharmacognostic feature of Terminalia arjuna. The bark is smooth, pinkish-grey, from outside and fakes off in large, curved, and rather flat pieces. [17] Each piece may vary in size up to 15 cm or more in length, 10cm in width and 3-10 mm in thickness. Sapwood is reddish-white and the heartwood is brown and variegated with dark colored streaks. Bark consists of a single layer epidermis with hair-like projections and few scattered lenticels. The epidermis underlined by a thin layer of the cortex. Old bark contains periderm and secondary phloem. Flower, tree bears white sessile flowers arranged in short axillary spikes or Terminal panicle. The flowers are bisexual. Each flower consists of 10 stamens and an ovary which is a disk clothed with yellowish or reddish hairs. Bracteoles are linear, lanceolate. The calyx is glabrous. Flowering begins in April and extends to May. Fruit - Its fruit is a drupe, 2.5-5 cm long, ovoid or oblong, fibrous woody, smooth-skinned with five hard angles or wings. The lines of the wings are obliged and curved upwards. [18]

ARJUNA TREE

ARJUNA BARK

ARJUNA TRUNK

ARJUNA TREE ARJUNA BARK ARJUNA TRUNK

Taxonomical Classification

Kingdom: Plantae

Division: Magnoliophyta

Class: Magnoliopsida

Order: Myrtales

Family: Combretaceae

Genus: *Terminalia* Species: *T. arjuna*

Ethnomedicinal Uses

Over ten centuries *Terminalia arjuna (Roxb.) Wt. and Arn.* has been used in Indian Ayurvedic Medicine for, its cardioprotective properties include angina, hypertension, deposits in arteries. Traditionally kshirapaka is prepared as a milk decoction (Kwatha) for cardiovascular disease. It is used for skin disorder wounds, ulcers, hemorrhage, leucorrhoea, diabetes, cough, tumor, asthma, inflammation, leucoderma, anemia. The bark is sweet, acrid, cooling and heating, aphrodisiac, expectorant, tonic, styptic, antidysenteric, purgative, and laxative. In Charak Samhita the bark powder is used as an astringent and diuretic. [19] 1200 years ago 'Astang Hridayam' was written and later, Chakradutta and Bhava Mishra, described its use in chest pain. [20,21] The bark is traditionally prepared in the form of an alcoholic decoction called 'save, with clarified butter and along with boiled milk. [22,23]

CLASSICAL REVIEW

Synonym

According to Habitat

• Nadisarja: Arjuna commonly grows on the river bank.

According to Morphology

• Dhavala: The bark is white.

• Kakubha: Arjuna is a large tree that covers a large area.

• Sarpana: Arjuna is large tree with spreading branches.

Madhu Gandhi Prasunak: Flowers are sweet- scented.

According to Properties and action

• Indradru: The tree which is very potent medicine.

• Veeravriksha: A potent tree.

• Devshal: Tree with strong action.

Various available samhitas (classical texts), nighantus (lexicons), samgraha granthas (compendia) and some other texts related to prayoga were referred; the synonyms, properties, actions and various formulations with their adhikara (prime indication) were compiled, critically analysed and arranged in a systematic manner.

Pharmacological properties of Arjuna: (Ayurvedic view)^[24]

Arjuna has been attributed with Kashaya rasa, katu vipak, sheeta veerya, laghu and ruksha gunas. It pacifies kapha and pitta doshas. It also possesses the prabhava that is Hridya. It is being recommended to alleviate various disease conditions like charmaroga (skin diseases), Hridyaroga (heart diseases), Raktavikara (disorder of blood), Shotha (inflammation), Raktapitta (bleeding disorder), Pandu (anemia), Swasa (asthama), Kandu (itching), Kustha (leprosy), Jwara (fever), Medoroga (obesity), Asthibhanga (bone fracture), Vrana (wound), Yauvanpidika (acne), Netraroga (Eye diseases) and Karnaroga (ear diseases).

Part used of Arjuna^[25,26]: Bark, Leaves and fruits.

Dose of Arjuna^[25,26]: Bark powder; 3-6 gm Bark decoction; 50-100 ml. For Kshirapaka; 5-10 gm.

PHARMACOLOGICAL STUDIES

Table 1: Pharmacological studies on Terminalia arjuna (Roxb.) Wt. and Arn.

Pharmacological activity	Model used and study design	Type of extract	Observation	References
Cardioprotective Activities	Frog and rabbit hearts.	glycoside in its bark	Terminalia arjuna has resulted in significant stimulant action on frog and rabbit hearts. It acts as a cardiotonic due to the presence of glycoside in its bark.	Ghoshal LM ^[27]
Cardioprotective Activities	Rabbit	Aqueous bark extract	Aqueous bark extract injected into rabbit dose (1024 µg/ml) resulted in to rise in coronary flow.	Bhatia J, Bhattacharya SK, Mahajan P ^[28]
Cardioprotective Activities	Frog and rabbit heart	Alcoholic extract	Effects of Terminalia species of plant on the cardiovascular system were studied in the isolated frog, rats atria, and isolated perfused frog and rabbit hearts. It was reported that	Srivastava RD, Dwivedi S. ^[29]

Wound healing activity	In vitro	Triterpenoids compounds present in bark	Triterpenoids compounds present in the bark of <i>Terminalia arjuna</i> , also have a beneficial effect on the regeneration of bone and muscle tissue of frogs.	Patnaik T, Dey RK ^[33]
Wound healing activity	In vivo	Hydroalcoholic extract of bark Terminalia arjuna	Hydroalcoholic extract of bark <i>Terminalia arjuna</i> was applied on dermal wounds of rats. It was observed that tannins were found more effective than saponin for complete epithelialization.	Chaudhari M, Mengi ^[32]
Cardioprotective Activities	in human LDL and rat liver microsomes	ethanolic extract methanolic extract of Terminalia arjuna	Metal ion-induced oxidative degradation of lipids in human LDL and rat liver microsomes was also suppressed by using ethanolic extract of <i>Terminalia arjuna</i> . The high amount of DPPH (2, 2-diphenyl-1-pericrylhydrazyl) free radical, ascorbic acid, ferric reducing power present in methanolic extract of <i>Terminalia arjuna</i> stem bark were found highly reactive for antioxidant and free radical scavenging activities.	Mety SS, Mathad P. ^[31]
Cardioprotective Activities	human plasma LDL from copper mediated oxidation	Aqueous extract of Terminalia arjuna	the alcoholic extracts of three Terminalia species namely, Terminalia arjuna Wight & Arn., Terminalia bellerica Roxb. And Terminalia chebula Willd, exhibited negative inotropic and chronotropic effects on the heart in a dose dependent manner. Free radicals scavenging activities are also increased in polymorphonuclear cells by arjungenin and its glucoside, arjunglucoside. Aqueous extract of Terminalia arjuna protects human plasma LDL from copper mediated oxidation.	Singh S, Latheef SAA ^[30]

Anti-inflammatory Activities		Arjunolic acid	Arjunolic acid also showed anti-inflammatory activity, it inhibits the arachidonic acid-induced ear edema by 55.5%. It affects the cyclooxygenase and increasing its anti-inflammatory activities.	Thiagarajan H, Sivasami ^[34]
Antiasthmatic Activity	Mast cell disruption releases histamines	Alcoholic extract of Terminalia arjuna	Mast cell disruption releases histamines, acetylcholine, etc. Alcoholic extract of <i>Terminalia arjuna</i> which contains arjunolic acid was found significant for mast cell stabilization. Histamine causes bronchoconstriction leads to asthma. <i>Terminalia arjuna</i> act against histamine and acetylcholine. Acetylcholine induced bronchoconstriction, secondary to stimulation of histamine.	Prasad MVV, Anbalagan ^[35] Summer R, Sigler R, ShelhamerJH, ^[36]
Antitumor activity	HepG2 cells (Human hepatoma cell line) at concentrations 60 and 100mg/L	Terminalia arjuna extract	Terminalia arjuna extract was treated to HepG2 cells (Human hepatoma cell line) at concentrations 60 and 100mg/L, which results in increased intracellular ROS, and a gene was also activated that governs the apoptosis. Therefore Terminalia arjuna extract can deplete GSH levels and promote oxidation induction that results in apoptosis of HepG2 cells, due to the accumulation of p53 protein and proteolytic cleavage of caspase-3 protein. Luteolin has antimutagenic activity, it inhibits the growth of the cancerous cell. Ethyl gallate and gallic acid have antimutagenic action.	Pettit GR, Hoard MS, Doubek ^[37]
Antimicrobial Activity	In vitro	Bark extract	Bark extract has shown significant antibacterial activity against Staphylococcus aureus (MTCC 96), Staphylococcus	Singh DV, Gupta MM ^[38]

www.wjpr.net | Vol 11, Issue 9, 2022. | ISO 9001:2015 Certified Journal | 1766

In vitro subtilis (MTCC121), and Mycobacterium smegmatis (MTCC155). The crude extract has shown activity against Klebsiella pneumonia (MTCC 109) and Enterococcus faecalis (MTCC 439). Antibacterial activity against both Gram-positive and Gram-negative bacterial species Bacillus megatherium, Bacillus subtilis, Staphylococcus aureus, Sarcina lutea, and eight strains of Gramnegative bacteria - Salmonella paratyphi, Salmonella tiphi, Vibrio parahemolyticus, Vibrio mimicus, Escherichia coli, Shigella dysenteriae, Pseudomonas aureus, and Shigella boydii was reported in a crude extract of bark of Terminalia arjuna. Similarly, 100% ethanol extract also possesses antibacterial activity against Vibrio cholera.	In vitro	ethanol extract of bark of Terminalia arjuna	The antimicrobial potential was observed in 50% ethanol extract of bark of <i>Terminalia arjuna</i> against Bacillus megatherium, Bacillus subtilis, Staphylococcus aureus, Sarcina lutea, and eight strains of Gram negative bacteria - Salmonella paratyphi, Salmonella tiphi, Vibrio parahemolyticus, Vibrio mimicus, Escherichia coli, Shigella dysenteriae, Pseudomonas aureus, and Shigella boydii and maximum inhibition was	Morshed MA, Uddin A, Rahman A, Hasan T. ^[40]
Streptococcus mutans (MTCC 800) Pagillus	In vitro	extract and crude extract of bark of Terminalia	(MTCC 890), Bacillus subtilis (MTCC121), and Mycobacterium smegmatis (MTCC155). The crude extract has shown activity against Klebsiella pneumonia (MTCC 109) and Enterococcus faecalis (MTCC 439). Antibacterial activity against both Gram-positive and Gram-negative bacterial species Bacillus megatherium, Bacillus subtilis, Staphylococcus aureus, Sarcina lutea, and eight strains of Gram-negative bacteria - Salmonella paratyphi, Salmonella tiphi, Vibrio parahemolyticus, Vibrio mimicus, Escherichia coli, Shigella dysenteriae, Pseudomonas aureus, and Shigella boydii was reported in a crude extract of bark of <i>Terminalia arjuna</i> . Similarly, 100% ethanol extract also possesses antibacterial activity against Vibrio cholera.	Alam KMA, Mazumdar

			found inS. Dysenteriae	
			followed by S. paratyphi, S.	
			tiphi, V. mimicus, E.coli, P.	
			_	
			aureus, S. boydii, B.	
			megaterium, S. aureus, S.	
			lutea, B. subtilis, and V.	
			parahemolyticus. Results	
			indicate that ethanol extract	
			of bark of <i>Terminalia</i>	
			arjuna possesses broad-	
			spectrum antimicrobial	
			potential	
			Stem bark samples, apical	
			bark, middle bark, mature	
			bark of <i>Terminalia arjuna</i>	
			were studied for	
			antimicrobial activity	
			l •	
			against different pathogenic	
			bacteria such as Bacillus	
			subtilis, Staphylococcus	
		Methanol	aureus, Escherichia coli,	
	In vitro	extract of apical	Klebsiella pneumonia,	Patil UH,
	III VILIO	bark	Pseudomonas aeruginosa,	Gaikwad DK ^[41]
		Uaik	Salmonella typhi,	
			Micrococcus, and Proteus	
			mirabilissp. Methanol	
			extract of apical bark was	
			found more effective than	
			middle and mature bark	
			against all organisms but	
			Staphylococcus aureus was	
			most sensitive [56]	
			Alcoholic and aqueous	
			extracts of <i>T. arjuna</i> showed	
			significant inhibition	
	CYP3A4,	Alcoholic and	activity of CYP3A4,	
Antioxidant, anti-	CYP2D6 and	aqueous extract	CYP2D6 and CYP2C9	
inflammatory, and	CYP2C9 enzymes	of T. arjuna at	enzyme. Enzyme kinetic	Varghese et al ^[42]
immunomodulatory	in human liver	35 mg/ml dose	studies suggested that the	vargitose et ai
immunomodulatory	microsome	level	extracts of <i>T. arjuna</i> showed	
	microsome	10.001	rapidly reversible non-	
			competitive inhibition of all	
			three enzymes in human	
			liver microsomes	
	Human		Arjungenin is the most	
	polymorphonuclear		active compound than others	
	(PMN) cells and	Methanolic	and had moderate inhibitory	Pawar and
Antioxidant	hypochlorous acid	extract of <i>T</i> .	effect on the process of	Bhutani ^[43]
	from human	arjuna	respiratory oxyburst and its	2110101111
	neutrophils		IC50 value is shown 60	
	пециориия		1030 value is shown ou	

			mg/ml.	
Antioxidant	Male Wistar albino rats (110 e140 g) e (6e7 weeks old)	T.arjuna was administrated orally to Wistar rat at different doses (0.42 mg/kg to 6.8 mg/kg) for 6 days/week for 4 weeks	Chronic administration of butanolic fraction of alcoholic extract of <i>T. arjuna</i> bark has cardioprotective potential against Dox-induced cardiotoxicity.	Singh et al ^[44]
Antioxidant and antimutagenic activity	Wistar rats (200e250 g) and Swiss albino mice (18e22 g)	Aqueous and ethanolic extraction of <i>T. arjuna</i>	The alcoholic extract of <i>T. arjuna</i> (ALTA) has shown potent antioxidant activity with EC50 of 2.491 ± 0.160, 50.110 ± 0.150 and 71.000 ± 0.025 in DPPH assay, superoxide radical scavenging activity and lipid peroxidation assay, respectively. In micronucleus test, EC50 of 2.410 ± 0.140, 40.500 ± 0.390 and 63.000 ± 0.360 in percentage of micronucleus in ALTA (100 and 200 mg/kg p.o) showed significant reduction in both polychromatic erythrocytes and normochromatic erythrocytes and also shown significant reduction in P/N ratio	Viswanatha et al ^[45]
Anticarcinogenic and antimutagenic spotential	In vitro and in vivo method	Aqueous extracts from 75 mg/ml to 200 mg/ml for lymphocyte culture for in vitro experiments Aqueous extracts from 50 mg/kg to 350 mg/kg body weight for in vivo experiments	Used human lymphocyte culture and bone marrow cells of albino mice (8e10 weeks old and weight ranges between 25-35 g) The number of sister chromatid exchanges got reduced from a higher level of 15.0 ± 1.4 per cell to 7.7 ± 0.5 per cell with S9 mix at 48 h of treatment. The replication index was enhanced from 1.33 to 1.55 in vitro. In the in vivo experiments, effective reduction in clastogeny ranging from 15.22% to 54.82% from the mutagen	Ahmad et al ^[46]

			treated positive control and the total frequencies in aberrant cells got reduced from 429 due to AFB1 to 141 due to 5th concentration	
Antioxidant, anti- inflammatory and immunomodulatory	Cell cultures of human monocytic (THP-1) and human aortic endothelial cells (HEACs)	T.arjuna alcoholic extract (TAAE) and T. arjuna Aqueous extract (TAWE) from steam bark at a dose of 1e50 mg/ml	of T. arjuna extracts at 32 h of exposure. TAAE and TAWE inhibited the lipid peroxidation and attenuated H2O2 mediated ROS generation in THP-1 cells by promoting catalase, glutathione peroxidase activities and by sustaining cellular reducing power. Marked effects of <i>T. arjuna</i> steam bark on cultured human monocytic and aortic endothelial cells provide the biochemical and molecular basis for therapeutic potential of T. arjuna steam bark against cardiovascular diseases (CVD).	Kokkiripati et al ^[47]
Antioxidant	Male albino Wistar rats (120 e150 g body weight) were subjected to oxidative stress associated with in vitro ischemic reperfusion injury (IRI	Two doses (500 and 750 mg/kg in 2% carboxy methyl cellulose (CMC)), 6 days per week for 12 weeks	T. arjuna augments endogenous antioxidant compounds of rat heart and also prevents oxidative stress associated with IRI of the heart.	Gauthaman et al ^[48]
Antioxidant	Human neutrophils isolated from fresh, heparinized human blood by using Histoprep and suspended in HBSS medium containing gelatin.	Ethanolic extraction of <i>T. arjuna</i> containing arjunic acid, arjungenin, arjunetin and arjunglucoside I	Arjungenin and its glucoside extracted from <i>T. arjuna</i> and are exhibited a significant free radical scavenging activity on the superoxide release from PMN cells. Arjungenin exhibited great inhibitor action on the hypochlorous acid productin from human neutrophils.	Pawar and Bhutani ^[49]
Antioxidant	Male Swiss albino mice treated with NaF at a dose of 600 mg/L for 1 week.	Ethanolic extract of <i>T.</i> arjuna at a dose of 50 mg/kg of body weight and with vitamin C at a	Ethanolic extract of <i>T. arjuna</i> protects murine hearts from NaF-induced oxidative stress via its antioxidant properties.	Sinha et al ^[50]

		dose of 100		
		dose of 100 mg/kg body weight for 1 week		
Antioxidant	Poloxamer (PX)- 407 induced hyperlipidemic albino Wistar rats	Three fractions diethyl ether, ethyl acetate and ethanol of <i>T. arjuna</i> exerted hypolipidemic and antioxidative effects at two different doses levels (175 and 350 mg/kg body weight	Hypolipidemic and antioxidant effects of <i>T. arjuna</i> fractions were noticed as ethanol > diethyl ether > ethyl acetate. Ethanolic fraction of <i>T. arjuna</i> possesses the potent properties of antioxidant and hypolipidemic than other fractions and has therapeutic potential for the prevention of coronary arterial disease.	Subramaniam et al ^[51]
Antioxidant	Male Wistar rats treated with isoprenaline to produce LVH	Aqueous extract of <i>T. arjuna</i> bark was evaluated at 63, 125 and 250 mg/kg given orally for antifibrotic and antioxidant effects in male Wistar rats given selective b-adrenoceptor agonist isoprenaline (5 mg/kg) for 28 days Captopril has given orally 50 mg/kg per day, an inhibitor of angiotensinconverting enzyme used as a standard cardioprotective drug	Aqueous extract of <i>T. arjuna</i> significantly prevented isoprenaline-induced increase in oxidative stress and decline in endogenous antioxidant level and also prevented fibrosis	Kumar et al ^[52]
Antioxidant and antimicrobial activity	DPPH methods and Agar well diffusion method	Methanol extracts	Methanolic extracts has great free radical scavenging properties. It contains liberal amount of flavonoid compounds. It is exhibited	Mandal et al ^[53]

			good antimicrobial activity against two gram negative bacteria (E. coli and K pneumonia)	
Antimicrobial activity	Five bacteria namely Staphylococcus aureus (Gram Positive) Acinetobacter sp., Proteus mirabilis, Escherichia coli and Pseudomonas aeruginosa (Gram negative) were used	Methanol, ethanol, acetone aqueous extracts from the leaves and bark of <i>T. arjuna</i> .	Acetone leaf extract was found to be best against S. aureus. Organic extract showed almost equal inhibition of all tested Gram negative bacteria except P. aeruginosa. Aqueous extract of <i>T. arjuna</i> bark exhibited good activity against S. aureus	Aneja et al ^[54]
Antimicrobial activity	NZW albino rabbits subjected to 15 min coronary artery ligation followed by 60 min of reperfusion injury	Pretreatment of bark powder of 500e750 mg/kg/day for 12 weeks before ischemic- reperfusion injury	Chronic oral administration of the bark of <i>T. arjuna</i> in rabbit causes augmentation of myocardial endogenous antioxidants along with induction of HSP 72. It is offered further protection against oxidative stress associated with myocardial ischemic reperfusion injury.	Gauthaman et al ^[55]
Anticarcinogenic potentia	Adult ventricular myocytes isolated from hearts of adult male Sprague-Dawley rats (250 e300 g)	Ethanolic and aqueous extract of <i>T. arjuna</i> at a dose of 0.05 e100 mg/ml	Aqueous extract of <i>T.</i> arjuna induced cardiotonic action via enhancing sarcoplasmic reticular function, an unique action minimizing the occurrence of arrhythmias, makes aqueous extract of <i>T. arjuna</i> a promising and relatively safe cardiotonic beneficial to the health heart and the treatment for chronic heart diseases	Oberoi et al ^[56]
DNA damage protecting and free radical scavenging	DNA stand breakage assay and comet assay analysis by using of pBR 322 plasmid and rat adrenal PC-12 cell	Ethanolic extracts and its fraction	Ethanolic extracts and its fractions of. <i>T. arjuna</i> bark protected H2O2 induced DNA damage. Maximum inhibition of DPPH, hydroxyl, ABTS, nitric oxide radicals and metal chelation was observed in ethyl acetate fraction. <i>T. arjuna</i> extracts ameliorate various impairments	Phani Kumar et al ^[57]

			associated with DNA damage and free radical formation	
Gastro-productive effect	Diclofenac sodium (DIC) induced gastric ulcer in experimental rats (male albino rats of Wistar e (150e200 g weight)	Methanolic extract of <i>T. arjuna</i>	A significant increase was observed in pH, NP-SH, GSH, enzymatic antioxidants, protein bound carbohydrate complexes, adherent mucus content, nucleic acid with a significant decrease in volume of gastric juice, free and total acidity, pepsin concentration, acid output, LPO levels and MPO activities in DIC b TA rats compared to DIC rats.	Devi et al ^[58]

CONCLUSION

Globally all medicinal plants are local heritage. The review is the compiled information about botanical, ethno-medical, pharmacological studies of Terminalia arjuna. The efficacy of Terminalia arjuna has been proved by its scientific evaluation of many bioactive ingredients. On the basis of the available literary evidences, T. arjuna is widely used for treatment of cardiovascular diseases, including heart diseases and related chest pain, high blood pressure and high cholesterol. The plant has many therapeutic uses which can be analysed by referring to traditional ethnomedicinal experts, advisors and literature and it can be scientifically accepted so that side effects and dosage can be measured and quantified. Further studies are also required to evaluate and characterize, functional groups of pharmacologically active compounds by which they manifest various therapeutic actions. However, continuous research progress of using T. arjuna is very much needed in regards to exact molecular mechanism, drug administration, drug-drug interactions and toxicological studies to know its maximum potential in field of medicinal and pharmaceutical sciences for beneficial application.

REFERENCES

- 1. Anonymous. Ayurvedic Formulary of India, Part I. (CD ROM Version 1). 2nd ed. New Delhi: The Controller of Publication, Dept. of Ayush, Govt. of India, 2000.
- 2. Bhide B, Acharya RN. Langali (Gloriosa superba Linn.) and its therapeutic importance in Ayurveda – A review. International journal of Ayurvedic Medicine, 2012; 3(2): 58-67.

- 3. WHO. 2002. World Health Organization, Traditional Medicine Strategy Report, Document WHO/EDM/TRH/2002.1.
- 4. Heinrich M. Ethnobotany and its role in drug development. *Phytother Res.*, 2000; 14: 479–488.
- 5. Tabuti J.R.S., Lye K.A., Dhillion S.S. Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration. *J Ethnopharmacol*, 2003; 88: 19–44.
- 6. Pieroni A. Evaluation of the cultural significance of wild food botanicals traditionally consumed in Northwestern Tuscany, Italy. *J Ethnobiol*, 2001; 21: 89–104.
- 7. Kim H., Song M.J. Ethnomedicinal practices for treating liver disorder of local communities in the southern regions of Korea. *J Evid Based Complement Altern Med.*, 2013.
- 8. Upadhyay B., Singh K.P., Kumar A. Ethnoveterinary uses and informants consensus factor of medicinal plants of Sariska region, Rajasthan, India. *J Ethnopharmacol*, 2011; 133: 14–25.
- 9. Reyes-Garcia V., Huanca T., Vadez V., Leonard W., Wilkie D. Cultural, practical, and economic value of wild plants: a quantitative study in the Bolivian, Amazon. *Econ Bot.*, 2006; 60: 62–74.
- 10. Sharma J., Gairola S., Gaur R.D., Painuli R.M. The treatment of jaundice with medicinal plants in indigenous communities of the Sub-Himalayan region of Uttarakhand, India. *J Ethnopharmacol*, 2012; 143: 262–291.
- 11. Gopinath K., Venkatesh K.S., Ilangovan R., Sankaranarayanan K., Arumugam A. Green synthesis of gold nanoparticles from leaf extract of *Terminalia arjuna*, for the enhanced mitotic cell division and pollen germination activity. *Ind Crop Prod.*, 2013; 50: 737–742.
- 12. Yallappa S., Manjanna J., Sindhe M.A., Satyanarayan N.D., Pramod S.N., Nagaraja K. Microwave asisted rapid synthesis and biological evaluation of stable copper nanoparticles using *T. arjuna* bark extract. *Spectrochim Acta A.*, 2013; 110: 108–115.
- 13. Edison T.J.I., Sethuraman M.G. Instant green synthesis of silver nanoparticles using *Terminalia chebula* fruit extract and evaluation of their catalytic activity on reduction of methylene blue. *Process Biochem*, 2012; 47: 1351–1357.
- 14. Dwivedi S. *Terminalia arjuna* Wight & Arn.- a useful drug for cardiovascular disorders. *J Ethnopharmacol*, 2007; 114: 114–129.
- 15. Maulik S.K., Talwar K.K. Therapeutic potential of *Terminalia arjuna* in cardiovascular disorders. *Am J Cardiovasc Drugs*, 2012; 12: 157–163.

- 16. Kapoor D., Vijayvergiya R., Dhawan V. *Terminalia arjuna* in coronary artery disease: ethnopharmacology, pre-clinical, clinical & safety evaluation. *J Ethnopharmacol*, 2014; 155: 1029–1045.
- 17. Shah CS, Bhavsar GC, Pharmacognosy of the bark of Terminalia tomentosa W&A and comparison with Terminalia arjuna W&A bark. Indian Journal of Pharmacology, 1956; 18: 81–84.
- 18. P. C. Sharma, M. B. Yelne, T. J. Denish. Database on Indian Medicinal Plant. New Delhi: CCRAS, 2005; 3: 56.
- Charak Samhita. Vaidya Jadavaji Trikamji Acharya, Chakrapani with commentary, Sutra
 Bombay: Nirnaya Sagar Press, India. 1941:173 (reprinted by Chaukhamba Sanskrit
 Sansthan, Varanasi, India, 1984.
- 20. Bajpeyee, J. (Ed.), Chakradutta. Venkateshwar Press, Bombay, India, 1959.
- 21. Bhawa Prakash, Lal Chandra Vaidya (Ed.), 3rd ed. Motilal Benarasi Das, Varanasi, India, 1963; 218.
- 22. Nadkarni AK, Nadkarni KM. Indian Materia Medica, 1st ed. Popular Book Depot, Bombay India, 1954; 1198.
- 23. Warrier PK, Nambiar VPK, Ramankutty C. Terminalia arjuna. In:Warrier, P.K., Nambiar, V.P.K., Ramankutty, C. (Eds.), Indian Medicinal Plants—A Compendium of 500 Species, 1st ed. Orient Longman Limited, Madras, India, 1996; 5: 253–257.
- 24. Sri Brahma Sankar Misra & Sri Rupalaji Vaisya, Bhavaprakasa -Hindi Translation, Chaukhambha Sanskrit Bhawan Varanasi 2020, Vatadi Varga, verse 26,27, 681.
- 25. P. C. Sharma, M. B. Yelne, T. J. Denish. Database on Indian Medicinal Plant. New Delhi: CCRAS, 2005; 3: 57.
- 26. Pandit Narahari. Raja Nighantu. Indradeo Tripathi, editor. 3rd ed. Varanasi: Krishnadas Academy, 2003; 288.
- 27. Ghoshal LM, Terminalia arjuna. Ph.D. thesis, Calcutta University, Calcutta, India, 1909.
- 28. Bhatia J, Bhattacharya SK, Mahajan P, Dwivedi S. Effect of Terminalia arjuna on coronary flow—an experimental study (Abstract). IndianJournal of Pharmacology, 1998; 30: 118-120.
- 29. Srivastava RD, Dwivedi S, Sreenivasan KK, Chandrashekhar CN. Cardiovascular effects of Terminalia species of plants. Indian Drugs, 1992; 29: 144–149.
- 30. Singh S, Latheef SAA, Subramanyam G, Muralikrishna P, Selective protection of LDL against oxidation (Abstract). In:Proceedings of the 15th Annual Conference of the Indian

- Society of Hypertension Abstract Book, UCMS-GTB Hospital, Delhi, India, November, 2005; 12–13: 68.
- 31. Mety SS, Mathad P. Antioxidative and free radical scavenging activities of Terminalia species. International Research Journal of Biotechnology (ISSN:2141-5153), 2011; 2(5): 119-127.
- 32. Chaudhari M, Mengi S. Evaluation of phytoconstituents of Terminalia arjuna for wound healing activity in rats. Phytotherapy Research, 2006; 20: 799–805.
- 33. Patnaik T, Dey RK, Panchanan G. Isolation of triterpenoid glycoside from bark of Terminalia arjuna using chromatographic technique and investigation of pharmacological behavior upon muscle tissues. E-Journal of Chemistry, 2007; 4: 474-479.
- 34. Thiagarajan H, Sivasami P, Chidambaram B, Bhakthavatsalam MM, Rengarajulu P. Arjunolic acid: A novel phytomedicine with multifunctional therapeutic applications. Indian Journal of Experimental Biology, 2010; 48: 238-247.
- 35. Prasad MVV, Anbalagan N, Patra A, VeluchamyG, Balakrishna K. Antiallergic and antiasthmatic activities of the alcoholic extract of Terminalia arjuna and arjunolic acid. Nat Prod Sci., 2004; 10: 240.
- 36. Summer R, Sigler R, ShelhamerJH, Kaliner M. Effect of infused histamine on the asthmatic and normal subject; comparison of skin test responses. J Allergy Clin Immunol, 1981; 67: 456.
- 37. Pettit GR, Hoard MS, Doubek DL, Schmidt JM, Pettit RK, Tackett LP, Chapuis JC. Antineoplastic agents 338. The cancer cell growth inhibitory constituents of Terminalia arjuna (Combretaceae). Journal of Ethnopharmacology, 1996; 53: 57–63.
- 38. Singh DV, Gupta MM, Santha TR, Kumar S, Khanuja SPS. Antibacterial principles from the bark of Terminalia arjuna, Current Science, 2008; 94: 1-10.
- 39. Fakruddin M, Alam KMA, Mazumdar RM, Islam S, Nipa MN, Iqbal A, Bhuiyan HR. Anti-bacterial activity of the extract of Terminalia arjuna against multi antibioticresistant Vibrio cholera. Journal of Scientific Research, 2011; 3(1): 129-137.
- 40. Roy S, Amin AA, Ahsan R, Islam R. In vitro antimicrobial and cytotoxicity screening of Terminalia arjuna ethanol extract. International Journal of Biosciences (IJB)., 2011; 1: 31-38.
- 41. Patil UH, Gaikwad DK. Phytochemical evaluation and bactericidal potential of Terminalia arjuna stem bark. International Journal of Pharmaceutical Science and Research, 2011; 2(3): 614-619.

- 42. Varghese A, Savai J, Pandita N, Gaud R. In vitro modulatory effects of Terminalia arjuna, arjunic acid, arjunetin and arjungenin on CYP3A4, CYP2D6 and CYP2C9 enzyme activity in human liver microsomes. Toxicol Rep., 2015; 2: 806e816.
- 43. Pawar RS, Bhutani KK. Effect of oleananetriterpenoids from Terminalia arjuna: a cardioprotective drug on the process of respiratory oxyburst. Phytomedicine, 2005; 12: 391e393.
- 44. Singh G, Singh AT, Abrahama A, et al. Protective effects of Terminalia arjuna against doxorubicin-induced cardiotoxicity. J Ethnopharmacol, 2008; 117: 123e129. Morshed MA, Uddin A, Rahman A, Hasan T.
- 45. Viswanatha GL, Vaidya S, Ramesh C, Krishnadas N, Rangappa S. Antioxidant and antimutagenic activities of bark extract of Terminalia arjuna. Asian Pac J Trop Med., 2010; 3: 965e970.
- 46. Ahmad MS, Ahmad S, Gautam BJ, Arshad M, Afzal M. Terminalia arjuna, a herbal remedy against environmental carcinogenicity: an in vitro and in vivo study. Egypt J Med Hum Genet, 2014; 15: 61e67.
- 47. Kokkiripati PK, Kamsala RV, Bashyam L, et al. Stem-bark of Terminalia arjuna attenuates human monocytic (THP-1) and aortic endothelial cell activation. J Ethnopharmacol, 2013; 146: 456e464. 56. Kokkiripati PK, Kamsala RV, Bashyam L, et al. Stem-bark of Terminalia arjuna attenuates human monocytic (THP-1) and aortic endothelial cell activation. J Ethnopharmacol, 2013; 146: 456e464.
- 48. Gauthaman K, Maulik M, Kumari R, Manchanda SC, Dinda AK, Maulik SK. Effect of chronic treatment with bark of Terminalia arjuna: a study on the isolated ischemic-reperfused rat heart. J Ethnopharmacol, 2001; 75: 197e201.
- 49. Pawar RS, Bhutani KK. Effect of oleananetriterpenoids from Terminalia arjuna: a cardioprotective drug on the process of respiratory oxyburst. Phytomedicine, 2005; 12: 391e393.
- 50. Sinha M, Manna P, Sil PC. Terminalia arjuna protects mouse hearts against sodium fluoride-induced oxidative stress. J Med Food, 2008; 11: 733e740.
- 51. Subramaniam S, Ramachandran S, Uthrapathi S, Gnamanickam VR, Dubey GP. Antihyperlipidemic and antioxidant potential of different fractions of Terminalia arjuna (Roxb.) bark against PX-407 induced hyperlipidemia. Indian J Exp Biol., 2011; 49: 282e288.

- 52. Kumar S, Enjamoori R, Jaiswal A, Ray R, Seth S, Maulik SK. Catecholamineinduced myocardial fibrosis and oxidative stress is attenuated by Terminalia arjuna (Roxb.). J Pharm Pharmacol, 2009; 61: 1529e1536.
- 53. Mandal S, Patra A, Samanta A, et al. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac J Trop Biomed, 2013; 3: 960e966.
- 54. Aneja KR, Sharma C, Joshi R. Antimicrobial activity of Terminalia arjuna Wight & Arn.: an ethnomedicinal plant against pathogens causing ear infection. Braz J Otorhinolaryngol, 2012; 78: 68e74.
- 55. Gauthaman K, Banerjee SK, Dinda AK, Ghosh CC, Maulik SK. Terminalia arjuna (Roxb.) protects rabbit heart against ischemic-reperfusion injury: role of antioxidant enzymes and heat-shock protein. J Ethnopharmacol, 2005; 96: 403e409.
- 56. Oberoi L, Akiyama T, Lee KH, Liu SJ. The aqueous extract, not organic extracts, of Terminalia arjuna bark exerts cardiotonic effect on adult ventricular myocytes. Phytomedicine, 2011; 18: 259e266.
- 57. Phani Kumar G, Navya K, Ramya EM, Venkataramana M, Anand T, Anilakumar KR. DNA damage protecting and free radical scavenging properties of Terminalia arjuna bark in PC-12 cells and plasmid DNA. Free Radic Antioxid, 2013; 3: 35e39.
- 58. Devi RS, Narayan S, Vani G, Devi CSS. Gastroprotective effect of Terminalia arjuna bark on diclofenac sodium induced gastric ulcer. Chem Biol Interact, 2007; 167: 71e83.