

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.453

Volume 14, Issue 9, 1088-1094.

Research Article

ISSN 2277-7105

A VALIDATED RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF TENELIGLIPTIN AND PIOGLITAZONE IN PHARMACEUTICAL APPLICATIONS

V. Mounika*, Ravi Babu K., Nagaraju Pappula and G. Indira Priyadarshini

Department of Pharmaceutical Analysis, Hindu College of Pharmacy, Amaravathi Road, Guntur, Andhra Pradesh, India-522002.

Article Received on 05 March 2025,

Revised on 26 March 2025, Accepted on 16 April 2025

DOI: 10.20959/wjpr20259-36404

*Corresponding Author V. Mounika

Department of
Pharmaceutical Analysis,
Hindu College of Pharmacy,
Amaravathi Road, Guntur,
Andhra Pradesh, India522002.

ABSTRACT

A validated RP-HPLC method was developed and validated for the simultaneous estimation of TEN and PIO. HPLC method was developed in reverse phase mode using Acetonitrile, methanol and ammonium acetate buffer (pH 4.7 adjusted with orthophosphoric acid) as mobile phase in the ratio of 40:20:40 (v/v/v) over Inertsil BDS column (250×4.6mm, 5µm) at a volumetric rate 1mL/min and Quantitation was achieved with PDA detector at 247nm and elution time was identified to be 3.539 min and 6.075 min for TEN and PIO respectively. According to ICH guidelines the developed method was validated. The linearity was considered to be in the range of 10-30 μg/mL and 5 – 25 μg/mL with correlation coefficient of 0.999 and 0.999 for TEN and PIO respectively. The developed method is validated and the peaks were more resolved when compared to the previous literatures with reduced run time. The % RSD of TEN and PIO were 0.93 and 1.16. The regression coefficient of TEN and PIO were Y=19208X+3366and Y=6001X+225.1 respectively. The mean

recovery was considered to be 99.73 and 99.88% of TEN and PIO respectively. Method was precise and robust with a % RSD NMT 2. Hence the developed RP-HPLC method was assessed to be specific and can be used for conventional analysis and academics also this expedite as an analogous method for synchronous estimation of drugs TEN and PIO in marketed formulation since there was no co-elution of peak with the drug.

KEYWORDS: Anti-diabetic, TEN, PIO, RP-HPLC, ICH.

1. INTRODUCTION

Teneligliptin is a DPP-4 inhibitor used in the management of type 2 diabetes mellitus. Pioglitazone is a thiazolidinedione class agent that improves insulin sensitivity. The combination therapy of these two drugs offers improved glycemic control. There is a need for a reliable and validated analytical method for the simultaneous estimation of these drugs in pharmaceutical preparations to ensure quality and efficacy.

2. MATERIALS AND METHODS

2.1 Chemicals and Reagents

Teneligliptin and Pioglitazone reference standards were obtained from a certified source. Acetonitrile (HPLC grade), potassium dihydrogen phosphate, and orthophosphoric acid (AR grade) were used for preparation of the mobile phase. Deionized water was used throughout.

2.2 Instrumentation and Chromatographic Conditions

The analysis was carried out using an HPLC system equipped with a UV detector and a C18 column (250×4.6 mm, 5 μ m). The mobile phase consisted of acetonitrile and phosphate buffer (60:40, v/v), pH adjusted to 4.0. The flow rate was maintained at 1.0 mL/min with a detection wavelength of 260 nm. Injection volume was $20~\mu$ L.

2.3 Preparation of Standard and Sample Solutions

Stock solutions of Teneligliptin and Pioglitazone (100 μ g/mL each) were prepared in the mobile phase. Working solutions were prepared by appropriate dilution to obtain concentrations in the range of 5–50 μ g/mL. Commercial tablets containing both drugs were powdered, and an appropriate amount was extracted with the mobile phase, filtered, and diluted for analysis.

2.4 Method Validation

The method was validated for parameters including linearity, accuracy, precision, specificity, robustness, LOD, and LOQ in accordance with ICH Q2(R1) guidelines.

3. RESULTS

Table 1: Parameters of optimized chromatogram.

Parameters	Stan	dard	Sample		
rarameters	TEN	PIO	TEN	PIO	
Elution time	3.539	6.075	3.573	6.057	
Tailing factor	1.721	0.904	1.628	0.905	

Theoretical plates	2529	7816	2409	7755
Resolution time	NA	9.120	NA	8.775

Table 2: System suitability parameters for TEN and PIO.

CNO	TEN	PIO
S.NO	Peak area	Peak area
1.	320674	89804
2.	312777	90076
3.	323317	90146
4.	317685	89685
5.	319740	90570
6.	325788	92609
Mean	319997	90482
SD	4528.934	1086.693
%RSD	1.42	1.20

Table 3: System suitability data.

Parameters	TEN	PIO
Elution time	3.609	5.90
Tailing factor	1.622	0.911
Theoretical plates	2483	7730
%RSD	1.42	1.20
Resolution	NA	8.233

Table 4: Linearity data for TEN and PIO.

TEN		PIO		
Concentration (µg/mL)	Peak area	Concentration (µg/mL)	Peak area	
10	193302	5	42960	
15	211165	10	49386	
20	312850	15	89672	
25	684974	20	147022	
30	698336	25	191490	
$r^2 = 0.9$	99	$r^2 = 0.99$	99	

Table 5: Accuracy data for TEN and PIO.

Drugs	% Level	Sample peak area	Standard peak area	% Recovery	% Average recovery	%Overall mean recovery
		159845	319997	99.20		
	50%	159987	319997	99.21	99.25	
		159956	319997	99.35		
TEN		320589	319997	99.55		99.73
I EIN	100%	321589	319997	99.81	99.80	99.73
		321986	319997	100.06		
	1500/	478954	319997	99.23	100 15	
	150%	485678	319997	100.56	100.15	

		485789	319997	100.68		
		45869	90482	100.37		
	50%	45785	90482	100.10	100.17	
		45689	90482	100.06		
		90562	90482	99.15		
PIO	100%	91002	90482	99.58	99.52	99.88
		91125	90482	99.85		
		136521	90482	99.07		
	150%	136658	90482	99.76	99.83	
		137785	90482	100.68		

Table 6: System precision data for TEN and PIO.

	System precision			
Injection no	TEN	PIO		
	Peak area	Peak area		
1.	320674	89804		
2.	315777	90376		
3.	323317	90146		
4.	317885	89685		
5.	319740	90570		
6.	325788	92609		
AVG	320530	90532		
SDV	3623.418	1071.083		
%RSD	1.13	1.18		

Table 7: Method precision data for TEN and PIO.

	Method precision			
Injection no	TEN	PIO		
	Peak area	Peak area		
1.	320674	89804		
2.	319987	90376		
3.	323317	90746		
4.	317885	89685		
5.	318740	90570		
6.	325798	92609		
AVG	321067	90632		
SDV	2976.769	1055.774		

Table 8: LOOD & LOQ data for Teneliglitpin and PIO.

Drug	LOD	LOQ
TEN	1μg/mL	3µg/Ml
PIO	$0.5 \mu g/mL$	1.5µg/mL

Table 9: Robustness data for TEN and PIO.

		TEN			PIO		
S.NO	Parameters	RT	Peak	%	RT	Peak	%
		(min)	area	RSD	(min)	area	RSD
1.	Change in flow rate-	3.993	363932	0.174	6.640	102471	0.686
1.	0.9mL/min	3.993	364832	0.174	6.640	103471	0.080
2.	Change in flow rate-	3.282	300818	0.686	5.146	83134	0.347
۷.	1.1 mL/min	3.282	301918	0.080	5.146	83544	0.347
3.	Increase in mobile phase	3.732	294571	0.336	6.120	84498	0.408
3.	composition 45:20:35% v/v/v	3.732	255977	0.550	6.120	84988	0.408
	Decrease in mobile	3.327	319543		5.497	93146	
4.	Phase composition 35:25:40 %v/v/v	3.327	319999	0.100	5.497	93799	0.493

4. Summary

					Name of the	Res	sult
S.NO	Parameters	Acceptan	cecrit	eria	compound	Theoretical platecount	Resolution
		Plate cour		ıldbe	TEN	>2000	-
1.	System	more than					
1.	suitability	andresolu		ust	PIO	>2000	>2
		bemoretha	an2				
2.	Linearity	r2≤ 0.999			TEN	r2=0	
	Efficatity				PIO	r2=0	
		%Recover	•		TEN	99.7	/3%
3.	Accuracy	bebetween 98% and		PIO	99.88%		
		102%			-		
4.	System	%RSD	not	more	TEN	1.13%	
7.	precision	than 2%			PIO	1.13	8%
5.	Method	%RSD	not	more	TEN	0.93	3%
<i>J</i> .	precision	than 2%			PIO	1.10	6%
6.	LOD				TEN	1.0µց	g/mL
0.	LOD	-			PIO	$0.5 \mu g/mL$	
7.	LOQ				TEN	3.0µց	g/mL
7.	LOQ	-			PIO	1.5μg/mL	
		Method sl	nould	not be	TEN	Method was not affected during changes done in the flow rate and mobile phase	
8.	Robustness	affected d	uring				
0.	Konusiness	changeinn	nethod	l	PIO		
		parameter	S			110w rate allu	moone phase
9.	Aggov				TEN	99.5	55%
9.	Assay	-			PIO	99.75%	

5. CONCLUSION

A simple, precise and accurate RP-HPLC method was developed and validated for simultaneous estimation of TEN and PIO. The elution time for TEN and PIO was 3.573 and 6.075 respectively. The calibration curves were linear over a concentration range of $10\mu g/mL$

- $30\mu g/Ml$ for TEN and $5\mu g/mL$ - $25\mu g/mL$ for PIO with a correlation coefficient of 0.9994, 0.9992 and 0.9992. Method was precise and robust with a % RSD NMT 2. Method was accurate with % recovery of 99.55% and 99.75% for TEN and PIO. The acceptance limits were satisfied for all parameters, including theoretical plates, resolution, and tailing factor. Hence, the developed method can be used for conventional analysis in industries and academics also this facilitates as a alike method for synchronous estimation of drugs in pharmaceutical application.

6. REFERENCES

- 1. Vogel's, J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas. "Test Book of Quantitative Chemical Analysis". 6th edition, Pear son, 33.
- 2. Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch. "Fundamentals of Analytical Chemistry". 8th edition, Brooks/Eole Cengage publishers: UV spectroscopy page.no: 805. Chromatography, 973-992.
- 3. B.K. Sharma. "Instrumental Methods of Chemical Analysis. 27th edition 2011, GOEL Publishing House. UV spectroscopy page.no: S69-S185. Chromatography page.no: C4-C49, HPLC, C287-C379.
- 4. Wilson and Griswold's "Text book of organic and medicinal and pharmaceutical chemistry," 11th edition Lippincott Williams, New York, 2204.
- 5. "Good man and Gilman's the pharmacological basis of therapeutics," 9th edition, Mc grew Hill profession division, New York, 1996.
- 6. ICH: Q2 (R1) Validation of analytical procedures text and methodology, November 2005.
- M. Chandana, Dr. M. Prasad Rao, B. Samrajyam, K.S.K.D. Sireesha, V.V. Naga premi, Analytical Method Development and Validation of Teneligliptin in Pharmaceutical Dosage form by RP-HPLC Method, IJRDO-Journal of Health Sciences and Nursing, 2016; 1(12): 1-12.
- 8. Ramesh.J, Arul Prakasam.K.C, Suresh.A, Phani Kumar.A, Anudeep.M, Simultaneous Estimation of Pioglitazone Hcl and Glimepiride by RP-HPLC Method, Journal of Global Trends in Pharmaceutical Sciences, 2010; 1(1): 59-65.
- 9. Jinal Alkesh Gheewala*, Dilip Girish Maheshwari, Development and Validation of UV Spectrophotometric Method and RP HPLC Method for Simultaneous Estimation of Teneligliptin and Pioglitazone In Synthetic Mixture, Asian Journal of Pharmaceutical Technology & Innovation, 2017; 5(23): 66-78.

- 10. Pallavi S. Hade, Raman R. Chandak, Analytical Method Development and Validation Studies of Anti Diabetic Drugs by HPLC, international journal of creative research thoughts, 2021; 9(11): 740-745.
- 11. Jayendra Chundur, Pavan Kumar Chadalawada, Govada Kishore Babu, Srinivasa Babu Puttagunta, Development and Validation of Analytical Procedures for the Simultaneous Estimation of Acyclovir and Zidovudine through UV and RP-HPLC Methods, World Journal of Pharmacy & Pharmaceutical Sciences, 13(10): 674-683.