

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.453

Volume 13, Issue 24, 343-369.

Review Article

ISSN 2277-7105

DIAGNOSTIC APPROCH ON NEONATAL JAUNDICE

Aman K. Bondre*, Samiksha R. Onkar, Prof. Vishnudas K. Lokhande, Dr. Rahul S. Bijwar and Dr. Laxmikant N. Barde

Jagadambha Institute of Pharmacy and Research, Kalamb.

Article Received on 28 October 2024,

Revised on 18 Nov. 2024, Accepted on 08 Dec. 2024

DOI: 10.20959/wjpr202424-34921

*Corresponding Author Aman K. Bondre

Jagadambha Institute of Pharmacy and Research, Kalamb.

ABSTRACT

Jaundice is most common physical abNormality in the first week of life. A significant proportion of term and prefer infants develop neonatal. Neonatal Jaundice is Prevalent condition by yellow discoloration of the skin sclera and mucous membrane due to elevated total serum bilirubin level. 60 of term and 80%. of preterm infants develop jaundice in a first week of life. Newborn jaundice occurs when baby has high level of bilirubin in- blood. The liver help break down the substance So it can removed from the body in the stool. Production of bilirubin as resul of degradation of haeme arising from Normal red blood cell. Phototherapy is simple and effective way to reduce the bilirubin level. few babes rapidly rising bilirubin level which risk to at Kernicterus High serum bilirubin or rapidly rising bilirubin level to treated urgently to avoid neurotoxicity.

Implementation of neonatal jaundice care bas been adversely affected by with professional boundaries. Neonatal jaundice is common and usually benign early detection, are Prevent severe complication. Through physical examination, bilirubin level measurement, and risk assessment is critical. Treatment strategies include enhanced nutrition, phototherapy, exchange transfusion and intraveNous immuNoglobulin (IVIg), depending on the severity and underlying cause. Phototherapy remains the mainstay for treating hyperbilirubinemia, while exchange transfusion and IVIg are reserved for severe cases, particularly those involving immune-mediated haemolysis. **Background:** Neonatal jaundice is most common cause for intervention in newborn periodtransitory hyperbilirubinemia is present in almost all newborn. High serum level of bilirubin result in lethargy poor feeding and Kernicterus of infant.

KEYWORD: Neonatal, Bilirubin, kernicterus, Bilirubin encephalopathy, phototherapy, paediatrics, haematocrit.

1. INTRODUCTION

1.1 What are Jaundice

Jaundice is a skin and conjunctiva of newborn infants result when unconjugated bilirubin accumulate to level that make yellow colour visible our eye. [1,2] Approximately 60% of term of full term babies and 80% of premature babies. [3],[4] Neonatal Jaundice Neonatal jaundice is clinically characterized by yellowish coloration of skin sclera and mucous membrane and caused by high total serum bilirubin level. [5][6]

Fig. No. 01: Newborn with Jaundice.

Jaundice is thought to be visible at bilirubin in tissue including skin and mucous membrane. Newborn Jaundice can make the newborn sleepy and interfere with feeding.^[7]

Neonatal jaundice can be best balance between production and elimination of bilirubin. Failure to recognize and manage neonatal jaundice could lead to bilirubin encephalopathy and newborn consequence.^[8]

Phototherapy is widely used and accepted form of treatment for neonatal jaundice. It decreases serum bilirubin by converting fat soluble bilirubin into water soluble isomer. [9],[10],[11]

Breastfed newborn are more likely to develop jaundice^[12]

Yellow coloring of skin and eyes Newborn with jaundice Healthy newborn

Jaundice in Newborns

Fig. No. 02: Jaundice In Newborns.

Hyper bilirubinaemia and Now it is widely used throughout the world. However, there are some cases which need exchange transfusion. With the declining incidence of Rhesus disease, ABO Incompatibility is said to be the commonest cause of haemolytic jaundice in the newborn, the outcome of which is comparatively good.^[13]

A newborn has a bilirubin formation rate two to three times higher than that of an adult, largely Due to the high haematocrit and short life span of the newborn's red blood cells. Decreased bilirubin excretion is due to impaired ability of the neonatal liver to conjugate bilirubin and increased enterohepatic recirculation.^[14]

1.2 HISTORY

Jaques Francois Eduoard Hervieux [1818-1900]

In 1847 a thesis, on neonatal jaundice was submitted to the University of Paris which in many ways departed significantly in form and scope from the preceding works the same subject.

Hervieux's Neuropathological observation

Hervieux described brain Jaundice in 31 of 41 cases of neonatal jaundice. In all of these cases, clinical jaundice had been at its peak at the time of death, whereas in the 13 remaining cases, jaundice had only just appeared or was in the process of fading. He described intensity of brain jaundice as variable.

Johannes Orth (1847-1923)

The hoNor of having published the first description of pathoanatomical picture of kernicterus may belong to Johannes Orth.

Orth's Description of kernicterus

Orth work on neonatal jaundice was performed while he was still an assistant to Virchow. In his article, which primarily focused on pigment crystals in various organs, he described a term female infant who was born Nonicteric, but who became jaundiced soon after birth.

Christian George Schmorl (1861 - 1932)

To Christian Schmorl belongs the distinction of having coined tern kernicterus (jaundice of the nuclei), which has subsequently been used both to described a pathoanatomical picture seen at autopsy in those who died, as well as neurological syndrome in survivors of extreme jaundice.^[15]

2. ETIOLOGY

Neonatal Jaundice is usually a Normal physiologic condition occurring during the transitional period afterbirth.

Early Jaundice - clinical jaundice within the First 24 hour of life is likely

To pathological and commonly as result of Isoimmunisation or other causes of significant

hemolysis Anti D-Prophylaxis is rhesus-negative mother can cause weakly positive DAT result as passive transfer of antibody. [16]

Billirubin is formed from the catabolism of heme about 75% of bilirubin is derived from the breakdown ofhaemoglobin from aged red blood cell.

In first step heme is catalyzed by the membrane associated enzyme heme oxygenase (HO).^[1]

There are a t least two form of enzyme: H0-1, the inducible form and Ho-2 the constitutive form. [17]

The first enzymatic step require molecular, oxygen and NADPH donated from cytochrome Paso System.Involve series of oxidation and reduction.^[18,19,20]

- **Appearance** The baby present with yellowish appearance resulting from accumulation of bilirubin inskin mucous membrane and conjunctiva or sclera. [21]
- Clinical Significance Early onset with high peak leve Elevated conjugated bilirubin component. [22] Persist after the Normal time for Jaundice to resolve. [23]

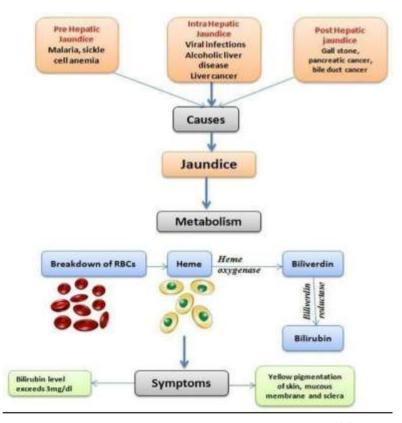


Fig. No. 03: Etiology of Neonatal Jaundice. [24]

3. Type of Neonatal Jaundice

Two type of Hyperbilirubinemia.

3.1 Unconjugated Hyperbilirubinemia

Physiological jaundice account for 75% of newborn thy per bilirubinemia and caused by change bilirubinmetabolism in neonatal.^[25]

Healthy adult have Normal total serum bilirubin. (TSB) / Level below 1mg/dl. In contract to neonateswhich TSB level are physiologically high.

• It is subdivided into

A. Increased bilirubin production

Haemolysis can be caused by Immune-mediated cred Non immune-mediated factor. [26]
Immune-mediated haemolysis - include blood group Incompatibilities such as ABO and RhesusIncompatibility.

B. Decrease Bilirubin clearance

Crigler -Najjar type I and II and Gilbert syndrome. [27]

C. Miscellaneous causes

Pathological hyperbilirubinemia in infant caused by various Factor as congenital hypothyroidism medicine like Swfa pharmaceutical ceftriaxone land penicillin intestinal obstruction, pyloric steNosis- breast milk Jaundice.^[28]

In HDN Due to ABO incompatibility performed maternal Anti-A and Anti-B antibodies of immuNoglobulin and causes Haemolysis.^[29,30]

Gilbert syndrome, Crigler -Najjar syndrome type-1 and classic Crigler -Najjar syndrome type 2 are three disorders caused abNormalities in UGT enzyme.

Breast Feeding and lactation jaundice dire causes of UHB in newborn. [31]

3.2 Conjugated Hyperbilirubinemia

Conjugated hyperbilirubinemia also referred to as newborn cholestasis. [32]

DISH guishing cholestatic jaundice CHB from UHB is critical because is almost pathologic andwarrant prompt evaluation and treatment.

1. Causes of Neonatal cholestasis

A. Obstruction of biliary Flow

Neonatal cholelithiasis, biliary atresia, neonatal sclerosing cholangitis.

Binary atresia is condition that block flow of bile from liver to small intestine in newborn, causing jaundice.

B. Infection - CMV, HIV, Rubella, herpes, virus syphilis, septicemia, UTI.

C. Genetic Causes

- Bile acid synthesis disorder
- Galactosemia
- Tyrosinemia type-I^[33]

4. CAUSES OF NEONATAL JAUNDICE

4.1 Pathological Jaundice

The early onset of jaundice is risk factor for severe hyperbilirubinemia requiring immediate treatment.^[34]

Pathological jaundice is sum of bilirubin produced by mechanism plus any added Physiological mechanism of bilirubin by pathological insult Production.^[35]

Haemolysis can causes blood extravasation, haemorrhage, (eg, cerebral) isoimmunisation. [36]

4.2 Physiological jaundice

In first week of life most babies have total serum bilirubin that exceed upper limit Normal for adult.^[37] Preterm infant exhibit a highest peak serum bilirubin Concentration occurring on day 3-6 and longer declining phase.^[38]

High haemoglobin concentration in newborn infants - Immaturity of hepatic uptake, transport and conjugation system - Shorter lifespan for neonatal red blood cells compared to those of adults - Increased level of beta-glucuronidase in the gut. – releasing more unconjugated bilirubin to enter the enterohepatic circulation. [39]

4.3 Prolonged jaundice

Present in 15-40% of well breastfed babies 2 weak of age and 9% of well breastfed Babies at 4 week of age. [40]

5. PATHOPHYSIOLOGY

The Normal destruction of circulating erythrocytes accounts for 75% of the daily bilirubin production in the newborn. [41]

Treatment for neonatal jaundice usually involves phototherapy to convert unconjugated bilirubin to awater-soluble form that can be excreted in the urine. [42]

Newborns have higher haemoglobin levels at birth, a shorter red blood cell life span, and a reduced conjugating ability of the newborn liver, which leads to higher total serum bilirubin levels than adults.

Hyperbilirubinemia leads to neurotoxicity by a number of mechanisms that include; Cellular death byinterfering with DNA synthesis.

Disruption of protein synthesis and phosphorylation.

Impairment of nerve conduction (particularly the auditory nerve) and Byinhibition of ion exchange and water transport in renal cells leading to neural swelling.

This unconjugated bilirubin is hydrophobic and is transported in circulation to the liver bound to albumin, where it is conjugated with glucuronic acid in the smooth endoplasmic reticulum by the enzyme uridine diphosphate-glucuro Nosyltransferase (UGT).^[43] neurologic dysfunction (BIND) and bilirubin encephalopathy.^[44] Deficient bile secretion in cholestasis results in malabsorption of fat and fat-soluble vitamins that often leads to failure to thrive with vitamin A, D, E, and K deficiencies.^[45]

5.1 Diagnosis

Clinically, the differential diagNosis of neonatal jaundice varies during the first weeks of life. For instance, because virtually all neonates have decreased conjugation and excretion capabilities at birth, hyperbilirubinemia in the first 1–3 days of life almost always reflects an increase in bilirubin production. [46,4748]

5.2 Clinical Assessment

This method is less accurate and more subjective in estimating jaundice.^[49] parents should be counselled regarding benign nature of jaundice in most neonates, and for the need to be watchful and seek help ifbaby appears too yellow.^[50]

5.3 Visual examination

Your baby will have a visual examination to look for signs of jaundice. They need to be undressed during this so their skin can be looked at under good, preferably natural, light.

5.4 Bilirubin Test

If it's thought your baby has jaundice, the level of bilirubin in their blood will need to be tested. A small device called a bilirubin Nometer, which shines light on to your baby's skin (it calculates the level of bilirubin by analysing how the light reflects off or is absorbed by the skin).

5.5 Ingram Icterometer

The instrument is pressed against the Nose and the yellow colour of the blanched skin is matched with the graded yellow lines and bilirubin level is assigned.^[51,52]

5.6 Additional Test

These tests can include blood tests to determine the specific type of jaundice, such as a complete blood count (CBC) and blood group testing.^[53,54]

5.7 Monitoring

This can be done through regular follow-up appointments and bilirubin level checks. Monitoring is important to ensure that the bilirubin levels do Not reach dangerous levels that could potentially harmthe baby's brain. [55,56]

6. EPIDEMIOLOGY

In one study of all birth in India had significant neonatal jaundice. The incidence was almost three timehigher in babies with low birth weight.

A few years ago it was Noted that 25% of newborn admission and readmission to hospitals in Pakistanwere due to neonatal jaundice. [57][58]

However, the incidence of kernicterus is significantly higher in developing countries.^[59] Conjugated hyperbilirubinemia is much less frequent than unconjugated hyperbilirubinemia and is almost always pathological.^[60,61,62]

ABO incompatibility followed by G6PD deficiency is the most frequently identified cause identified.^[63]

Newborns with Southeast and Far East Asian ancestry have higher recorded TSB levels than their Whiteand African counterparts. [64,65][66]

6.1 Factors that influence the epidemiology of Neonatal jaundice

A comparison of the different ethnic groups in Singapore in the 1960s found clinical NJ in 90% of Chinese infants in the 1st week of life compared to 70% in Malays, and 30% European infants.^{[67][68]}

In a study in Nepal (n=18,985) Infants of Madeshi ethnicity (originating from the plains) had a decreased risk of jaundice compared to infants of Pahadi (originating from the hills) ethnicity [RR=0.21 (95% CI: 0.18–0.25)]. [69]

The onset of NJ was on the 1st day of life in 12.8%, and between the 2nd–4th days in 72.4% of the cases.^[70]

The timing of presentation of HB differed between ethnic groups. This occurred in 64% of Caucasians and55% of Asians respectively Events during pregnancy.^[71]

6.2 Maternal smoking

Hardy and Mellit first suggested that maternal smoking reduced NJ, however the sample size was smalland they did Not control for other factors that might influence TSB level.^[72]

Future studies need to control better for breast-feeding as a possible confounder, as smoking mothers maybreastfeed less than Nonsmokers.^[73]

6.3 Maternal Age and illness

Thus, while some found the incidence to be increased in older mothers others found the highest risk in infants of younger mothers particularly in those <20 years of age. [74]

6.4 Maternal pharmacotherapy

Pregnant women pheNobarbital has been shown induce hepatic processing of bilirubin in the fetus In Malawi infants born to HIV-positive mothers who had received a 6-week course of nevirapine to reduce mother-to-infant virus transfer, were shown to have significantly reduced incidence of NJ compared to infants of mothers who were HIV negative and had Not received nevirapine.^[75]

6.5 Blood group incompatibility

Because bilirubin is the end product of haeme catabolism, increased breakdown of erythrocytes, as occurs in all kinds of haemolytic Anemia, increases bilirubin production causing neonatal jaundice.^[76]

6.6 Birth weight

Low birth weight is also associated with increased risk for neonatal jaundice. [77,78]

6.7 Nutrition colouric intake, fluid

A proportion of breast-fed infants exhibit exaggerated and prolonged HB during the first days and weeks of life and breastfed infants had significantly greater need for PT than controls It may take from 1–4 months of slowly declining TSB levels before values Normalize.^[79]

6.8 Polyglobulia / polycythemia

High haematocrit during the first days of life is associated with increased risk of NJ/HB However, late cord clamping had No effect on TSB course or the need for PT, though the haematocrit increased.^[80]

7. RISK FACTORS OF NEONATAL JAUNDICE

- **1. Genetic conditions:** Certain genetic disorders can affect the liver's ability to process bilirubin effectively.
- **2. Infection during pregnancy or after birth**: Infections can disrupt liver function and contribute to jaundice.
- **3. Difficulties with breastfeeding:** Inadequate milk intake can lead to dehydration and increased bilirubin levels.
- **4. Maternal diabetes:** Babies born to diabetic mothers have a higher risk of developing jaundice.
- **5. Rh disease:** Incompatibility between the mother's and baby's blood types can lead to jaundice.
- **6. Male gender:** Boys are more likely to develop jaundice than girl. [81,82,83]

8. Clinical manifestation

- A. Bilirubin encephalopathy Brown Urine , Pale stool, Sleepiness
- B. Fever, High pitch cry, Poor Feeding -Massive enlargement of the liver and spleen. [84]
- C. However, if you Notice any of these signs or if the jaundice appears to be worsening. [85]

9. INVESTIGATION

9.1 Measurements of Bilirubin

A baby's TSB or TCB and gestation are good predictors of hyper bilirubinaemia risk. There is insufficient evidence available to support universal bilirubin screening to prevent chronic bilirubin encephalopathy and some evidence of harm. [86] If TCB is greater than 250micromol/L or less than 50 micro mol / L below threshold for phototherapy measure the TSB. [87,88] Clinical decision regarding treatment is based on TCB trend and Not one value. [89]

9.2 TCB Meter

Estimates bilirubin levels in the skin from wavelength patterns of light reflected from the skin and subcutaneous tissues.^[90]

9.3 Precautions

Jaundice is prolonged or there is conjugated hyper bilirubinaemia Baby receiving phototherapy accuracyis unkNown and may overestimate/underestimate level. [91]

9.4 Pathological Jaundice Investigation

A baby who is thriving and feeding well requires fewer investigations than an unwell baby who is Notthriving. history Check maternal antenatal screening for:

ABO Rh D group - Red cell antibodies

9.5 Haematology

Appears excessively ruddy Has risk factors (e.g. maternal smoking, significant embryonic growth restriction, maternal diabetes) - ABO and Rh D–extended typing may be indicated if there are other maternal antibodies.

9.6 Infection

Investigate for congenital infections e.g. clinical signs of suggestive history, severe jaundice, elevated conjugated bilirubin thrombocytopenia. [92]

9.7 Prolong jaundice investigation

The most common cause of prolonged jaundice is breast milk jaundice occurring in up to 30% wellbreastfeeding babies. [93,94]

Progression of early Jaundice – History. Weight gain, Feeding, Thyroid Function test^[95] Recurrent or newpresentation of jaundice - Microscopy and culture urinary tract infection is a

potential cause of prolonged jaundice, CMV, Reducing substances—present Galactosemia, Genetic, Family History, RBC metabolism disorder, Test for GlucuroNosyltransferase deficiency disorder test for red cell membrane disorder. [96]

9.8 Other investigations may include

Reducing substance in urine test to screen for galactosemia, Blood gas measurements to assess the risk of bilirubin CNS toxicity Hepatobiliary scintigraphy to assess the function of the biliary tract.^[97]

10. MANAGEMENT/TREATMENT

10.1 Medication

- Phenobarbital Phenobarbital increases the conjugation and excretion of bilirubin. It
 reduces serum bilirubin levels by at least 25%. The drug functions by means of
 phenobarbital-responsive enhancer module that stimulates the gene for UGT 1A1 to
 induce production of bilirubin- conjugating enzyme.
- Salicylates salicylates and other analgesics should be avoided in newborns with significant jaundicebecause they compete with bilirubin for binding sites on albumin.
- **Ibuprofen** Ibuprofen should be used with caution in premature infants with significant jaundice because it can displace bilirubin from albumin binding sites. This could increase the risk of bilirubin encephalopathy.
- **Frusemide** frusemide, a sulphonamide diuretic, has been recommended for use in the newborn infant, a study was made of its effect on the bilirubin-binding capacity of albumin. Furosemide was compared to Sulfisoxazole a kNown displacer of bilirubin. [98,99]

10.2 Nutrition

- Breastfeeding Breastfed babies are more prone to developing prolonged jaundice than
 formula fed babies if there inadequate milk production Encourage breastfeeding—baby
 may need to feed 8–12 times per day Offer breastfeeding sup -Routine supplementary
 feeds Not recommended even if having phototherapy-Most newborns with jaundice can
 continue breastfeeding.^[100]
- **Hydration** -It's important to maintain Normal hydration for a jaundiced newborn. This can be done by encouraging breastfeeding, providing additional oral fluids, or administering fluids intravenously

• **Intravenous Fluid**-IntraveNous (IV) fluids are often used to treat neonatal jaundice in infants who can't be fed orally.

10.2.1 Some other things to consider include

Hyponatremia-This is when serum sodium levels are less than 130 M E q /L. It can
be caused by excessive free water intake or inadequate sodium intake. - Water or
glucose water supplementation this is Not recommended because it can interfere with
breastfeeding and may cause hyponatremia. [101]

10.3 Exchange Transfusion

Exchange transfusion was pioneered by Wallerstein and Diamond in 1940.

In cases where phototherapy fails to achieve the desired results, a complete blood transfusion may be deemed necessary.

Exchange transfusion (ET) was the first successful treatment ever used for jaundice and is Now the second-line treatment for severe unconjugated hyperbilirubinemia. [102]

Absence of bilirubin in the fresh blood leads to a rapid decrease in the total bilirubin level in the baby'sblood.^[103]

TSB levels immediately following ET is about 60% of the pre-exchange level that later increase to 70 to 80% of pre-exchange levels as a result of equilibrium with an extravascular moiety of bilirubin. During ET, vitals should be monitored closely, and TSB, CBC, serum calcium, glucose, and electrolytes need tobe checked following procedure-

Exchange transfusion should be performed in a specialized unit having intensive care facilities and appropriate expertise. Double volume (2 x 80 ml/kg), fresh (<7 days old), having a haematocrit 45-50% need to be used. [104]

Supplementation

Probiotics supplementation therapy may be an effective and safe treatment option for pathological neonataljaundice.

• Ferrous Sulphate

Use with caution in any baby who has a haemolytic condition (endogeNous iron stores may be high Not low) Undertake iron studies before commencing treatment to confirm iron deficiency and absence of iron overload.^[105,106]

Folic Acid

Where there has been a high red cell turNover. Dose: 50–100 microgram/kg/dayCommence from seven days of age. [108],[107]

10.4 Phototherapy

The discovery of light as a therapy for neonatal hyperbilirubinemia was made in 1958 by a nurse in UK who observed remarkable disappearance of jaundice on exposing the baby to sunlight.

Fig. No. 04: Babies Under Phototherapy.

Is the use of visible light for the treatment of hyperbilirubinemia in the newborn. The dose of phototherapy is a key factor in how quickly it works; dose in turn is determined by the wavelength of the light, the intensity of the light (irradiance), the distance between the light and the baby, and the body surface area exposed to the light.^[109]

The outcome of phototherapy is improved in our resource limited settings by optimizing factors that affect the efficiency of phototherapy. These include:

• Spectrum of light

Light penetrates the skin well and is absorbed maximally by bilirubin in blue green spectrum,

but a combination of white and blue light is used for convenience of examination of the baby during phototherapy without removing the baby from the cot.

• Spectral irradiance

Spectral irradiance should be measured for quality checks from time to time. It serves two objectives

- a) Reminder to change bulbs/light source when their life is near expiry and
- b) To help staff optimize irradiance for the baby

Spectral Power

The greater the surface area irradiated, the more bilirubin molecules will be impacted by light.^[110]

• Duration of phototherapy

The higher the total serum bilirubin, the more rapid is the decline with phototherapy. Evidence suggests that phototherapy can be stopped once total serum bilirubin falls by 50 μ mol/litre (3 mg/dl) below the phototherapy range on a time specific graph. [111]

• Care of an infant under phototherapy

While an infant is receiving phototherapy, breast feeding needs to be continued every 2 to 3 hours.

If there is a difficulty in establishment of breast feeds and baby has lost >10% of birth weight, breast feeding should be supplemented with either a formula or expressed breast milk by a naso or an orogastric tube.^[112]

10.5 Care during phototherapy

Table No. 01.

Clinical Care	-	If possible do Not separate mother and baby during
		phototherapy o Provide information to support the
		woman and family during treatment and/or
		phototherapy
	-	Nurse baby with only a nappy and fold down to
		exposure maximum skin surface area ^[113]
	-	If baby has loose stools, consider the use protective
		barrier creams on buttocks.
	-	Use eye protection
	0	Lubricating eye drops may be indicated.

0	Monitor for eye discharge, conjunctivitis and eye
	protection placement
-	Continuously observe baby
-	Monitor baby's temperature:

10.6 Phototherapy in home

Table No. 02.

Inclusion	Discuss with parent their motivation, abilities and		
	understanding of safer sleeping principle.		
	Unconjugated hyper bilirubinaemia		
Exclusion	- Poor feeding		
	- Temperature instability		
	- Asphyxia/acidosis		
	- Lethargy		
Parent Information	- Safer infant sleeping principle		
	- when seek advice		
	- Temperature management and monitoring ^[114]		

Fig. No. 05: Phototherapy in Home.

11. OTHER TREATMENT

IntraveNous gamma globulin has been shown to significantly reduce the need for exchange transfusion in ABO and Rh haemolytic disease. In cases, when total serum bilirubin is rising despite intensive phototherapy, IVIG (0.5-1 gm/kg) over a period of 4 hrs may prove helpful (evidence quality B; benefits exceed harms.^[115,116]

12. CONCLUSION

Neonatal jaundice is relatively common and characterised by hyperbilirubinemia.

Neonatal jaundice is common and usually benign, early detection and appropriate management are vital to prevent severe complications. Continued research and education are essential to optimize outcome for affected infants. Babies diagNosed with both unconjugated jaundice and conjugated jaundice should be evaluated and treated in collaboration with physician who has liver experience.

Neonatal jaundice is the most common condition needing medical attention in the neonatal period. The majority of these cases present with unconjugated hyperbilirubinaemia and most infants respond well to phototherapy when the bilirubin level reaches the treatment threshold. Infants with risk factors.

13. REFERENCE

- 1 Kr\$amer LI advancement of dermal icterus in the jaundice newborn. Amj Dis child, 1969; 118: 454-8. https://pubmedncbi.nlm.nihgov/5817480
- 2 Ebbesen. F The relationship between the cephalo-pedal progress of clinical icterus and the serum bilirubin concentration in newborn infants without blood type sensitization https://obgyn.onlinelibrary.wiley.com/doi/abs/10.3109/00016347509156763?sid=nlm%3 Apubmed
- 3 Rennie, J., Burman-Roy, S., Murphy, M., & Guideline Development Group. Neonatal jaundice: summary of NICE guidance. British Medical Journal, 2010; 340: c2409. https://doi.org/10.1136/bmj.c2409
- 4 Mojtahedi SY, Izadi A, Seirafi G, Khedmat L, Tavakolizadeh R. Risk factors associated with neonatal jaundice: A cross-sectional study from Iran. https://cdn.publisher.gn1.link/residenciapediatrica.com.br/pdf/en_v12n3aop459.pdf
- 5 Ansong- Assoku B., Shah S. D., Adnan M. & Ankola, P. A. (2022). Neonatal jaundice. StatPearls. Retrieved June 10, 2022 from https://pubmed.ncbi.nlm.nih.gov/30422525/
- 6 Fevery J Blanckaert N. Bilirubin metabolism. In: Juan Rodes, Jean-. Pierre Benhamou, Neil Mcintyre, Mario Rizzetto, Johannes Bircher, eds. Oxford Text Book of clinical hepatology 2nd edition London Oxford University press 199. https://pafmj.org/PA FMJ/article/download/1362/1176/2299
- 7 Diane J. Madlon-Kay; Recognition of the Presence and Severity of Newborn Jaundice by Parents, Nurses, Physicians, 1997; 100: e3. https://www.sciencedirect.com/science/article/pii/S1877705812001956/

- 8 Swarna S, Pasupathy S, Chinnasami B, Manasa DN, Ramraj B. The smart phone study: assessing the reliability and accuracy of neonatal jaundice measurement using smart phone application. Int. J. Contemp. Paediatrics, Feb. 22, 2018; 5(2): 285-9.
- 9 Leung AK, Sauve RS. Breastfeeding and breast milk jaundice. J R Soc Health, Dec. 1989; 109(6): 213-7.
- 10 American Academy of Paediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Paediatrics, Jul, 2004; 114(1): 297-316.
- 11 Shahid R, Graba S. Outcome and cost analysis of implementing selective Coombs testing in the newborn nursery. J Perinatol, Dec. 2012; 32(12): 966-9.
- 12 Desjardins L, Blajchman MA, Chintu C, Gent M, Zipursky A. The spectrum of ABO haemolytic disease of the newborn infant. J Paediatrics, Sep. 1979; 95(3): 447.
- 13 Pioneers in the Scientific Study of Neonatal Jaundice and Kernicterus Article in PEDIATRICS ·https://scholar.google.com/scholar?hl=en&as sdt=0%2C5&q=13
- 14 Battersby C, Michaelides S, Upton M, Rennie JM (2017). https://discovery.ucl.ac.uk/id/eprint/10061466/1/Neonatal%20supplement_jaundice%202. pdf
- 15 Tenhunen, R., Marver, H.S. and Schmid, R. The Enzymatic Conversion of Heme to Bilirubin by Microsomal Heme Oxygenase. Proceedings of the National Academy of Science of the United States of America, 1968; 61: 748-755. https://scite.ai/reports/the-enzymatic-conversion-of-heme-9kMNJA
- 16 Maines MD. Haeme Oxygenase: Clinical Applications and Functions. Boca Raton, FL: CRC Press, 1992. https://respiratory-research.biomedcentral.com/articles/10.1186/1465-9921-4-7
- 17 Presidential Address 2006: science on the edge with life in the balance. Pediatr Res., 2006; 60: 630-635. Scopus (1) https://core.ac.uk/download/pdf/82579036.pdf
- 18 Wong R, Bhutani VK. Unconjugated hyperbilirubinemia in the newborn: pathogenesis and etiology.UptoDate Inc. Up to date. Waltham, 2021.
- 19 Smith R, Gooi A. Hearing impairment in children: etiology. UptoDate Inc. Waltham MA, 2021.
- 20 Ullah S, Rahman K, Hedayati M. Hyperbilirubinemia in neonates: types, causes, clinical examinations, preventive measures and treatments: a narrative review article. Iranian Journal of Public Health. [Internet], 2016; [cited 2022 June 7]; 45(5): 558-68.
- 21 Wells C. Strategies for neonatal hyper bilirubinaemia: a literature review. The American

- Journal of Maternal and Child Nursing. [Internet], 2013; [cited 2022 June 8]; 38(6): 377-82. DOI:10.1097/NMC.0b013e3182a1fb7a
- 22 Ramachandran A. Neonatal hyper bilirubinaemia. Paediatrics and Child Health. [Internet], 2015; [cited 2022 June 7]; 26(4): 162-8. DOI:10.1016/j.paed.2015.12.002.
- 23 ACOG practice bulletin. Prevention of Rh D alloimmunization. Number 4, May 1999 (replaces educational bulletin Number 147, October 1990). Clinical management guidelines for obstetrician- gynecologists. American College of Obstetrics and Gynecology. Int J Gynaecol Obstet, Jul. 1999; 66(1): 63-70.
- 24 Da Costa L, Galimand J, Fenneteau O, Mohandas N. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev., Jul. 2013; 27(4): 167-78.
- 25 Porter ML, Dennis BL. Hyperbilirubinemia in the term newborn. Am Fam Physician, 2002; 65: 599–606. https://www.scirp.org/reference/referencespapers?referenceid=3339263
- 26 Gallagher PG, Weed SA, T se WT, BeNoit L, Morrow JS, Marchesi SL, Mohandas N, Forget BG. Recurrent fatal hydrops fetalis associated with a nucleotide substitution in the erythrocyte beta spectrin gene. J Clin Invest, Mar. 1995; 95(3): 1174-82.
- 27 McDonald SJ, Middleton P, Dows well T, Morris PS. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst Rev, Jul. 11, 2013; 2013(7): CD004074.
- 28 Lawrence, M. and Gartner, M.D. Breastfeeding and Jaundice, Journal of Perinatology, 2001; 21: S25–S29.
- 29 Nakagawa M, Ishida Y, Nagaoki Y, Ohta H, Shimabukuro R, Hirata M, Yamanaka M, Kusa kawa I. Correlation between umbilical cord haemoglobin and rate of jaundice requiring phototherapyin healthy newborns. Paediatrics Int, Aug. 2015; 57(4): 626-8.
- 30 Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, Oostra BA, Lindhout D, Tytgat GN, Jansen PL, Oude Elferink RP. The genetic basis of the reduced expression of bilirubin UDP- glucuroNosyltransferase 1 in Gilbert's syndrome. N Engl J Med., Nov. 02, 1995; 333(18): 1171-5.
- 31 Grune baum E, Amir J, Merlob P, Mimouni M, VarsaNo I. Breast mild jaundice: natural history, familial incidence and late neurodevelopmental outcome of the infant. Eur J Pediatr, Feb. 1991; 150(4): 267-70.
- 32 Fawaz R, Baumann U, Ekong U, Fischler B, Hadzic N, Mack CL, McLin VA, Molelston JP, Neimark E, Ng VL, Karpen SJ. Guideline for the Evaluation of Cholestatic Jaundice

- in Infants: Joint Recommendations of the North American Society for Paediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition. J Paediatric Gastroenterol, Jan. 2017; 64(1): 154-168.
- 33 Obeagu, E.I and Katya, M.C. (2022). A SYSTEMATIC REVIEW ON PHYSIOLOGICAL JAUNDICE: DIAGNOSIS AND MANAGEMENT OF THE AFFECTED NEONATES. Madonna University Journal of Medicine and Health Science, 2(3):

 25-41. https://www.journal.madonnauniversity.edu.ng/index.php/medicine/article/view/72?articles BySameAuth orPage2
- 34 Boskabadi H, Rakhshanizadeh F, Zakerihamidi M. Evaluation of maternal risk factors in neonatalhyperbilirubinemia. Archives of Iranian Medicine,. [Internet]. 2020 [cited 2022 July 4]; 23(2): 128-40.
- 35 Lauer BJ, Spector ND. Hyperbilirubinemia in the Newborn. Paediatrics in Review, 2011; 32(8): 341-9. https://www.slideshare.net/slideshow/2011-hyperbilirubinemia-in-the-newborn-pediatrics-in-review/65917061
- 36 Maisels MJ. Managing the jaundiced newborn: a persistent challenge. Canadian Medical Association Journal. [Internet], 2015; [cited 2022 June 8]; 187(5): 335-43. DOI:1 0.1503/cmaj.122117.
- 37 NEONATALJAUNDICE: PATHOPHYSIOLOGY AND MANAGEMENT Ram Gobburu, SSHO; Sue Ireland, Consultant, Paediatrics Royal Lancaster Infirmary
- 38 Turnbull V, Petty J. Early onset jaundice in the newborn: Understanding the ongoing care of motherand baby. British Journal of Midwifery, 2012; 20(9): 615-22.
- 39 Bratton S, Cantu RM, Stern M, Dooley W. Breast Milk Jaundice (Nursing). In. Treasure Island, Florida Stat Pearls Publishing, 2021; 1-6.
- 40 Dennery PA, Seidman DS, Stevenson DK. Neonatal hyperbilirubinemia. N Engl J Med., Feb. 22, 2001; 344(8): 581-90.
- 41 Benchimol EI, Walsh CM, Ling SC. Early diagNosis of neonatal cholestatic jaundice: test at 2 weeks.Can Fam Physician, Dec. 2009; 55(12): 1184-92.
- 42 Poland RL, Odell GB. Physiologic jaundice: the enterohepatic circulation of bilirubin. N Engl J Med., Jan 07, 1971; 284(1): 1-6. [PubMed: 4922346]
- 43 Mitra S, Rennie J. Neonatal jaundice: aetiology, diagNosis and treatment. Br J Hosp Med (Lond), Dec. 02, 2017; 78(12): 699-704. [PubMed: 29240507]
- 44 Chen HL, Wu SH, Hsu SH, Liou BY, Chen HL, Chang MH. Jaundice revisited: recent

- advances in the diagNosis and treatment of inherited cholestatic liver diseases. J Biomed Sci., Oct. 26; 2018; 25(1): 75.
- 45 Stevenson DK, Wong RJ, DeSandre GH, Vreman HJ. A primer on neonatal jaundice. Adv Paeditric, 2004; 51: 263–88. 31.
- 46 Stevenson DK, Wong RJ, Hintz SR, Vreman HJ. The jaundiced newborn. Understanding andmanaging transitional hyperbilirubinemia. Minerva Pediatr, 2002; 54: 373–82.
- 47 Maines MD. Zinc protoporphyrin is a selective inhibitor of heme oxygenase activity in the neonatalrat. Biochim biophys Acta, 1981; 673: 339-50.
- 48 Neonatal Jaundice intensive care nursery house staff manual .UCSF children hospital, 2004.
- 49 McDonagh, A.F.; Movement of bilirubin and bilirubin conjugated across the placenta. Paediatric, 2007; 119(5): 1032-1033.
- 50 Maisels MJ, Gifford K, Antle CE, Leib GR. Jaundice in the healthy newborn infant: a new approach to an old problem. Paediatrics, Apr. 1988; 81(4): 505-11.
- 51 Amos RC, Jacob H, Leith W. Jaundice in newborn babies under 28 days: NICE guideline 2016(CG98). Archives of Disease in Childhood-Education and Practice, Aug 1, 2017; 102(4).
- 52 Maisel MJ, McDonagh AF. Phototherapy for neonatal jaundice. New England Journal of Medicine, Feb. 28, 2008; 358(9): 920-8.
- 53 Xiong T, Qu Y, Cambier S, Mu D. The side effects of phototherapy for neonatal jaundice: what do wekNow? What should we do? European Journal of paediatrics, Oct. 2011; 170: 1247-55.
- 54 Edris AA, Ghany EA, Razek AR, Zahran AM. The role of intensive phototherapy in decreasing the need for exchange transfusion in neonatal jaundice. J Pak Med Assoc, Jan. 1, 2014; 64(1): 5-8.
- 55 Murki S, Kumar P. Blood exchange transfusion for infants with severe neonatal hyperbilirubinemia. In Seminars in perinatology, Jun. 1, 2011; 35(3): 175-184). WB Saunders.
- 56 Arif MA. Neonatal jaundice in Pakistan. J Trop Paediatric, 1984; 30: 213-216.
- 57 Sgro M, Campbell D, Shah V. Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ, Sep. 12, 2006; 175(6): 587-90.
- 58 Watch ko JF, Tiri belli C. Bilirubin-induced neurologic damage--mechanisms and management approaches. N Engl J Med., Nov. 21, 2013; 369(21): 2021-30.

- 59 Dick MC, Mowat AP. Hepatitis syndrome in infancy--an epidemiological survey with 10 year followup. Arch Dis Child., Jun. 1985; 60(6): 512-6.
- 60 Gottesman LE, Del Vecchio MT, AroNoff SC. Etiology of conjugated hyperbilirubinemia in infancy:a systematic review of 1692 subjects. BMC Paediatric, Nov. 20, 2015; 15: 192.
- 61 D'Alessandro AM, Knechtle SJ, Chin LT, Fernandez LA, Yagci G, Leverson G, Kalayoglu M. Liver transplantation in paediatric patients: twenty years of experience at the University of Wisconsin. Paediatric Transplant, Sep. 2007; 11(6): 661-70.
- 62 Sgro M, Campbell D, Shah V. Incidence and causes of severe neonatal hyperbilirubinemia in Canada. CMAJ., Sep. 12, 2006; 175(6): 587-90. [PMC free article: PMC1559442] [PubMed: 16966660]
- 63 Ding G, Zhang S, Yao D, Na Q, Wang H, Li L, Yang L, Huang W, Wang Y, Xu J. An epidemiological survey on neonatal jaundice in China. Chin Med J (Engl), Apr. 2001; 114(4): 344-7. [PubMed: 11780450]
- 64 Bhutani VK, Zipursky A, Blencowe H, Khanna R, Sgro M, Ebbesen F, Bell J, Mori R, Slusher TM, Fahmy N, Paul VK, Du L, Okolo AA, de Almeida MF, Olusanya BO, Kumar P, Cousens S, Lawn JE. Neonatal hyperbilirubinemia and Rhesus disease of the newborn: incidence and impairment estimates for 2010 at regional and global levels. Pediatr Res., Dec. 2013; 74(1): 86-100. [PMC free article: PMC3873706] [PubMed: 24366465]
- 65 Fawaz R, Baumann U, Ekong U, Fischler B, Hadzic N, Mack CL, McLin VA, Molleston JP, Neimark E, Ng VL, Karpen SJ. Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Paediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Paediatrics Gastroenterology, Hepatology, and Nutrition. J Paediatrics Gastroenterol, Jan. 2017; 64(1): 154-168. [PubMed: 27429428]
- 66 Brown WR, Boon WH. Ethnic group differences in plasma bilirubin levels of full-term, healthySingapore newborns. Paediatrics, 1965; 36: 745-51.
- 67 Lee KH, Yeung KK, Yeung CY. Neonatal jaundice in Chinese newborns. J Obstet Gynaecol, 1970; 77: 561.
- 68 Scrafford CG, Mullany LC, Katz J, et al. Incidence and risk factors for neonatal jaundice amongnewborns in Southern Nepal. Trop Med Int Health, 2013; 18: 1317.
- 69 Effiong CE, Aimaku VE, Bienzle U, Oyedeji GA, Ikpe DE. Neonatal jaundice in Ibadan. Incidence and etiologic factors in babies born in hospital. I Natl Med Assoc, 1975; 67: 208-51.

- 70 Newman TB, Easterling MJ, Goldman ES, et al. Laboratory evaluation of jaundice in newborns. Frequency cost, and yield. Am J Dis Child., 1990; 144: 364-8.
- 71 Hardy JB, Mellit ED. Does maternal smoking during pregnancy have a long-term effect on the child? Lancet, 1972; 2: 1332-6.
- 72 Knudsen A. Maternal smoking and the bilirubin concentration in the first three days of life. Eur. J. Obstet. Gynecol. Repro. Bio., 1991; 40: 123-7.
- 73 Scrafford CG, Mullany LC, Katz J, et al. Incidence and risk factors for neonatal jaundice among newborns in Southern Nepal. Trop Med Int Health, 2013; 18: 1317-28.
- 74 N. kanga W, Patel P, Panjwani S, et al. Supra-treatment threshold neonatal jaundice: Incidence in HIV- exposed compared to Non-exposed neonates at Queen Elizabeth Central Hospital in Blantyre, Malawi. Malawi Med J., 2015; 27: 104-8.
- 75 Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol Rev., 2020; 100: 1291-346.
- 76 Bracci R, BuoNocore G, Thuoc Garosi et al. Epidemiologic study of neonatal jaundice. A survey of contributing factors. Acta Paediatrics Scand Supply, 1989; 360: 87-92.
- 77 Orgun A, Çalkavur Ş, Olukman Ö, et al. Role of miNor erythrocyte antigens on Alloimmunization neonatal indirect hyperbilirubinemia background. Turk Arch Ped., 2013; 48: 23-9.
- 78 Asefa GG, Gebre wahid TG, Nuguse H, et al. Determinants of neonatal jaundice among neonates admitted to neonatal intensive care unit in Public General Hospitals of Central Zone, Tigray, Northern Ethiopia, 2019: a case-control study. Biomed Res Int., 2020; 2020: 4743974.
- 79 Olusanya BO, Slusher TM. Infants at risk of significant hyperbilirubinemia in poorly-resourced countries: evidence from a scoping review. World J Paediatrics, 2015; 11: 293-9.
- 80 Scrafford CG, Mullany LC, Katz J, Christian P, Khatry, LeClerq SC, Darmstadt GL, carl Tielsch JM. Incidence of and risk factors for neonatal jaundice among newborns in southern Nepal. Tropical Medicine & International Health, Nov. 2013; 18(11): 1317-28.
- 81 Tava Kolizadeh R, Izadi A, Seira fi G, Khedmat L, Mojtahedi SY. Maternal risk factors for neonatal jaundice: a hospital-based cross-sectional study in Tehran. European journal of translational myology, Jul. 7, 2018; 28(3).
- 82 Mure kat C, Muteteli C, Nsengiyumva R, Chironda G. Neonatal jaundice risk factors at a districthospital in Rwanda. Rwanda journal of medicine and health sciences, Sep. 7,

- 2020; 3(2): 204-13. Neonatal jaundice Power Point Presentation https://www.google.com/imgres?imgurl=https%3A%2F%2Fimage.slideserve.com%2F294 678%2Fclinic al-manifestations-
- 83 Seneadza NA, Insaidoo G, Boye H, Ani-Amponsah M, Leung T, Meek J, Enweronu-Laryea C. Neonatal jaundice in Ghanaian children: Assessing maternal kNowledge, attitude, and perceptions. Plosone, Mar. 3, 2022; 17(3): e0264694.
- 84 Grosse SD, Prosser LA, Botkin JR. Screening for neonatal hyperbilirubinemia-first do No harm? JAMA paediatrics. [Internet], 2019; [cited 2022 June 20]; 173(7): 617-8. DOI:10.1001/jamapediatrics.2019.1194.
- 85 MaiselMJ, Coffey MP, Kring E. Transcutaneous bilirubin levels in newborns < 35 weeks' gestation. Journal of Perinatology. [Internet], 2015; [cited 2022 June 21]; 35: 739-44. DOI:10.1038/jp.2015.34.
- 86 Van den Esker-Jonker B, den Boer L, Pepping RMC, Bekho f J. Transcutaneous BilirubiNometer in jaundiced neonates: a randomized controlled trial. paediatrics. [Internet], 2016; [cited 2022 June 21]; 138(6). DOI:10.1542/peds.2016-2414.
- 87 Costa-Posada U, Concheroguisan A, Taboas- Ledo MF, González-Colmenero E, González-Durán ML, Suarez-Albo M, et al. Accuracy of transcutaneous bilirubin on covered skin in preterm and term newborns receiving phototherapy USI.
- 88 Engle WD, Jackson GL, Engle NG. Transcutaneous bilirubiNometer. Seminars in Perinatology. [Internet], 2014; [cited 2022 November 1]; 38(7): 438-51. DOI:10.1053/j.semperi.2014.08.00
- 89 Choke mung mee pisarn P, Tanti prabha W, Kosa rat S, MaNo punya S. Accuracy of the Bili care TM transcutaneous bilirubiNometer as the predischarge screening tool for significant hyperbilirubinemia in healthy term and late preterm neonates. Journal of Maternal- Fetal and Neonatal Medicine. [Internet], 2020; [cited 2022 November 6]; 33(1): 57-61. DOI:10.1080/14767058.2018.1484098
- 90 Bhandari V. Neonatal jaundice. British Medical Journal Best Practice. [Internet]. 2021 [cited 2022 June 8]. Available from: http://bestpractice.bmj.com/
- 91 Trapp es -Lomax CR, Paul SP. Prolonged jaundice in neonates. Journal of Health Visiting,. [Internet]. 2013 [cited 2022 June 22]; 1(9): 509-14. DOI:10.12968/johv.2013.1.9.509. 94) Wong R, Bhutani VK. Patient education: jaundice in newborn infants (beyond the basics). UpToDate Inc. Up todate. Waltham; 2021.
- 92 Bratton S, Cantu RM, Stern M, Dooley W. Breast Milk Jaundice (Nursing). In. Treasure Island, FloridaStat Pearl Publishing, 2021; 1-6.

- 93 Andre M, Day AS. Causes of prolonged jaundice in infancy: 3-year experience in a tertiary paediatric centre. New Zealand Medical Journal. [Internet]. 2016 [cited 2022 June 9]; 129(1429): 14-21.
- 94 E.I and Katya, M.C. A SYSTEMATIC REVIEW ON PHYSIOLOGICAL JAUNDICE: DIAGNOSIS AND MANAGEMENT OF THE AFFECTED NEONATES. Madonna University Journal of Medicine and Health Science, 2022; 2(3): 25-41.
- 95 Preer GL, Philipp BL. Understanding and managing breast milk jaundice. Archives of Disease in Childhood (Fatal and Neonatal Edition). [Internet], 2011; [cited 2022 June 9]; 96: 461-6. DOI:10.1136/adc.2010.184416.
- 96 Ohlsson A, Shah P. Paracetamol (acetamiNophen) for patent ductus arteriosus in preterm or low- birth-weight infants (Review). Cochrane Database of Systematic Reviews. [Internet]. 2020, [cited 2022 June 22]. Issue 1. Art No.: CD010061. DOI:10.1002/14651858.CD010061.pub4
- 97 Queensland Clinical Guidelines. Establishing breastfeeding. Guideline No. MN21.19-V4-R26. [Internet]. Queensland Health. 2021 [cited 2022 June 20]. Available from: https://www.health.qld.gov.au/qcg.
- 98 Management of neonatal jaundice starship children hospital new Zealand. https://starship.org.nz/guidelines/jaundice-management-of-neonatal-jaundice/
- 99 National Collaborating Centre for Women's and Children's Health. Neonatal Jaundice. London:NICE, 2010.
- 100Obe E.I and Katya, M.C. A SYSTEMATIC REVIEW ON PHYSIOLOGICAL JAUNDICE: DIAGNOSIS AND MANAGEMENT OF THE AFFECTED NEONATES. Madonna University Journal of Medicine and Health Science, 2022; 2(3): 25-41.
- 101Mehta S, Kumar P, Narang A. A randomized controlled trial of fluid supplementation in termneonates with severe hyperbilirubinemia. J Paediatrics, 2005; 147: 781-5.
- 102National Blood Authority Australia. Paediatric and neonatal iron deficiency anaemia guide.[Internet]. 2017 [cited 2022 June 7]. Available from: https://www.blood.gov.au.
- 103Queensland Clinical Guidelines. Ferrous sulphate. Guideline No. NMedQ20.036-V2-R25. [Internet]. Queensland Health. 2021. [cited 2022 June 29]. Available from: https://www.health.qld.gov.au/qcg.
- 104World Health Organization. Feeding and nutrition of infants and young children. 2003. [cited 2022 June 30]. Available from: https://who.int.
- 105Phillips B. Does folic acid supplementation reduce the incidence or severity of anaemia in neonates with a positive direct Coombs test? Archives of Disease in Childhood

- [Internet]. 2016 [cited 2022 June 29]; 101(11): 1071-3. DOI:10.1136/archdischild-2016-311508
- 106Wentworth, S.D.P. Neonatal phototherapy today's lights, lamps and devices. Infant, 2005; 1(1): 14-19.
- 107Holtrop PC, Reudsueli k, Maise l MJ. Double versus single phototherapy in low birth weightnewborns. Paediatrics, 1992; 90: 674-7.
- 108Ives NK, Meili-Vergani G, Hadzic N, Newi S, Sugarman I, Stinger MD, Smyth AG. Gastroenterology. In: Rennie JM, editors. Rennie & Roberton's Textbook of Neonatology. 5th ed. London. Churchill Livingstone, 2012; 685-9.
- 109Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of GestationSubcommittee on Hyperbilirubinemia Paediatrics, July 2004; 114(1): 297-316.
- 110Sawyer TL. Phototherapy for jaundice: background, indications, contraindications. [Internet] 2018[2022 June 28]; Available from: http://emedicine.medscape.com/
- 111Chu L, Qiao J, Xu C. Home-based phototherapy versus hospital-based phototherapy for treatment of neonatal hyperbilirubinemia: A systematic review and meta-analysis. Clinical Paediatrics. [Internet], 2020 [cited 2022 June 23]; 59(6): 588-95. DOI:10.1177/0009922820916894.
- 112Lieberman L, Spred brow J, Keir AK, Dunn M, Lin Y, Callum J. Use of intraveNous immuNoglobulin in neonates at a tertiary academic hospital: a retrospective 11-year Transfusion. [Internet]. 2016 [cited 2022 June 29]; 56: 2704-11. DOI:10.1111/trf.13721
- 113Louis D, More K, Oberoi S, Shah P. IntraveNous immuNoglobulin in iso immune haemolytic disease of newborn: an updated systematic review and meta-analysis. Archives of Disease in Childhood, Fetal and Neonatal Edition. [Internet]. 2014 [cited 2022 June 29]; 99: F325–F31. DOI:10.1136/archdischild-2013