

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.453

Volume 14, Issue 18, 1093-1109.

Review Article

ISSN 2277-7105

THERAPEUTIC POTENTIAL OF KANAKASAVA IN PURVIEW OF BRONCHIAL ASTHMA: A REVIEW

Laxmi Bhusal¹*, Chaitra Timmanna Hegde², Anupam Srivastava³, Thakur Rakesh Singh⁴

^{1,2}PG Scholar, Department of Rasashastra and Bhaisajya Kalpana, National Institute of Ayurveda, Jaipur.

³Professor and HOD, Department of Rasashastra and Bhaisajya Kalpana, National Institute of Ayurveda, Jaipur.

⁴Assistant Professor, Department of Rasashastra and Bhaisajya Kalpana, National Institute of Ayurveda, Jaipur.

Article Received on 02 August 2025,

Revised on 23 August 2025, Accepted on 13 Sept. 2025

DOI: 10.20959/wjpr202518-38319

*Corresponding Author Laxmi Bhusal

PG Scholar, Department of Rasashastra and Bhaisajya Kalpana, National Institute of Ayurveda, Jaipur.

ABSTRACT

Kanakasava (KA) is a well-known classical Ayurvedic polyherbal formulation extensively utilized in the treatment of respiratory conditions, especially Tamak Shwasa (Bronchial Asthma). It is prepared through Sandhana Kalpana, a traditional method of fermentation that enhances the stability and bioavailability of its herbal components. Data for this review were collected from classical Ayurvedic texts, contemporary textbooks, and peer-reviewed journals accessed via PubMed, Google Scholar, Scopus, and other academic databases. This review seeks to consolidate and evaluate information on KA from classical Ayurvedic literature, alongside modern scientific studies that support the therapeutic potential of both its individual ingredients and the complete formulation. A comprehensive review of Ayurvedic databases and classical texts was carried out to identify and

assess various versions of KA. The same formulation was consistently found in six authoritative Ayurvedic treatises, with minor variations. The constituent herbs of KA are known for their diverse pharmacological properties, which aid in alleviating respiratory disorders and boosting compromised immunity. Evidence from both preclinical and clinical research further supports its efficacy in managing respiratory diseases, particularly Bronchial Asthma.

KEYWORDS: Bronchial asthma, Kanakasava, Fermentation, Ayurveda, Herbal Pharmacology.

INTRODUCTION

Bronchial asthma is a chronic inflammatory disorder of airways characterized by variable airflow obstruction and bronchial hyper-responsiveness. Clinically, it presents as repeated episodes of wheezing, shortness of breath, chest tightness, and coughing, especially during the night or early morning. Asthma can be triggered by various factors, including allergens (e. g. pollen, dust mites), respiratory infections, exercise, cold air and occupational exposures. The pathology of asthma involves persistent airway inflammation, which leads to bronchial smooth muscle contraction, edema, and mucus hypersecretion, ultimately causing airway narrowing. Over time, structural changes such as sub-epithelial fibrosis and airway remodeling may occur, contributing to the chronicity and severity of the disease. [1] In contemporary medical science, various types of drugs are used for the management of asthma according to the severity of the patient, including inhaled corticosteroids (ICS), long-acting beta agonists (LABA), combinations of ICS and LABA, leukotriene receptor antagonists (LTRA), and others. However, prolonged use of ICS medications can result in oral thrush, hoarseness, adrenal gland suppression, and decreased bone density, whereas LABAs may cause tremors, muscle cramps, and irregular heartbeats. [2,3]

The global burden of asthma remains significant. Chronic respiratory disease accounted for 7% of all deaths globally in 2017, making them the third leading cause of death after cardiovascular diseases and neoplasms.^[4] There were an estimated 262 million individuals affected by asthma in 2019.^[5] In India, the pooled prevalence of asthma among children is approximately 7.9%, with higher rates observed in urban populations and among boys.^[6]

In *Ayurveda*, respiratory disorders are classified under *Pranavaha Srotas Vikaras*, encompassing conditions such as *Shwasa Roga* (dyspnoea), *Kasa Roga* (cough), *Swarbheda* (hoarseness), *Urakshata* (pleurisy), and *Rajyakshma* (tuberculosis). These disorders primarily arise from imbalances in the *Vata* and *Kapha* doshas, leading to disturbances in the *Pranavaha Srotas* (respiratory channels). Among the subtypes of *Shwasa Roga*, *Tamaka Shwasa*^[7] most closely correlates with bronchial asthma in its clinical presentation. Ayurvedic management of such respiratory disorders focuses on balancing the *Doshas* and clearing obstructed respiratory pathways. Therapeutic approaches may include *Shodhana* (bio-purification) procedures like *Vamana* (therapeutic emesis), *Virechana* (therapeutic purgation), *Swedana* (sudation therapy),

and *Nasya* (nasal administrations of medications). Herbal drugs used in these treatments are expected to have properties such as *Vata-Kapha Shamaka*, *Ushna* (hot potency), and *Vatanulomana* (carminative), while exhibiting mucolytic, expectorant, bronchodilator, mast cell stabilizing and anti-inflammatory actions.^[8]

Numerous herbs and Ayurvedic formulations have been used to treat respiratory disorders such as bronchitis, bronchial asthma, COPD, tuberculosis and their associated symptoms. *Kanakasava* (KA) is a classical Ayurvedic polyherbal formulation prominently used in the treatment of respiratory ailments, particularly *Tamaka Shwasa* (Bronchial asthma). ^[9] It is prepared through *Sandhana Kalpana*, a traditional fermentation process that enhances the bioavailability and stability of herbal constituents. During fermentation, alcohol produced by microbes serves as a natural preservative and helps enhance the delivery and effectiveness of therapeutic compounds. KA is documented in the classical Ayurvedic text *Bhaisajya Ratnavali* under the *Hikka–Shwasa Rogadhikara* chapter, which addresses disorders related to breathing and hiccups. The formulation contains *Dhatura* (*Datura metel* Linn.), known for its bronchodilator effects, along with other botanicals exhibiting anti-allergic, antihistaminic, and anti-inflammatory actions.

This review aims to compile and summarize information on KA from Ayurvedic sources, while also presenting scientific evidence supporting the efficacy of its individual plant components and overall formulation. Key insights from the literature regarding the formulation, its ingredients, therapeutic uses, and possible mechanisms of action particularly in relation to respiratory disorders like Bronchial asthma are outlined.

MATERIAL AND METHODS

Data for this review were collected from a comprehensive range of sources including Classical Ayurvedic texts, contemporary textbooks, and peer-reviewed scientific journals accessed through databases such as PubMed, Google Scholar, Scopus and other relevant academic sources. Each ingredient mentioned in the review was further analyzed for its pharmacodynamic properties with a focus on understanding its potential mechanism in the management of Bronchial asthma.

RESULTS

KA is a classical polyherbal formulations composed of 11 medicinal herbs, along with sweetening agents such as honey and sugar, and is prepared by following the principle of Sandhana Kalpana (Fermentation technology). Honey, in particular has also been valued for its therapeutic role in respiratory conditions since long times, especially in alleviating cough. Additionally, both honey and sugar serve a dual purpose in the formulation by not only enhancing palatability but also acting as a fermentable substrate essential for the fermentation process. The method of preparation of KA is well explained in Ayurvedic Pharmacopeia of India (API). The therapeutic dose of KA is mentioned as 15- 30 ml per day with water as adjuvant. [10]

Upon reviewing the literature, it was observed that the formulation KA is documented in a total of six authoritative Ayurvedic texts recognized under Drug and Cosmetics Act, 1940. These include Bhaisajya Ratnavali, Bhaisajya Ratnavali, Ayurveda Sara Sangraha, Rasatantra Sara Va Siddha yoga sangraha, The Ayurvedic Formulary of India and The Ayurvedic Pharmacopeia of India. Notably, all these texts trace their reference for KA back to Bhaisajya Ratnavali, where it was originally described. Consequently, there is no variation in the composition of medicinal herbs across these sources. However, a minor difference was noted in Ayurvedic Sara Sangraha, where the quantity of sugar used in the preparation is double than that mentioned in Bhaisajya Ratnavali. The indication for the formulation remains consistent across all texts.

A number of formulations are mentioned in Ayurvedic classics that are useful for limiting the prognosis and treating pathologies in respiratory disorders such as bronchial asthma. In Ayurveda, the pharmacological actions of individual herbs are explained based on their *Rasapanchaka* (the five fundamental pharmacodynamic attributes)—namely *Rasa* (taste), *Guna* (attributes), *Virya* (potency), *Vipaka* (biotransformation), and *Karma* (specific action). Table I depicted the *Rasa* (taste), *Guna* (attributes), *Virya* (potency), *Vipaka* (biotransformation), and *Doshaghnata* (effect on *Doshas*) of each herbal ingredients of KA. Among the 11 herbs in formulation, there is a predominance of *Katu* (pungent), *Tikta* (bitter) and *Kashaya* (astringent) *Rasa*, while *Madhura* (sweet) *Rasa* is present in relatively smaller proportions. However, *Amla* (sour) and *Lavana Rasa* (salt) are absent in herbs of KA [Figure 1]. Regarding *Guna*, most of the herbs are *Laghu* (easy to digest), *Ruksha* (dry), *Tikshna* (sharp) in nature [Figure 2]. In terms of *Virya*, the majority of ingredients possess *Ushna Virya* (hot potency) [Figure 3]. The predominant *Vipaka* (biotransformative phase of *Rasa*) in KA is *Katu* followed by *Madhura* [Figure 4].

Table 1: Pharmacodynamic attributes of each ingredient of Kanakasava.

S.N.	Dravya(Plant)	Rasa (taste)	Guna(attribute)	Virya(Potency)	Vipaka (biotrans fo rmation)	Karma (action)
1.	Dhatura (Dhatura metel Linn.) ^[15]	Kashaya (astringent), Madhura (sweet), Tikta (bitter)	Laghu (lightness), Ruksha (dryness), Vyavayi (quick spread to body without digestion), Vikasi (quick spread and quick action in body)	Ushna (hotness)	Katu (pungent)	Balances Vata and Kapha dosha, Jwaraghna (antipyretic), Shwasahara (beneficial in respiratory disorders like dyspnea), Madak (intoxicating) Vedanashamak (analgesic), Krimighna (antiparasitic and antimicrobial)
2.	Vasa (Adhatoda vasica Nees.) ^[16]	Tikta (bitter), Kashaya (astringent)	Laghu (lightness), Ruksha (dryness)	Sheeta (coldness)	Katu (pungent)	Balances Kapha and Pitta dosha Raktasthambhak (hemostatic), Shwas-kasa- jwarprameha- kustha nashak (beneficial in respiratory disorders, fever, skin disorders)
3.	Yastimadhu (Glycyrrhi za glabra Linn.) ^[17]	Madhura (sweet)	Guru (heaviness), Snigdha (unctuousness)	Sheeta (coldness)	Madhura (sweet)	Balances Vata and Pitta dosha, Kasanashak (relieves cough), Shwasa (beneficial in shortness of breath), Swarbheda Nashak (beneficial in hoarseness of voice, Vrana Shoth Nashak (antiinflammatory), Kandughna (relieves itching or skin irritation)

<u>www.wjpr.net</u> | Vol 14, Issue 18, 2025. | ISO 9001:2015 Certified Journal | 1097

4.	Pippali (Piper longum Linn.) ^[18]	Katu (pungent)	Laghu (lightness), Snigdha (unctuousness)	Anushna (moderatel y hot)	Madhura (sweet)	Balances Kapha and Vata dosha, Kasa- Shwasahara, Rasayana (Rejuvenator), Deepan, Pachan (digestion and metabolism enhancer)
5.	Kantakari (Solanum Xanthocar pum Scrad and wendl.) ^[19]	Tikta (bitter), Katu (pungent)	Laghu (lightness), Ruksha (dryness), Tikshna (sharpness)	Ushna (hotness)	Katu (pungent)	Balances Kapha and Vata dosha, Kaphanisarak (cough expectorant), Mutral (diuretics), Jwarhara (antipyretic)
6.	Nagkeshar (Mesua ferrea Linn.) ^[20]	Kashaya (astringent), Katu (pungent)	Laghu (lightness), Ruksha (dryness),	Ushna (hotness)	Katu (pungent)	Balances Kapha and Pitta dosha, Jwarahara, Kandughna
7.	Shunthi (Zingiber Officinalis Rosc.) [21]	Katu (pungent)	Laghu (lightness), Snigdha (unctuousness)	Ushna (hotness)	Madhura (Sweet)	Kapha Vatahara, Kasa- Shwasahara (alleviates cough and breathlessness), Shothnashak (reduces inflammation), Shulahara (relieves pain) Vrishya (aphrodisiac)
8.	Bharangi (Cleroden drum serratum Linn.) [22]	Tikta (bitter), Katu (pungent)	Laghu (lightness), Ruksha (dryness), Tikshna (sharpness)	Ushna (hotness)	Katu (pungent)	Kapha Vatahara, Kasa-shwas nashak (relieves cough and breathlessness), Agnideepak (Increase digestive fire) Jwarhagna (alleviates fever)
9.	Talispatra (Abies webbiana Lindl) ^[23]	Tikta (bitter), Madhura (sweet)	Laghu (lightness), Tikshna (sharpness)	Ushna (hotness)	Katu (pungent)	Kapha Vatahara, Agnimandyahara (Improves appetite), Krimighna (Antimicrobial),

www.wjpr.net | Vol 14, Issue 18, 2025. | ISO 9001:2015 Certified Journal

						Kaphanisharak (expectorant)
	Dhataki	Katu	Laghu			Kapha Pittahara, Raktapitta
10.	(Woodford	(Pungent),	(lightness),	Sheeta	Katu	(hemostatic), Atishar nashak
10.	Ia fruticose	Kashaya	Ruksha	(coldness)	(pungent)	(antidiarrheal), Kriminashak
	kurtz.) ^[24]	(astringent)	(dryness),			(antihelmenthic)
11.	Draksha (Vitis vinifera Linn.) ^[25]	Kashaya (astringent), Madhura (sweet)	Snigdha (unctuousness), Guru (heaviness)	Sheeta (coldness)	Madhura (sweet)	Vata Pittahara, Vrishya (aphrodisiac), improves voice complexion, Daha, trishnashamak (alleviates burning sensation and thirst)

Table 2: Pharmacological action of herbal ingredients of Kanakasava.

S.N.	Plants	Botanical	Part	Phytochemical	Pharmacological
B.11.	name	name	used	constituents	action
1.	Dhatura	Dhatura metel Linn.	Whole plant	Tropane alkaloids such as atropine, hyoscyamine, scopolamine, Flavonoids, tannins, saponins and withanolides ^[26]	Antioxidant, antiinflammatory, antimicrobial, analgesic, anti-pyretic, wound healing capacity ^[27]
2.	Vasa	Vasa Adhatoda vasica Nees. Root		Alkaloids- vasicine, Vasicinone, Flavonoids, essential oil [28]	Anti-allergic and antiasthmatic activity ^[29] , Antibacterial, antiinflammatory ^[30]
3.	Yastimadhu	Glycyrrhiza glabra Linn.	Root	Glycyrrhizin, isoliquiritin, glycyrrhizic acid, triterpene saponins, flavonoids, isoflavonoids ^[31]	Antibacterial, antioxidant activity [32]anti-asthmatic, antitussive, antiallergic ^[33,34]
4.	Pippali	Piper longum Linn.	Fruit	Piperine, piperlonguminine, Rosin, lignanoids, terpenoids, sterols and volatile oils ^[35]	Anti-inflammatory and antitumor activity, antibacterial, antioxidant, [36,37] Antiasthmatic [38]
5.	Kantakari	Solanum xanthocarpum Scrad and	Whole plant	Apigenin, Scopletin, Esculetin,	Anti-allergic and anticancerous activity ^[39] Anti-asthmatic ^[40]

www.wjpr.net | Vol 14, Issue 18, 2025. | ISO 9001:2015 Certified Journal

		wendl.		carpesterol,	anti-inflammatory and
				campesterol,	immunomodulatory
				solasodine [39]	activity ^[41]
6.	Nagkeshar	Mesua ferrea Linn.	Stamen	mesuone, 1,5- dihydroxyxanthone, mesuaferrol, euxanthins, leucoanthocyanidin, β -sitosterol, mesuanic acid, euxanthins, 7- methyl ether, alpha and beta-amyrin [42]	Antioxidant, [43] antiinflammatory, [44] anti-asthmatic [45]
7.	Shunthi	Zingiber officinalis Rosc.	Rhizome	Gingerol, Zingerone, Volatile oils, Terpenoids, Flavonoids, diarylheptanoids ^[46]	Antimicrobial, [47] Antiinflammatory, [48] antitussive, antiallergic, bronchodilator, Antioxidant, [49]
8.	Bharangi	Clerodendrum serratum Linn.	Root	Serratagenic acid, Icosahydropicenic acid, Flavonoids, β -sitosterol, Lupeol, Ferulic acid, Ursolic acid ^[50]	Anti-allergic, Antibacterial, Antioxidant, Antiinflammatory ^[51] Anti-asthmatic, ^[52,53] Immunomodulatory, ^[54] Antipyretic ^[55]
9.	Talispatra	Abies webbiana Lindl.	Leaf	flavonoids, triterpenoids and steroids, saponins, alkaloids ^[56]	Bronchodilator ^[57] antiinflammatory, ^[58] antitussive, ^[59] antimicrobial ^[60]
10.	Dhataki	Woodfordia Fruticose kurtz.	Flower	Flavonoids, tannins, elagic acid, quercetin ^[61]	Antioxidant, Antiasthmatic, antiinflammatory ^[62]
11.	Draksha	Vitis vinifera Linn.	Fruit	polyphenols, anthocyanins, flavonols, stilbenes, phenolic acids, protein, fats, and vitamins C. [63]	Anti-asthmatic, [64] antioxidant, antiinflammatory, analgesic, [65] antimicrobial, antiviral [66]

www.wjpr.net | Vol 14, Issue 18, 2025. | ISO 9001:2015 Certified Journal

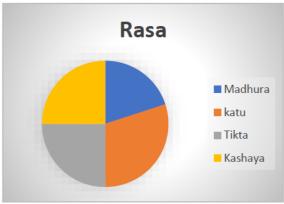


Figure 1. Predominance of *Rasa* in herbal ingredients of Kanakasava.

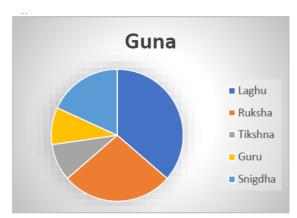


Figure 2. Predominance of *Guna* in herbal ingredients of Kanakasava.

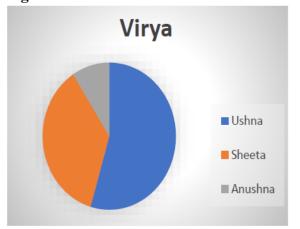
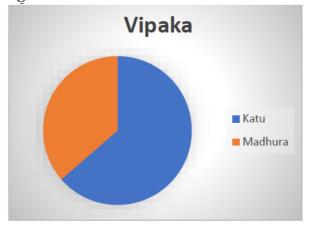



Figure 3. Predominance of Virya in Figure 4. Predominance of Vipaka in herbal herbal ingredients of Kanakasava.

ingredients of Kanakasava.

DISCUSSION

According to Ayurveda, Shwasa Roga mainly develops as a result of the imbalance of the Vata and Kapha doshas. A review of the ingredients of Kanakasava reveals that the majority of its constituents possess Laghu, Ruksha, and Tikshna Gunas, acts as a Srotosodhak (helps to clear channels or passage and reducing excess mucous secretion). The dominant Katu, Tikta, and Madhura Rasa in formulation play a significant role to reduce inflammation, clear mucus secretion and promotes the strength and function of respiratory organs. In terms of Virya (potency), most herbs exhibit *Ushna* (hot) nature, which helps liquefy and expel excess Kapha—the primary dosha involved in respiratory disorder. The prevalent Vipaka is Katu (pungent), supporting detoxification and metabolic enhancement. Collectively, these pharmacological attributes play a crucial role in pacifying the aggravated Vata and Kapha doshas, thereby helping to manage respiratory conditions such as Shwasa by reducing symptoms like breathlessness, cough, and congestion.

The main ingredients of formulation such as *Dhatura* contains tropane alkaloids such as

atropine, hyoscyamine, and scopolamine, which relax airway muscles and promote bronchodilation, Vasa is rich in vasicine and essential oils that reduce airway resistance, inflammation, and steroid resistance while restoring mitochondrial function. Similarly, Yastimadhu provides glycyrrhizin and flavonoids that contribute to anti-inflammatory, antioxidant, and anti-allergic effects by inhibiting IgE production. Pippali fruit contains piperine and terpenoids, which are recognized for their bronchodilator, antihistamine, and antiallergic properties. Additionally, *Dhataki* flowers, provide antioxidant benefits due to their flavonoid and tannin content. Talishpatra and Draksha are also included in the formulation, both of which have demonstrated antiasthmatic properties through various preclinical studies. [48,49] Collectively, all the herbs of formulation help alleviate asthma symptoms by promoting bronchodilation, reducing inflammation, and modulating immune responses. A preclinical study conducted on KA in an anti-asthmatic model also demonstrated its antiinflammatory and analgesic effects by significantly reversing elevated levels of IgE, cytokines, nitrites, and the influx of eosinophils and neutrophils in blood and BALF. [67] Consequently, an in vitro study on KA using splenic cells of BALB/c mice demonstrated its immunostimulant potential by inducing lymphocyte proliferation and enhancing IgM production. [68] Clinical studies conducted on Kanakasava in combination with other medicines have also found it beneficial in relieving symptoms in asthmatic patients. [69,70]

When reviewed through Ayurvedic classics, recent pharmacological research, and preclinical trials, it becomes clear that each ingredient in Kaṇakasava possesses unique properties—antiinflammatory, antioxidant, anti-allergic, anti-microbial, bronchodilator, and expectorant—that directly target asthma and related respiratory disorders. Although all the individual herbs used in this formulation are beneficial for respiratory diseases, our Acharyas have deliberately combined them for the fermentation process. The primary rationale behind this is to enhance the potency, improve preservation, and increase the efficacy of the herbal ingredients. One notable component of this formulation is *Dhatura*, which is traditionally classified under Upavisha Dravyas (semi-poisonous substances) in Ayurvedic texts. [71] While Dhatura is known to possess toxic properties, especially in large doses, its use requires careful handling and appropriate dosage. Interestingly, fermentation may play a critical role in reducing the toxicity of such ingredients. Studies conducted on various poisonous plants before and after fermentation have shown a significant decrease in toxicity post-fermentation. [72]

Moreover, the Sandhana process plays a pivotal role by simultaneously extracting both waterand alcohol-soluble phytoconstituents, thereby enhancing bioavailability and preserving
essential active compounds. The naturally formed alcohol acts both as a preservative enhancing shelf life and as a pharmaceutical agent, facilitating rapid absorption of active
ingredients into the bloodstream and lungs. These combined factors contribute to
Kaṇakasava's ability to deliver quick relief, clearing bronchial passages, reducing
inflammation, stabilizing mast cells, reducing IgE responses, and helping clear mucous within
a short time—making it a robust, holistic remedy for immediate symptoms management in
asthma sufferers.

CONCLUSIONS

Based on currently available data, *Kanakasava* demonstrates potential effectiveness in the management of various respiratory disorders, including chronic cough, allergic rhinitis, bronchial asthma, chronic obstructive pulmonary disease (COPD), and conditions associated with weakened immunity. Its key herbal components, *Dhatura* (*Datura metel* Linn.) and *Vasa* (*Adhatoda vasica* Nees.) are known for their bronchodilatory, anti-inflammatory, and expectorant properties, which contribute to improved respiratory function. Consumption of *Kanakasava* may help slow the progression of respiratory diseases, enhance immune response, and strengthen the respiratory tract. These actions collectively contribute to the reduction of clinical symptoms and support its potential as a complementary approach in the management of bronchial asthma and related conditions.

ACKNOWLEDGEMENT

We are thankful to the faculty and library staff of National Institute of Ayurveda (NIA), Jaipur for providing access to classical Ayurvedic texts and research literature. We also acknowledge all the authors and researchers whose work has been referred to in this paper.

REFERENCES

- 1. Davidson's Principles and Practice of Medicine. 24th ed. Penman ID, Ralston SH, Strachan MWJ, Hobson RP, editors. Philadelphia, PA: Elsevier, 2022; 665.
- 2. Korsgaard J, Ledet M. Potential side effects in patients treated with inhaled corticosteroids and long-acting β 2-agonists. Respiratory medicine, Apr., 1, 2009; 103(4): 566-73.
- 3. Kaur S, Singh V. Asthma and medicines—long-term side-effects, monitoring and dose titration. The Indian Journal of Pediatrics, Sep. 2018; 85: 748-56.

- 4. GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir Med., Jun. 2020; 8(6): 585-596.
- 5. The Global Asthma Report 2025: Patient Stories, http://www.globalasthmareport.org (Last accessed on 07/06/2025 11 am)
- 6. Daniel RA, Aggarwal P, Kalaivani M, Gupta SK. Prevalence of asthma among children in India: A systematic review and meta-analysis. Lung India, Jul-Aug., 2022; 39(4): 357-367.
- 7. Kashinath Shastri, Gorakhnath Chaturvedi, editors. Charaka Samhita of Charaka, Chikitsa sthana, Chapter 17, verse no.55-62. Reprint edition. Chaukhambha Publication, 2023; 466.
- 8. Bhangare DA, Lahange SM. A critical review study on tamak shwasa (bronchial asthma): an ayurvedic prospective. World Journal of Pharmaceutical and Medical, 2017; 3(6): 88-94.
- 9. Ambikadatta Shastri, editor. Bhaishajya Ratnavali of Govindadas Sen. Chaukhamba Prakashan. Revised edition 2022. Varanasi: Chaukhamba Prakashan. Hikka shwasa Prakaran, Verse 115-119, 472.
- 10. Anonymous. Ayurvedic pharmacopeia of India. Part II vol II. 2nd Revised English edition. Government of India, Ministry of Health and Family Welfare, Department of AYUSH; New Delhi, 2008; 45-47.
- 11. Bharata Bhaishajya Ratnakara Compilated by Nagindas Chhaganlal Shah Rasavaidya, Part I, Kakaradi Asava-Arishta 890, 270.
- 12. Ayurveda Sara Sangraha. Vaidyanatha Ayurveda Bhavana Ltd.; revised edition 2023. Asava-Arishta prakarana, 726.
- 13. Thakur Nathusingh Ji. Rasatantrasara Evam Siddhaprayoga Sangraha, Part I. 27th ed. Ajmer, Rajasthan: Krishna Gopal Ayurveda Bhavana, 372. Asavadi Prakarana.
- 14. Anonymous. Ayurvedic Formulary of India. Part I. 2nd Revised English edition. Government of India, Ministry of Health and Family Welfare, Department of AYUSH; New Delhi, 2003; 1(9): 53.
- 15. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. karpuradi varga, 303.
- 16. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Guduchyadi Varga, 306.
- 17. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy.Haritakyadi Varga, 61.

- 18. Bhavamishra. Bhavaprakash Nighantu, commentator padmashri prof. Krishna Chandra Chunekar. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Haritakyadi Varga, 15.
- 19. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Guduchyadi Varga, 277.
- 20. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Karpuradi Varga, 219.
- 21. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Haritakyadi Varga, 12.
- 22. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Haritakyadi Varga, 98.
- 23. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Karpuradi Varga, 245.
- 24. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Haritakyadi Varga, 105.
- 25. Krishna Chandra Chunekar, editor. Bhavaprakash Nighantu of Bhavamishra. Reprint edition 2022, Varanasi: Chaukhambha Bharti Academy. Amraphaladi Varga, 573.
- 26. Alam W, Khan H, Khan SA, Nazir S, Akkol EK. Datura metel: A review on chemical constituents, traditional uses and pharmacological activities. Current pharmaceutical design, Jun. 1, 2021; 27(22): 2545-57.
- 27. Islam T, Ara I, Islam T, Sah PK, de Almeida RS, Matias EF, Ramalho CL, Coutinho HD, Islam MT. Ethnobotanical uses and phytochemical, biological, and toxicological profiles of Datura metel L.: A review. Current Research in Toxicology, Jan. 1, 2023; 4: 100106.
- 28. Shamsuddin T, Alam MS, Junaid M, Akter R, Hosen SMZ, Ferdousy S, Mouri NJ. Adhatoda vasica (Nees.): A Review on its Botany, Traditional uses, Phytochemistry, Pharmacological Activities and Toxicity. Mini Rev Med Chem., 2021; 21(14): 1925-1964. doi: 10.2174/1389557521666210226152238. PMID: 33634759.
- 29. Dangi A., Patel S., Yaduvanshi P.S. Phytochemical screening and assessment of Adhatoda vasica (leaf) for antiasthmatic activity. Panacea J. Pharm. Pharm. Sci., 2015; 4(3): 680–704.
- 30. Singh B, Sharma RA. Anti-inflammatory and antimicrobial properties of pyrroloquinazoline alkaloids from Adhatoda vasica Nees. Phytomedicine, Mar. 15, 2013; 20(5): 441-5.
- 31. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its

- bioactive compounds. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, Jun., 2008; 22(6): 709-24.
- 32. Babich O, Ivanova S, Ulrikh E, Popov A, Larina V, Frolov A, Prosekov A. Study of the chemical composition and biologically active properties of Glycyrrhiza glabra extracts. Life., Nov. 2, 2022; 12(11): 1772.
- 33. Hasan MK, Ara I, Mondal MS, Kabir Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon, Jun. 1, 2021; 7(6).
- 34. Shin YW, Bae EA, Lee B, Lee SH, Kim JA, Kim YS, Kim DH. In vitro and in vivo antiallergic effects of Glycyrrhiza glabra and its components. Planta Med., Mar. 2007; 73(3): 257-61. doi: 10.1055/s-2007-967126.
- 35. Li D, Wang R, Cheng X, Yang J, Yang Y, Qu H, Li S, Lin S, Wei D, Bai Y, Zheng X. Chemical constituents from the fruits of Piper longum L. and their vascular relaxation effect on rat mesenteric arteries. Natural Product Research, Jan. 17, 2022; 36(2): 674-9.
- 36. Guo Z, Xu J, Xia J, Wu Z, Lei J, Yu J. Anti-inflammatory and antitumour activity of various extracts and compounds from the fruits of Piper longum L. Journal of Pharmacy and Pharmacology, Jul., 2019; 71(7): 1162-71.
- 37. Rawat P, Chauhan V, Chaudhary J, Singh C, Chauhan N. Antibacterial, antioxidant, and phytochemical analysis of Piper longum fruit extracts against multi-drug resistant non-typhoidal Salmonella strains in vitro. Journal of Applied and Natural Science, 2022; 14(4): 1225.
- 38. Kaushik D, Rani R, Kaushik P, Sacher D, Yadav J. In vivo and in vitro antiasthmatic studies of plant Piper longum Linn. Int J Pharmacol, Apr. 1, 2012; 8(3): 192-7.
- 39. O. M. Singh & T. P. Singh, Phytocemistry of Solanum xanthocarpum: an amazing traditional, J Sci Ind Res healer, 2010; 69: 732-740.
- 40. Vadnere GP, Gaud RS, Singhai AK. Evaluation of anti-asthmatic property of Solanum xanthocarpum flower extracts. Pharmacologyonline, 2008; 1: 513-22.
- 41. Gulati K, Chaudhary S, Rai N, Ray A. Evaluation of anti-inflammatory and immunomodulatory effects of aqueous extract of Solanum xanthocarpum in experimental models of bronchial asthma. EC Pharmacol Toxicol, 2016; 2: 241-50.
- 42. Patangia U, Wal A, Gupta D, Singh I, Wal P. A review of the phytochemical constituents and pharmacological activities of Nagkesar (Mesua ferrea Linn). Tradit Med Res., May 17, 2023; 8(3): 14.
- 43. Dakshayini PN, Mahaboob Basha P. Phytochemical screening and in vitro antioxidant

- potential of Tribulus terrestris fruit and Mesua ferrea flower extracts: A comparative study. Int. J. Pharm. Pharm. Sci., 2018; 10(3): 70-5.
- 44. Ranganathaiah P, Hanumanthappa M, Venkatarangaiah K. Evaluation of in vitro anti-inflammatory activity of stem bark extracts of Mesua ferrea Linn. Int J Pharm Pharm Sci., 2016; 8(2): 173-7.
- 45. Arora P, Ansari SH, Nainwal LM. Mesua ferrea L.(Calophyllaceae) exerts therapeutic effects in allergic asthma bymodulating cytokines production in asthmatic rats. Turkish Journal of Botany, 2021; 45(8): 820-32.
- 46. Liu Y, Liu J, Zhang Y. Research progress on chemical constituents of Zingiber officinale Roscoe. BioMed research international, 2019; 2019(1): 5370823.
- 47. Aleem M, Khan MI, Shakshaz FA, Akbari N, Anwar D. Botany, phytochemistry and antimicrobial activity of ginger (Zingiber officinale): A review. Int J Herb Med., Nov. 1, 2020; 8(6): 36-49.
- 48. Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB. The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. J Ethnopharmacol, Mar. 25, 2018; 214: 113-123.
- 49. Mukjerjee S, Karati D. A mechanistic view on phytochemistry, pharmacognostic properties, and pharmacological activities of phytocompounds present in Zingiber officinale: A comprehensive review. Pharmacological Research-Modern Chinese Medicine, Dec. 1, 2022; 5: 100173.
- 50. Kumar P, Nishteswar K. Phytochemical and pharmacological profiles of Clerodendrum serratum linn.(bharngi): a review. Int. J. Res. Ayurveda Pharm., Mar. 1, 2013; 4(2): 276-8.
- 51. Acharya NS, Patel JJ. Phytochemical evaluation and in vitro antioxidant and anti-inflammatory effects of Clerodendrum serratum roots. Int J Pharm Pharm Sci., Aug. 1, 2016; 8(8): 158-63.
- 52. Soundalgekar S, Naik A, Hullatti K, Jalalpure S, Patil S, Gaonkar VP. HPTLC fingerprinting and anti-asthmatic activity of roots of two different sources of Bharangi. Indian Journal of Natural Products, 2021; 35(1).
- 53. Acharya N. Bioactivity guided isolation of ursolic acid from clerodendrum serratum roots and evaluation of its efficacy against asthma in guinea pigs. Nirma University Journal of Pharmaceutical Sciences, Dec. 31, 2019; 6(2): 73-100.
- 54. Juvekar AR, Nachankar RS, Hole RC, Wakade AS, Kulkarni MP, Ambaye RY. In vitro and in vivo immunomodulatory activity of aqueous extract of Clerodendrum serratum L. roots. Planta Medica, Aug. 2006; 72(11): P_087.

- 55. Narayanan N, Thirugnanasambantham P, Viswanathan S, Vijayasekaran V, Sukumar E. Antinociceptive, anti-inflammatory and antipyretic effects of ethanol extract of Clerodendron serratum roots in experimental animals. Journal of Ethnopharmacology, Jun. 1, 1999; 65(3): 237-41.
- 56. Yadav DK, Ghosh AK. A review of pharmacognostical, phytochemical and pharmacological effect of Abeis webbiana Lindl. leaves. World J Pharm Res., Apr. 5, 2015; 4: 736-40.
- 57. Yasin M, Hussain Janbaz K, Imran I, Gilani AU, Bashir S. Pharmacological studies on the antispasmodic, bronchodilator and anti-platelet activities of Abies webbiana. Phytotherapy Research, Aug. 2014; 28(8): 1182-7.
- 58. Nayak SS, Ghosh AK, Debnath B, Vishnoi SP, Jha T. Synergistic effect of methanol extract of Abies webbiana leaves on sleeping time induced by standard sedatives in mice and anti- inflammatory activity of extracts in rats. Journal of ethnopharmacology, Aug. 1, 2004; 93(2-3): 397-402.
- 59. Nayak SS, Ghosh AK, Srikanth K, Debnath B, Jha T. Antitussive activity of Abies webbiana Lindl. leaf extract against sulphur dioxide-induced cough reflex in mice. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, Sep. 2003; 17(8): 930-2.
- 60. Timothy CN, Nandhini JT, Varghese SS, Rajeshkumar S. Abies webbiana ethanolic extract based mouthwash and its antimicrobial and cytotoxic effect. Journal of Pharmaceutical Research International, 2021; 33(62): 371-85.
- 61. Das PK, Goswami S, Chinniah A, Panda N, Banerjee S, Sahu NP, Achari B. Woodfordia fruticosa: Traditional uses and recent findings. Journal of Ethnopharmacology, Mar. 21, 2007; 110(2): 189-99.
- 62. Hiralal Ghante, M., Bhusari, K. P., Duragkar, N. J., & Ghiware, N. B. (2014). Pharmacological evaluation for anti-asthmatic and anti-inflammatory potential of *Woodfordia fruticosa* flower.
- 63. Insanu M, Karimah H, Pramastya H, Fidrianny I. Phytochemical compounds and pharmacological activities of Vitis vinifera L.: An updated review. Biointerface Res. Appl. Chem., Mar., 2021; 11(13829): 10-33263.
- 64. Arora P, Ansari SH, Najmi AK, Anjum V, Ahmad S. Investigation of anti-asthmatic potential of dried fruits of Vitis vinifera L. in animal model of bronchial asthma. Allergy Asthma Clin Immunol, Aug. 17, 2016; 12: 42.
- 65. Hossain MdJ, Lema KR, Samadd MA, Aktar R, Rashid MA, Al-Mansur MA. Chemical

- Profiling and Antioxidant, Anti-Inflammatory, Cytotoxic, Analgesic, and Antidiarrheal Activities from the Seeds of Commonly Available Red Grape (Vitis vinifera L.). Nutrition and Metabolic Insights, 2024; 17.
- 66. Gaafar AA, Asker MS, MA A, Salama ZA. The Effectiveness of the Functional Components of Grape (Vitis vinifera) Pomace as Antioxidant, Antimicrobial, and Antiviral Agents. Jordan Journal of Biological Sciences, Nov. 1, 2019; 12(5).
- 67. Arora P, Ansari SH, Anjum V, Mathur R, Ahmad S. Investigation of anti-asthmatic potential of Kanakasava in ovalbumin-induced bronchial asthma and airway inflammation in rats. Journal of ethnopharmacology, Feb. 2, 2017; 197: 242-9.
- 68. Sarker MM, Nahar S, Shahriar M, Seraj S, Choudhuri MS. Preliminary study of the immunostimulating activity of an ayurvedic preparation, Kanakasava, on the splenic cells of BALB/c mice in vitro. Pharmaceutical biology, Nov. 1, 2012; 50(11): 1467-72.
- 69. Doddamani, S.H., Maheswar, T., Sharma, B.K., Venkateshwarlu, G., Sharma, B.S., Khanduri, S., Bhatnagar, A., Lal, M.H.M., Singh, S., Mahajon, B. and Rana, R., Clinical Efficacy of Ayurvedic formulations, Kanakasava and Trivrit Churna, in the Management of Bronchial Asthma: A Prospective, Open-label, Multicentric Study. Journal of Research in Ayurvedic Sciences, 2020; 4(1): 1-9.
- 70. Kuvettu H, Acharya S, Rashin C, Nagappa AN. Clinical evaluation of Kanakasava and Swasanandam Gulika in bronchial asthma. Value in Health, Nov. 1, 2015; 18(7): A495.
- 71. Kashinath Shastri, editor. Rasatarangini of Sadananda Sharma. 11th edition. Varanasi: Motilal Banarasi Das publication 2012. 24th Taranga, Verse 163-164, 676.
- 72. Li L, Wang L, Fan W, Jiang Y, Zhang C, Li J, Peng W, Wu C. The application of fermentation technology in traditional Chinese medicine: A review. The American journal of Chinese medicine, May 20, 2020; 48(04): 899-921.