WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Volume 10, Issue 14, 662-675.

Review Article

ISSN 2277- 7105

CHEMICAL MARKERS AND BIOACTIVE COMPOUNDS FROM PLANTS: AN OVERVIEW

Dr. Kavita Chahal*

Department of Botany, Government College Bichhua, Chhindwara, M.P 480111.

Article Received on 26 October 2021,

Revised on 27 October 2021, Accepted on 17 Nov. 2021

DOI: 10.20959/wjpr202114-22377

*Corresponding Author Dr. Kavita Chahal

Department of Botany, Government College Bichhua, Chhindwara, M.P 480111.

ABSTRACT

Nature is a never-ending source of healing plants and, without a doubt, the best chemist on the planet. The phytomedicines or chemical markers or bioactive compounds derived from herbal plants constitutes the chemical compounds obtained from plant parts that can be used to improve health and treat ailments. They play a crucial role in evaluating the quality of herbal medicines, and are used in many research areas, including authentication of genuine species, search for new resources or substitutes of raw materials, structure elucidation and purity determination. Herbal medicine quality control seeks to assure consistency, safety, and efficacy. Systematic investigations using chemical markers may lead to discoveries and development of new

drugs. This article deals with an overview about the chemical markers, their mother plants, advantages, limitations and future perspective.

KEYWORDS: Herbal medicines, Chemistry, Bioactive Compounds, Chemical Markers, Quality control.

INTRODUCTION

The worldwide trend of returning to nature has piqued interest in the creation of botanical drugs for the prevention and treatment of complex disorders. Unlike chemical pharmaceuticals, which usually have a single active pharmaceutical ingredient, botanical components typically comprise a complex blend of phytochemical substances, which poses a significant quality assurance.^[1]

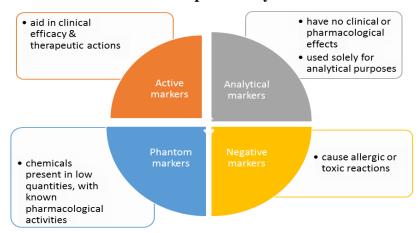
Thanks to the rapid development of analysis technologies and procedures so that characterizing and measuring the chemical constituents of botanical remedies is no longer a

challenge. Thousands of plant-derived bioactive chemicals determine a plant's effectiveness, and these components are also essential for human survival, thus ground-breaking research in this area must continue. Recent breakthroughs in the realm of bioactive chemicals have cleared the way for the development of effective medications to treat both human and plant illnesses.^[2,3]

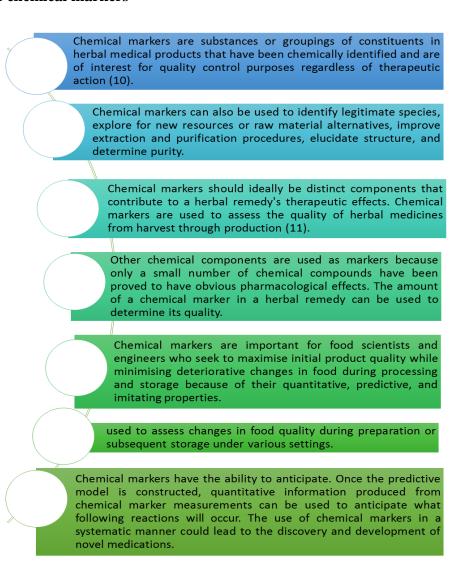
Medicinal plants or herbs or most specifically the phytomedicine are the plants or plant parts that are used in the prevention, diagnosis, & treatment of many diseases. These items include herbal material (essential oils, and resins), herbal preparations (extracts, tinctures, and oils from herbal materials), and finished herbal products.

Chemical markers

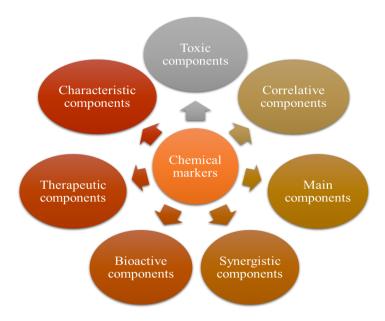
Phytochemicals are chemical substances found inside plants that work alone in concert to enhance the effect of one another, and their pharmacological action provides the scientific basis for their usage in modern medicine. Leaves, flowers, roots, rhizomes, stems, barks, fruits, grains, and seeds, as well as fully harvested, processed (dried), and stored plant material, are frequently used as medication or in the manufacture of medicines. Alkaloids, glycosides, polyphenols, antioxidants, tannin, and other active plant components are employed in medicine.^[4,5]


Thousands of chemicals have been discovered as a result of ethnobotany research into plants utilised by indigenous peoples for medicinal purposes. A variety of physiologically active medications have been discovered as a result of research into diverse plant sections (leaves, roots, barks, fruits, and seeds). A great deal of research has been done on the resistant character of phytoconstituents present in plants, as well as the causes of their reduced mechanism of action. [6]

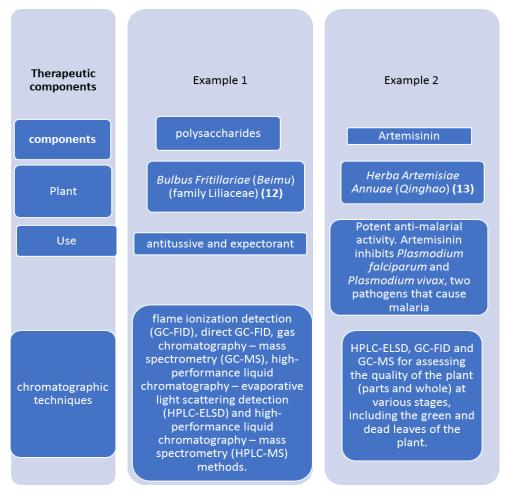
Markers are chemically defined components of a herbal medication that are of interest for quality control purposes regardless of whether or not they have therapeutic efficacy. If a marker has been quantitatively determined in the herbal drug or preparation when the beginning materials are tested, it may be used to compute the amount of active component in the end product.^[7]


The active principles or main chemicals, as well as the chromatographic fingerprints, should be used to standardise the bioactive extract (TLC, HPTLC, HPLC and GC). Chemical and

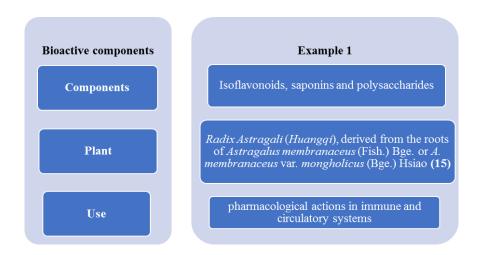
instrumental analyses are frequently employed for assessing synthesised pharmaceuticals to ensure their legitimacy in the standardisation of crude pharmacological ingredients.^[8,9]


Types of chemical markers uses in herbal plant analysis

Features of chemical markers



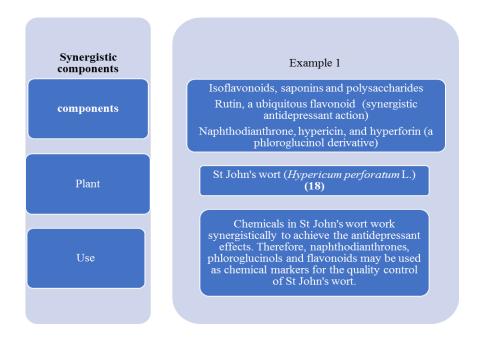
Classification of Chemical Markers


a. Therapeutic components

The medicinal components of herbal medicine have immediate therapeutic advantages. Chemical markers can be used in both qualitative and quantitative analyses.

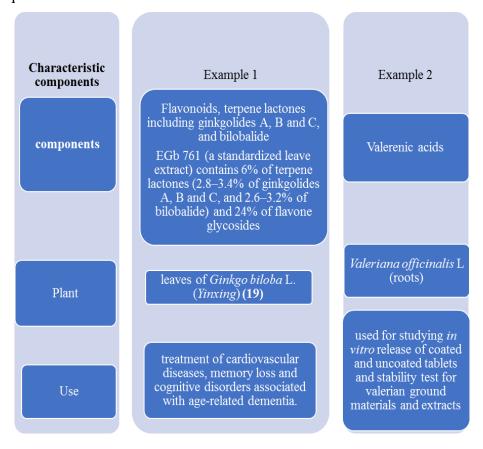
b. Bioactive components

Bioactive chemical markers (BCM) are a type of chemo-marker with overall therapeutic activity similar to that of botanical medicine. Controlling the contents of these BCM indicates a set of promising quality assessment/control markers for botanical drugs' pharmacological qualities, which suggests a set of promising quality assessment/control markers for botanical pharmaceuticals' pharmacological characteristics.^[14]

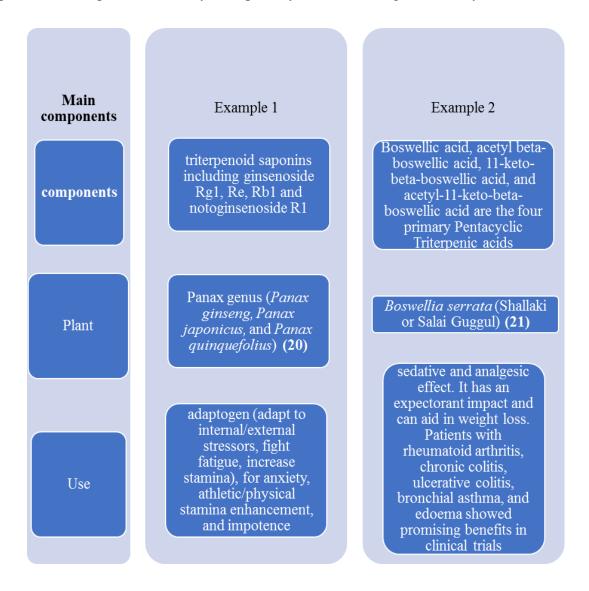

While individual components may not have direct therapeutic benefits, a herbal medication's therapeutic effects are enhanced by the combination of their bioactivities. Bioactive components have the potential to be used as chemical markers to assess quality and quantity.

Bioactive substances produced from a variety of medicinal plant species have been demonstrated to have antimicrobial and parasitic properties. Around 400,000 plant species are known to have bioactive chemicals, however scientists have only looked into a small portion of this vast number. To examine and evaluate their therapeutic efficacy, they are screened and separated using rigorous scientific investigations and characterizations.

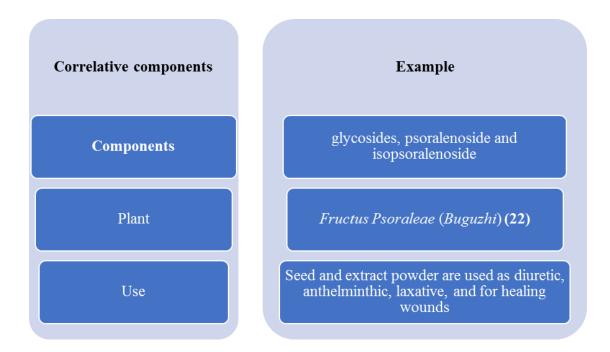
Extensive research into these natural substances and their derivatives has resulted in the development of high-value pharmaceutical medications. Bioactive chemicals can be generated in a variety of ways, although their activity differs greatly from that of plant materials. As a result, bioactive chemicals have completely transformed the medical field.^[16]


c. Synergistic components

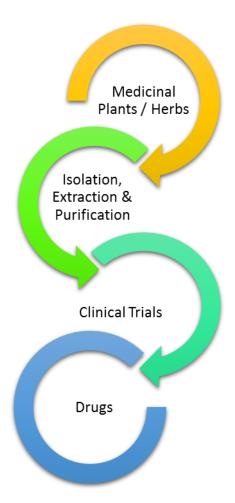
Synergistic components do not contribute directly to medicinal or bioactivities advantages. They do, however, collaborate to enhance the bioactivities of other components, hence controlling the therapeutic advantages of herbal medicine. Chemical markers with synergistic components can be used to examine qualitative and quantitative data.^[17]

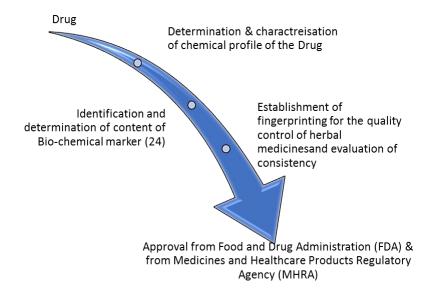

d. Characteristic components

While distinct components may contribute to therapeutic benefits, they must be particular and/or unique constituents of herbal medicine.

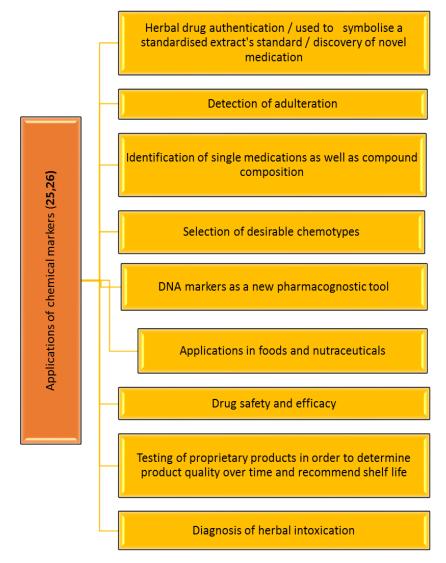

e. Main components

The major ingredients in a herbal cure are the ones that are most plentiful (or significantly more abundant than other components). They're not common ingredients, and it's probable that their bioactivities are unknown. Herbal remedies' major components can be used for both qualitative and quantitative analysis, especially for determining the stability.




f. Correlative components

The correlative components of herbal treatment are inextricably linked. For example, these elements could be precursors, products, or metabolites of a chemical or enzymatic reaction. Correlative components can be used as chemical indicators to assess the quality of herbal medicines that have been maintained for variable amounts of time and come from distinct geographical regions.



A basic flow chart of identification of Chemical Markers from medicinal plants (23)

Applications of chemical markers

Limitations and Future Prospective

Understanding the role of active chemicals and the discovery of new specialised metabolites will be the world's hope in the future. The manufacture of chemical markers presents numerous technical obstacles, like temperature, light, and solvents can cause pure components to degrade or transform. Many factors, including inherent ones like genetics and extrinsic factors like cultivation, harvesting, drying, and storage conditions, can influence the final chemical composition of any herb. Secondary metabolites are only given a qualitative description in routine chemotaxonomic research. The use of unique markers that can be easily evaluated to identify various kinds remains a favoured choice for quantitative studies. Marker compounds are pure, isolated compounds containing terpenes, steroid, alkaloid, flavonoid aromatic hetero aromatic frameworks, and glycosides with alcoholic, carbonyl, olefinic, acid, ester, and amide functionalities that are particularly beneficial for single / crude drugs: In multiherbal formulations, it may or may not survive. [27]

These metabolites could be therapeutically active or not, but they should ideally be unaffected by environmental factors and management approaches. A standardised extract indicates that the maker has confirmed the presence of the active element assumed to be present in the herb in the preparation, as well as the potency and volume of the active ingredient.

One of the key objectives of the 2014–2023 World Health Organization's Traditional Medicine strategy is to "promote the safety, efficacy and quality of traditional medicine by expanding the knowledge base, and providing guidance on regulatory and quality assurance standards". Hence, quantitative research, molecular docking, and dynamic simulation studies and optimization of these compounds should be conducted as a scientifically gratifying task.

Through the correct analysis of the relationship between chemical structure and molecular bioactivity, computational chemistry has simplified and enhanced medication design, particularly in the pharmaceutical industry, computational approaches of drug enhancement are currently leading the way. They have the advantage of reducing the risk of discovering strong medications and of shortening the time that it takes to screen and search for bioactive chemicals. The knowledge gained from the computational analyses is utilised to aid in the development of new high-potency medications. For the examination and modelling of chemical substances, the researchers used computer techniques.

Studies of the rates and mechanisms of specific components, together with novel methodologies for achieving optimal product quality of new pharmaceuticals derived from plants, are gaining popularity. A revolutionary study should be done by the creation and implementation of computational designs and models in predicting the behaviour of these bioactive elements. It is also necessary to optimise the various active compounds for maximum product quality in order to achieve continued scientific advancement. [29,30]

CONCLUSION

Pharmacology and therapeutics have their origins and foundations in traditional medicinal plants. Natural compounds found thus far have proven to be extremely beneficial to human health. Because they have fewer adverse effects and are more effective, they have become the medications of choice. The structural diversity based on phytochemistry is the most striking property of plants as medications in relation to their long-term usefulness in drug discovery. Herbal medication seeks to verify their quality, safety, and efficacy as the chemical markers are critical in today's quality control procedures. Authentication and identification of species, collecting and harvesting, quality evaluation, stability assessment, diagnosis of intoxication, and detection of lead compounds are all examples of where chemical markers should be employed in the creation and manufacture of herbal medicines.

Despite the fact that countries in the twenty-first century are becoming more modern and urbanised, the people must understand to conduct safe waste disposal and the importance of medicinal plant planting, not only in rural areas but also in urban areas.

REFERENCES

- An P and Zhang LJ and Peng W and Chen YY and Liu QP and Luan X and Zhang H, Natural products are an important source for proteasome regulating agents., Phytomedicine: international journal of phytotherapy and phytopharmacology, 2021; 93: 153799. DOI: http://www.ncbi.nlm.nih.gov/pubmed/34715511.
- 2. Li, S., Han, Q., Qiao, C. et al. Chemical markers for the quality control of herbal medicines: an overview. Chin Med., 2008; 3: 7. https://doi.org/10.1186/1749-8546-3-7
- 3. Chahal K and Solanki T. Drug Repurposing and Traditional Drug Discovery: An Overview. International Journal of Green and Herbal Chemistry. IJGHC, CODEN (USA): IJGHAY, An International Peer Review E-3 Journal of Sciences Available online at www.ijghc.com Section B: Herbal Chemistry, June, 2021–August; 10(3): 215-220. E-ISSN: 2278-3229. DOI: 10.24214/IJGHC/HC/10/3/21520.

- 4. N. M. Alamgir, Phytoconstituents—Active and Inert Constituents, Metabolic Pathways, Chemistry and Application of Phytoconstituents, Primary Metabolic Products, and Bioactive Compounds of Primary Metabolic Origin, Progress in Drug Research, Therapeutic Use of Medicinal Plants and their Extracts, 2018; 2. 25-164. http://dx.doi.org/10.1007/978-3-319-92387-1_2
- 5. Book 'Plant derived drugs and drug repurposing', Integrated Publication, 2021: I. Book DOI: https://doi.org/10.22271/int.book.73.
- Felicia Nmom, Mercy Ajuru, Plant bioactive chemicals for anti-fungal and biofungicidal potencies: a review, International Journal of Advanced Academic Research, 2021; 52-66. http://dx.doi.org/10.46654/ij.24889849.e61240
- 7. Louise F. Brisson, Apoptosis and Plant-Derived Pharmaceuticals, Bioactive Molecules and Medicinal Plants, 2008; 317-324. http://dx.doi.org/10.1007/978-3-540-74603-4_17
- 8. H. Archana, Vijaya Geetha Bose, Evaluation of phytoconstituents from selected medicinal plants and its synergistic antimicrobial activity, Chemosphere, 2022; 287. 132276. http://dx.doi.org/10.1016/j.chemosphere.2021.132276
- 9. Veronique Seidel, Plant-Derived Chemicals: A Source of Inspiration for New Drugs, Plants, 2020; 9(11): 1562. http://dx.doi.org/10.3390/plants9111562.
- 10. Reyazul R. Mir, Rajeev K. Varshney, Future Prospects of Molecular Markers in Plants, Molecular Markers in Plants, 2012; 169-190. http://dx.doi.org/10.1002/9781118473023.ch10
- 11. Andrew D. W. Geering, Molecular Markers for Plant Biosecurity, Molecular Markers in Plants, 2012; 99-117. http://dx.doi.org/10.1002/9781118473023.ch7
- 12. Hong Li, Andrew Hung, Mingdi Li, Angela Yang, *Fritillariae Thunbergii* Bulbus: Traditional Uses, Phytochemistry, Pharmacodynamics, Pharmacokinetics and Toxicity, International Journal of Molecular Sciences, 2019; 20(7): 1667. http://dx.doi.org/10.3390/ijms20071667
- 13. Youyou Tu, Studies of the Certified and Confused Herba *Artemisiae Annuae*, From *Artemisia Annua* L. to Artemisinins, 2017; 9-49. http://dx.doi.org/10.1016/b978-0-12-811655-5.00002-7
- 14. Jisha Satheesan, Kallevettankuzhy Krishnannair Sabu, Endophytic Fungi for a Sustainable Production of Major Plant Bioactive Compounds, Plant-derived Bioactives, 2020; 195-207. http://dx.doi.org/10.1007/978-981-15-1761-7_8

- 15. Lai Wei, Induction of LTB4 12-hydroxydehydrogenase (LTB4DH) by *Radix Astragali* and *Radix Paeoniae Rubra*: a study of the active compounds and related biological functions. http://dx.doi.org/10.5353/th_b4468344
- 16. Okaiyeto K and Falade AO and Oguntibeju OO, Traditional Uses, Nutritional and Pharmacological Potentials of Plants (Basel, Switzerland), 2021; 10: 9. http://www.ncbi.nlm.nih.gov/pubmed/34579425
- 17. Archana H and Geetha Bose V, Evaluation of phytoconstituents from selected medicinal plants and its synergistic antimicrobial activity., Chemosphere, 2021; 287: Pt 4. 132276. http://www.ncbi.nlm.nih.gov/pubmed/34601372.
- 18. Débora A Frommenwiler, Eike Reich, Sidney Sudberg, Maged H M Sharaf, Anton Bzhelyansky, Ben Lucas, St. John's Wort versus Counterfeit St. John's Wort: An HPTLC Study, Journal of AOAC International, 2016; 99(5): 1204-1212. http://dx.doi.org/10.5740/jaoacint.16-0170
- 19. Esra Maltas, Salih Yildiz, Evaluation of Phytochemicals and Antioxidant Activity of Ginkgo biloba from Turkey, Pharmacologia, 2012; 3(4): 113-120. http://dx.doi.org/10.5567/pharmacologia.2012.113.120
- 20. Dong-Hyun Kim, Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng, Journal of Ginseng Research, 2012; 36: 1. 1-15. http://dx.doi.org/10.5142/jgr.2012.36.1.1
- 21. K Chahal and M Jha. In vivo study of Boswellia serrata for modulating immune system and quenching free radical. Advances in Zoology and Botany, Horizon Research Publishing (International Peer-Reviewed UGC Care Journal), ISSN: 2331-5083 (Print); ISSN: 2331-5091 (Online), 2020; 8(4): 358-368, http://www.hrpub.org. DOI: 10.13189/azb.2020.080408.
- 22. Hildebert Wagner, Rudolf Bauer, Dieter Melchart, Anton Staudinger, Fructus Psoraleae Buguzhi, Chromatographic Fingerprint Analysis of Herbal Medicines, 2016; IV: 47-57. http://dx.doi.org/10.1007/978-3-319-32328-2_6
- 23. Fierascu RC and Fierascu I and Ortan A and Georgiev MI and Sieniawska E, Innovative Approaches for Recovery of Phytoconstituents from Medicinal/Aromatic Plants and Biotechnological Production., Molecules (Basel, Switzerland), 2020; 25: 2. http://www.ncbi.nlm.nih.gov/pubmed/31940923
- 24. Timothy C. Hall, Mauricio M. Bustos, Janice L. Anthony, Li Jun Yang, Claire Domoney, Roderick Casey, Opportunities for Bioactive Compounds in Transgenic Plants, Ciba

- Foundation Symposium 154 Bioactive Compounds from Plants, Novartis Foundation Symposia, 2007; 177-197. DOI: http://dx.doi.org/10.1002/9780470514009.ch13
- 25. Maurizio Rossetto, Paul D. Rymer, Applications of Molecular Markers in Plant Conservation, Molecular Markers in Plants, 2012; 81-98. http://dx.doi.org/10.1002/9781118473023.ch6
- 26. Robert J. Henry, Evolution of DNA Marker Technology in Plants, Molecular Markers in Plants, 2012; 1-19. http://dx.doi.org/10.1002/9781118473023.ch1
- 27. Dwivedi S and Kushalan S and Paithankar JG and D'Souza LC and Hegde S and Sharma A, 2021, Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals., The Journal of pharmacy and pharmacology. http://www.ncbi.nlm.nih.gov/pubmed/33822130.
- 28. World Health Organization (2013). WHO Traditional Medicine Strategy: 2014–2023. Geneva.
- 29. Basist P and Parveen B and Zahiruddin S and Gautam G and Parveen R and Khan MA and Krishnan A and Shahid M and Ahmad S, Potential nephroprotective phytochemicals: Mechanism and future prospects., Journal of ethnopharmacology, 2021; 283. 114743. http://www.ncbi.nlm.nih.gov/pubmed/34655670.
- 30. K.Chahal & R. Mishra. Challenges and Future Prospects of Nanotechnology for Antiviral Drugs. International Journal of Applied Pharmaceutical Sciences and Research. Sierra Journals Publisher, April, 2021; 6(2): 1-5. DOI: https://doi.org/10.21477/ijapsr.6.2.2.