WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.084

Review Article

ISSN 2277-7105

Volume 12, Issue 20, 304-319.

THE COMPREHENSIVE STUDY ON VACCINE SAFETY MONITORING SYSTEM

Garudkar Pratiksha Mukund*, Waval Prasad Navnath¹, Unde Aniket Nanasaheb², Walunj Jayesh Jalindar³ and Wadekar Ganesh Namdev⁴

*Assistant Professor, of Shri Swami Samarth Institute of Pharmacy, Malwadi, Bota. ^{1,2,3}Student of Final Year B. Pharmacy, Shri Swami Samarth Institute of Pharmacy, Malwadi, Bota.

Article Received on 24 Sept. 2023, Revised on 15 Oct. 2023, Accepted on 06 Nov. 2023 DOI: 10. 20959/wjpr202320-30228

*Corresponding Author Garudkar Pratiksha Mukund

Assistant Professor, of Shri Swami Samarth Institute of Pharmacy, Malwadi, Bota.

ABSTRACT

The Centers for Disease Control and Prevention (CDC), the US Food and Drug Administration (FDA), and nine health care organizations collaborated on the vaccine safety datalink project. The FDA uses the Vaccine Adverse Event Reporting System (VARS) to conduct postlicensure vaccine safety monitoring. The VARS data is analyzed using a variety of statistical techniques, and the results are used by the CDC and FDA to inform future safety evaluations, recommendations, and regulatory actions. VSD investigators also publish significant studies demonstrating that the childhood vaccine is not linked to other developmental disabilities. In order to help healthcare professionals who administer vaccinations and may wish to report or gain a better

understanding of a vaccine adverse event, we outline basic vaccine safety concepts, give an overview of VAERS, and explain how the CDC and FDA analyze VAERS data. Additionally, we discuss our advantages and disadvantages as well as frequent misconceptions regarding VAERS. Counseling specialists in the medical field will find the information in this review useful. Information about vaccine safety and the benefit-risk balance for patients, parents, and other stakeholders.

KEYWORDS: Vaccination; vaccine adverse event; adverse event following immunization; spontaneous reporting; passive surveillance; vaccine safety; Vaccine Adverse Event Reporting System (VAERS) Surveillance; Vaccine safety; Immunization.

INTRODUCTION

Vaccine are the critical part of public health response to the communicable disease. Vaccine is defined as the biological preparation formulated to provide to acquired immunity for particular disease. Vaccine can confer active immunity against a specific harmful agent by stimulating the immune system to attack the agent. Once stimulated by vaccine the antibodies produces cell knows as Blymphocytes which are remain sensitize and ready to respond to agents which enters in the body. Vaccine are given orally and also administered by injection i.e. parenteral administration some vaccine are given to mucosal surface such as nasal passage or lining of guts then stimulate greater antibody response. It is most effective route of administration.

Vaccine is a suspension of weekend kill or fragmented micro-organism or the toxin or other biological preparation which consisting of antibodies lymphocytes or mRNA which are administered to prevent disease. A vaccine eliminate or decrease the infection to encourage body to produce antibodies to fight against infectious agent.^[1]

Vaccine pharmacovigilance is defined as the science and the activities related to detection assessment understanding and communication of adverse event following immunization and other vaccine or immunization related issue to the prevention of toward effect of vaccine.

Post-licensure safety

Post-licensure safety monitoring of U.S. licensed vaccinations is carried out by the Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA). This indicates that following a vaccine's approval, the CDC and FDA continue to track its safety while it is offered for usage in the marketplace. CDC and FDA jointly deliver the vaccine An automatic (or passive) reporting system called Adverse Event Reporting System (VAERS). Spontaneous surveillance is when no explicit attempt is made to find, track down, or acquire information, but rather passively take in information from individuals who choose to They freely share their experience. In order to identify and record odd or unexpected events following vaccination or suspected adverse reactions, VAERS relies on the intuition and expertise of healthcare professionals in particular, as well as patients, parents, and carers. safety issues with vaccines. CDC and FDA further independently control large-linked systems of surveillance based on electronic health records. Multiple techniques and statistical CDC and FDA examine VAERS data using specific approaches to provide guidance for further action. Safety assessments to help with regulatory and vaccination

recommended choices action. Additionally, VAERS sends information of vaccination adverse events to the Uppsala International collaboration at the "World Health Organization's Monitoring Center" monitoring of vaccination and medication safety^[5,6], to support the worldwide pharmacovigilance effort and other nations using passive vaccination safety monitoring devices. When analyzed separately or incorrectly, VAERS data can result in inferences about causality and effect or the likelihood of adverse events following vaccination that are incorrect.

For healthcare providers who administer immunizations who may want to report or better understand a vaccine adverse event, we present an overview of VAERS and explain how CDC and FDA analyze VAERS data. We also discuss weaknesses and strengths, as well as common misconceptions about VAERS. The knowledge in this evaluation will be useful for guiding healthcare providers. Vaccine safety and the benefit-risk ratio of immunization are discussed with patients, parents and others.

Importance of vaccine safety

- 1. Reduces illness risk and more awareness of vaccine dangerous.
- 2. Low tolerance for vaccine risk-
- Expected higher level of safety.
- Vaccine recipient are often in a good health.
- Less risk tolerance necessitates looking for uncommon reaction.

Steps for vaccine pharmacovigilance

- Identify a signal that AEFI is connected to the vaccine.
- Construct an explanation for the relationship between an AEFI and vaccination.
- Using a suitable epidemiological method, test the hypothesis.

Sources of vaccine safety

- Local heath professionals, vaccination safety sources and health awareness initiatives.
- Invited experts.
- Communication and resource network over the internet.
- A leader in the community or the clergy.
- Vaccine parents and guardians.
- Television and radio.
- DVD or Video.

The techniques for survey

Case detection will take place in both the public and private health sectors. It also includes two surveillance systems. Lance: Passive system (based on the current Albanian system); is solely based on documenting negative events in healthcare hospitals or facilities. The actual quantity of recordings Regarding negative reactions to vaccination in Pharmaco-Albanian and Uppsala Monitoring Centre Vigilance. It is not high (UMC). It is essential to fortify the resystem of porting in our nation, particularly for the private unrelated to recording is the health sector. Active observation for particular occurrences and vaccinations. Monitoring Strategy Vaccine safety is a signal.

The identification of unidentified ad- verse occurrences called signal detection. the analysis of the data gathered at this point is highly crucial. Signal wouldn't evade detection. The signal would be found quickly. The amount of "false" signals would be minimized. Never published before the case is explained. Documenting the details of potential causes by-between harmful reactions to vaccinations. Previous unrecognized connections or gaps in the documentation Serious bad experiences or outcomes that affect a person's hospitalization or death, inability to work or legal incapacity (such as paralization).

Guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines A] Manufacturing and quality considerations for the nonclinical and clinical evaluation of vaccine adjuvants and adjuvanted vaccines

The extent of the manufacturing and quality-related data required to support the intended use of the antigen, the adjuvant, and the adjuvanted vaccine should be discussed by adjuvanted vaccine makers with the NRA. The quantity of data required to assess and ensure the consistency. Depending on the stage of the disease, adjuvanted vaccinations' efficiency and safety clinical and non-clinical research. Likewise, the character and scope of the testing is required to prove, and manufacturing controls must be implemented, adequate adjuvanted vaccination quality varies not only between different periods. Research, pilot, investigative and commercial stages of product development as well as between the various stages of the clinical evaluation.

B] Rationale for the use of the adjuvant

In general, an adjuvant-mediated augmentation of the immune response to one vaccine antigen cannot be extrapolated to the enhancement of the immunological response to another antigen since adjuvant activity is the product of numerous mechanisms. Individual antigens

differ in terms of their biological, physical and immunogenic characteristics. Different antigens may require distinct immunological assistance from an adjuvant.^[7] Based on the immune system, manufacturers should explain why they chose the adjuvant. reaction intended, which may have an impact on the size, scope, and/or on the safety profile, or the sort of immunological response to particular antigens.^[8]

The understanding of innate immunity has made significant strides, which have started to shed light on the immunological mechanisms behind adjuvant activity. Various elements of the immune system can identify several of the immunostimulatory adjuvants. Pathogen-recognition receptors' toll-like receptor (TLR) family, while other adjuvants might focus on different pathogen-recognition families receptors that may be crucial in forming the adaptive immune system response. Additionally, complicated regulatory interactions exist between the several innate receptor families and other signaling channels. Inside of adjuvants exert a variety of actions within a framework, including but not limited to facilitation of:-

- (a) Antigen-presenting and/or polymorphonuclear cell mobilization cells.
- (b) The antigen(s) in the vaccination being taken up and presented by antigen-presenting cells.
- (c) Antigen-presenting cells' release of proteins.
- (d) Enlisting, locating, and activating cells that are specific for the antigen.
- (e) Altering the activities that control the subsequent immune responses.
- (f) Safeguarding the antigen against deterioration and elimination.

C] Considerations for selection of the animal species for nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines

It is necessary to utilize the suitable animal species when conducting research on the characteristics that affect the safety and pharmacological activity of the adjuvant and the adjuvanted vaccination. The types of animals used for testing drugs' effectiveness and safety should be thoughtfully and rationally chosen. It is preferable to for moral grounds reduce the use of animals by following the 3Rs principle of "Replace Reduce Refine" whenever it is appropriate from a scientific perspective. ^[9] Both producers and employees those working in the NRA or national control laboratory are urged to advance in and to assess their suitability for the regulation of vaccinations. ^[10]

D] Non clinical safety assessment in animals

The possible inherent toxicity of the antigen and other vaccine components, as well as the potential for toxicities owing to interactions of the components present in the final formulation, are safety concerns for products like vaccinations. The possible inherent toxicity of the antigen and other vaccine components, as well as the potential for toxicities owing to interactions of the components present in the final formulation, are safety concerns for products like vaccinations.

Animal studies' safety evaluations are useful tools for defining a safe dose and an appropriate adjuvant / antigen ratio as well as for identifying unknown or prospective adverse effects that should be taken into account for further research. A product being developed or being watched in upcoming clinical trials.

Considerations for first-in-human clinical trials

The first-in-human trial considerations for novel adjuvanted vaccines are comparable to those for nonadjuvanted vaccines, just as they are for nonclinical safety assessment considerations^[11]; nevertheless, certain difficulties particular to the clinical evaluation of vaccines with novel adjuvants may need to be taken into account. The first clinical trial.

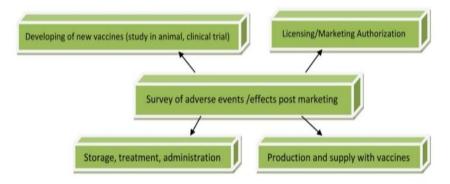
Trials of adjuvanted vaccines are typically conducted to:-

- (a) Ascertain the subjects' tolerance to a range of antigen and adjuvant doses, as well as the dosing regimen that may be required for later immunogenicity and clinical end-point trials.
- (b) Facilitate the gathering of data on the potential severity of adverse reactions.

This section offers advice on the issues to take into account when moving adjuvanted vaccines from nonclinical to clinical testing, as signals seen in nonclinical studies can help with the design of the first-inhuman clinical trials. This section is meant to complete the details. The WHO Guidelines on Clinical Evaluation of Vaccines: Regulatory Expectations (2) include Annex 2 87.

Although there are restrictions on how well animal and in vitro studies can forecast a substance's safety in people, all pertinent nonclinical data, such as details on the pharmacologically active dose and the whole toxicological profile. Designing the first-inhuman trials should take into account the adjuvanted vaccination profile. These information may be used to choose a safe starting dose, timetable, and administration method as well as to

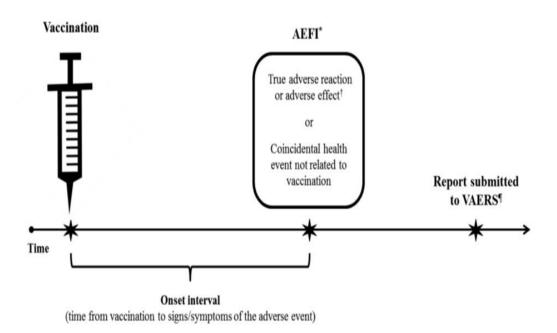
identify any potential side effects that need to be specifically monitored during the first-in-human clinical trial. To demonstrate the viability of the suggested first-in-human clinical trial design, a summary of such data from the nonclinical studies using the adjuvanted vaccination and any accessible clinical data from comparable or related adjuvanted vaccines should be presented. In order to find a dose that had no negative effects on animals, the experiments would need to be repeated with lower doses if, for instance, dose-limiting toxicity was seen with the adjuvanted vaccination in the animal studies be significant to emphasize that and to list the exact negative impacts found in the nonclinical trial.


Any safety data based on experience with the same adjuvant formulated with other vaccine antigens, if available, may assist in developing the safety monitoring plan for the adjuvanted vaccine. However, since the mode of action in humans for the adjuvant in the specific adjuvanted vaccine to be evaluated in the first-in-human trial is usually unknown, and adjuvants may exhibit a range of properties that induce complex immune responses, it is recommended that subjects in first-in-human trials of adjuvanted vaccines be asked about specific adverse events. This may include, for example, inquiries on local reactions (e.g. pain, redness, swelling, granuloma formation, abscess, necrosis and regional lymphadenopathy), systemic reactions (e.g. fever, nausea, diarrhea, and malaise), immune-mediated toxicity (e.g. cytokine release, immune suppression and autoimmune disease), and teratology adverse events of "special interest" may include gastrointestinal disorders like Crohn's disease and ulcerative colitis as well as neuroinflammatory conditions like optic neuritis and transverse myelitis, musculoskeletal and connective tissue diseases like rheumatoid arthritis, systemic lupus erythematosus, and wegener granulomatosis. Targeted laboratory tests, such as those for C reactive protein, fibrinogen, antinuclear antibodies, antineutrophil cytoplasmic antibodies, and rheumatoid factor, may also be useful in assessing adverse events and medical disorders.

E] Points to consider for the manufacturing and quality information to be provided for pharmacology studies, toxicology studies and first-in-human trials.

Considerations	Comment on information needed, by type of study			
	Pharmacology	Toxicology	First-in-human trials	
Quality information regarding raw materials	Information regarding purity and source of raw materials is important.	Information regarding purity and source of raw materials is important.	Information regarding purity and source of raw materials is important.	
Production of	Production of	Production of intermediates	Production of	

intermediates	intermediates and	and adjuvanted vaccine	intermediates and
and adjuvanted	adjuvanted vaccine	may be small scale; ideally,	adjuvanted vaccine may be
vaccine	may be small scale.	the lots used for the	small scale, but control of
		toxicology study should be	manufacture is important;
		the same as those that will	intermediates and
		be used in the first-in-	adjuvanted vaccine should
		human trials (or the lots	be manufactured in
		should be comparable to	compliance with the
		the lots that will be used in	appropriate good
		the first-in-human trials in	manufacturing practices.
		terms of the manufacturing	
		process and the controls).	
Presentation	Adjuvanted vaccine components (or antigen and adjuvant intermediates) often are provided in separate containers to be mixed prior to use.	Adjuvanted vaccine may be provided as a premixed formulation or as two components (in separate containers) to be mixed prior to administration.	Adjuvanted vaccine may be provided as a premixed formulation or as two components (in separate containers) to be mixed prior to administration.
Characterization	Characterization of material may not be extensive; usually general quality information (e.g. composition, purity, potency c, d) is provided.	Material should undergo considerable characterization to include, for example, information on purity, physicochemical characteristics and potency; c, d also, stability should be assessed.	Material should undergo considerable characterization to include, for example, information on purity, physicochemical characteristics and potency; c, d also, stability should be assessed.


How we know that vaccine are safe

What is an adverse reaction to a vaccine or an adverse reaction to immunization?

An "adverse event following immunization" (AEFI), often known as a "vaccine adverse event," is a negative health development or health issue that follows (Figure 1) or during the vaccination process. Adverse events are temporary occurrences that may be coincidental and unrelated to immunization, or it may be brought on by a vaccine. [12] An AEFI is defined by the "Council for International Organizations of Medical Sciences (CIOMS)". As any

unfavorable medical event that occurs after immunization but does not necessarily have a causal connection with the use of the vaccine. Any unfavorable or unanticipated sign, aberrant test finding, symptom, or disease may qualify as an adverse event. [13] Additionally. CIOMS describes AEFI in terms of product flaws, vaccine mistakes and in addition to those relating to a vaccine's basic qualities, anxiety-related effects. In an bad vaccine "reaction" and an unpleasant vaccination "effect," as opposed to the phrase "event," similar to "adverse drug reaction" used in pharmacovigilance for medication safety monitoring [14], are similar words that claim there is a sufficient body of scientific data to support an vaccination led to a negative health event. [12,15] Examples of typical vaccination side effects pain and redness at the injection site are reactions.

Why do the CDC and FDA oversee vaccine security?

Before approving a vaccination, the FDA needs comprehensive testing to determine its safety and effectiveness. In the last round of pre-licensure clinical trials, hundreds to many unpaid study participants.^[16] Clinical trials conducted prior to licensing are successful at determining and describing the most frequent negative effects connected to a specific instances include adverse responses at the injection site and fever following immunization. However, there is a possibility that clinical trials are not sufficiently large to identify uncommon adverse occurrences. only following the vaccination of tens of thousands or more people. The constrained patient follow-up duration for therapeutic trials additionally limits the capacity to recognize potential harmful situations with a delayed onset clinical trials typically continue

follow-up for periods longer than one year and do active follow-up on participants for up to a full year following vaccination. This degree of monitoring is enough to evaluate the majority of acute and delayed-onset adverse occurrences relevant to vaccination safety, but insufficient to evaluate onset conditions several years after exposure. Additionally, early licensure clinical trials typically contain just persons in good health, therefore information on certain demographics, such as those with chronic. There is a limit to illnesses or pregnant ladies. As a result, following the licensing and disseminated for wider use, monitoring is important to further assess safety.^[17]

In addition to scientific and methodological concerns, policy considerations also affect how the CDC and FDA decide to monitor the safety of vaccines. Drugs are typically administered to treat illnesses, whereas vaccines are typically administered to healthy individuals to prevent illness. Patients who are ill or parents of children who are ill may be more prepared to accept safety risks. When comparing the usage of medications to cure illnesses and immunizations to ward off potential future illnesses. Additionally, a lot of state and local governments demand vaccinations for students. More and more schools and hospitals are requiring vaccinations as a requirement for enrolment. Working. [18,19] These requirements concentrate more attention on the safety of vaccines and unfavorable event surveillance.

The causes and consequences of vaccine-related adverse events

The negative outcomes/events are connected to a specific vi- Live vs. dead vs. subcomponents vs. strains vs. bacteria virus, vaccination dilution, injection volume, adjuvant, or vaccine preservatives, stabilizing and purification agents Some vaccinations that contain impurities and other ingredients in vaccinations and injection method.

New methods to evaluate the safety of vaccines

VSD has been a leader in the development of suitable statistical techniques to assess safety alerts and reduce the likelihood of false-positive signals. Weekly assessments of a vaccine's safety are made by VSD researchers using RCA a number of studies over time. Using conventional statistical techniques in this case, nonetheless, might produce erroneous positive indications. In order to solve this issue, VSD researchers The maximized sequential probability ratio test, or MaxSPRT, was created. This fresh indication the detection approach allows continuous or time-based detection, accounts for repeated statistical testing, data collection period analysis (e.g., MaxSPRT has been used weekly within VSD) and offers a practical and flexible method for the early identification of unfavorable occurrences

following the release of new vaccines. [20,21] Using this strategy, for instance, VSD investigators discovered a novel safety signal of febrile seizures linked to the seasonal influenza vaccination in 2010–2011 earlier than would have been possible with prior methods. [22] Recently, VSD researchers have also effectively modified techniques used in clinical studies, group sequential analysis is used to proactively track the security of fresh vaccinations. When utilizing group sequential monitoring as opposed to continuous testing (such as MaxSPRT), testing is performed less often (for instance, at time points based on the number of dosages provided necessary to guarantee the ability to identify a predetermined relative risk), and thus has the benefit of increasing study power overall for a given sample size, which may be crucial for identifying uncommon adverse outcomes that were missed in pre licensure studies. The case-centered strategy for observational vaccine safety studies is another cutting-edge analytical design created by VSD research. This method employs a "backward" methodology, in which the observed odds of exposure (such as immunization) during a specific time period (i.e., the Prior to an outcome (such as an unfavorable occurrence), the risk interval) and the based on the timing of vaccination in the same risk interval, anticipated probability of exposure comparable vaccine recipients as a population. This is comparable to a matched case-control study that makes use of every possible control. In studies of febrile seizures following VSD, this technique has been used. Bell's palsy following influenza vaccination^[23], the MMRV vaccine^[24], and Guillain-Barré post vaccines syndrome.[25]

MaxSPRT, group sequential analysis, and case-centered analysis have all been utilized as models for other types of safety monitoring (such as attempts to monitor the safety of vaccines in other nations' efforts and for medications and medical devices used in the U.S.).

Challenges

Using the databases and scientific resources on its websites, VSD has had great success in conducting quick and creative evaluations of vaccination safety. Electronic healthcare databases, however, are created for administrative and medical needs. and using them for study can present difficulties. Consequently, VSD has created novel methods for assessing the databases to be used, connecting and organizing them in accordance with a standardizing the data vocabulary and subjecting the data to stringent quality tests. Caution For each health outcome, possible instances must be identified through the selection of computerized codes. To prevent classification bias, which can provide results that are either falsely positive or falsely negative. Furthermore, examining individual medical records whether they are electronic or paperis frequently essential for confirming possible instances that are found using computerized codes.

Data on health encounters will only reveal health outcomes that require medical intervention. The VSD population consists of insured individuals who are members of healthcare organizations, so getting medical care is not a major issue. However, elements that may have an impact any VSD evaluation must take obtaining medical attention into consideration. The likelihood of seeking medical attention is specifically influenced by how serious an illness is. Therefore, more serious illnesses that require hospitalization have a higher chance of being included in VSD than less serious illnesses that an individual may or may not seek health care. However, the VSD network can function as a framework for carrying out specific research for circumstances that are unlikely to be precisely recorded in an electronic medical history. For instance, VSD assessed neurodevelopmental results after baby immunizations along with a follow-up investigation and personal evaluation of cohorts of kids who having received various vaccinations as babies, performing cognitive testing to evaluate functioning across a number of neurodevelopmental domains. [29]

An additional analytical problem is the presence of a highly vaccinated population, which may make it challenging to find a comparison group that is not vaccinated. In these circumstances, as well as in analyses limited to those who have received vaccinations, other "risk-interval" designs areas. [26] Risk interval techniques are appropriate for acute illnesses that typically manifest within a restricted time frame following immunization. The frequency with which the desired outcome occurs is contrasted with the rate in time intervals outside the risk window during the danger window. The risk interval notion has been expanded upon by self-control techniques by further limiting analyses.to immunized instances of the desired result. [27] Self control techniques naturally account for any individual-level possible confounding factor (measured or not) that is constant over time by limiting to vaccinated cases. While risk-interval techniques are useful for addressing sudden adverse occurrences, research on health outcomes with postponed or subtle beginning may present greater difficulties.

Considering that the majority of VSD members are working people Concerns about the generalizability of VSD findings, health insurance coverage for themselves and their family often occur. While there may be a lack of representation at the extremities of the economic

distribution, it has been discovered that VSD membership populations have comparable demographic traits. to the regions covered by the VSD health plans' catchment zones.^[28]

Closing thoughts

Over the course of its more than 20 years of operation, the long-standing VSD vaccine safety research network has defined the field of safety surveillance for both prescription medications and other healthcare items. It isn't mythical. The recognition of leadership and influence is widespread in the United States and elsewhere. globe. VSD served as a template for the FDA's post-marketing surveillance program. Sentinel Network [67], wherein pharmaceuticals subject to FDA regulation, including vaccines, Medical equipment and medications are observed. A global effort in Europe, among other countries, has modified VSD-based systems and procedures. [30,31] common data dictionaries, the distributed data paradigm, and analytical techniques like sequential monitoring conducted almost in real time) in their immunization safety efforts. Large integrated health care delivery systems' scientific, organizational, and data resources have been leveraged by VSD, which has also shown successful in adjusting to shifts in the advancement and structure of medical care in information technology for health. The expertise and direction of VSD investigators, as well as the numerous benefits of VSD offer strong proof of its significance as a component of the general immunization program in the united states and as a significant source of vaccines providing the greatest information available to stakeholders so they can decide as wisely as possible.

Abbreviations

VAERS stands for Vaccine Adverse Event Reporting System.

AEFI stands for adverse event following immunization.

CDCstands for Centers for Disease Control and Prevention.

FDA U.S. stands for Food and Drug Administration.

MedDRA stands for Medical Dictionary for Regulatory Activities.

REFERENCE

- 1. https://www.britannica.com/science/vaccine
- 2. Varricchio F, Iskander J, Destefano F, Ball R, Pless R, Braun MM, Chen RT. Understanding vaccine safety information from the Vaccine Adverse Event Reporting System. Pediatr Infect Dis J., 2004; 23(4): 287–94. [PubMed: 15071280]

- 3. Baggs J, Gee J, Lewis E, Fowler G, Benson P, Lieu T, Naleway A, Klein NP, Baxter R, Belongia E, Glanz J, Hambidge SJ, Jacobsen SJ, Jackson L, Nordin J, Weintraub E. The Vaccine Safety Datalink: a model for monitoring immunization safety. Pediatrics, 2011; 127(1): S45–53. [PubMed: 21502240]
- 4. Nguyen M, Ball R, Midthun K, Lieu TA. The Food and Drug Administration's Post-Licensure Rapid Immunization Safety Monitoring program: strengthening the federal vaccine safety enterprise. Pharmacoepidemiol Drug Saf. 2012; 21(Suppl 1): 291–7. [PubMed: 22262619]
- 5. The Uppsala Monitoring Centre. Safer Medicines, Safer Use of Medicines, Safer Patients: What UMC is doing to help it happen. Available at: http://www.who-umc.org/graphics/27916.pdf.Accessed June 5, 2015.
- 6. Uppsala Monitoring Centre (UMC). Report from the WHO Collaborating Centre for International Drug Monitoring: Activities July 2013-June 2014. Available at: http://www.who-umc.org/graphics/28368.pdf. Accessed June 5, 2017
- 7. Committee for Medicinal Products for Human Use. Guideline on adjuvants in vaccines for human use. London, European Medicines Agency, 2005 (EMEA/CHMP/VEG/134716/2004)(http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003809.pdf, accessed 26 June 2013).
- 8. 22. Friede M et al. WHO initiative to increase global and equitable access to influenza vaccine in the event of a pandemic: supporting developing country production capacity through technology transfer. Vaccine, 2011; 29(1): A2–A7.
- 9. Shin J et al. International regulatory requirements for vaccine safety and potency testing: a WHO perspective. Procedia in Vaccinology, 2011; 5: 164–170.
- 10. Guidelines for independent lot release of vaccines by regulatory authorities. In: WHO Expert Committee on Biological Standardization. Sixty-first report. Geneva, World Health Organization, 2013 (WHO Technical Report Series, No. 978), Annex 2.
- 11. Guidelines on clinical evaluation of vaccines: regulatory expectations. In: WHO Expert Committee on Biological Standardization. Fifty-second report. Geneva, World Health Organization, 2004 (WHO Technical Report Series, No. 924), Annex 1.
- 12. Centers for Disease Control and Prevention. Understanding the Vaccine Adverse Event Reporting System (VAERS). Feb. 2013 Available at: http://www.cdc.gov/vaccines/hcp/patient-ed/ conversations/downloads/vacsafe-vaers-color-office.pdf. Accessed June 5, 2015

- 13. Council for International Organizations of Medical Sciences (CIOMS). Definition and Application of Terms for Vaccine Pharmacovigilance: Report of CIOMS/WHO Working Group on Vaccine Pharmacovigilance. WHO Press, World Health Organization; Geneva, Switzerland, 2012.
- 14. Expert Working Group (Efficacy) of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Guideline for Industry. Clinical Safety Data Management: Definitions and Standards for 1995 Mar. Available Expedited Reporting. http://www.fda.gov/downloads/Drugs/Guidances/ucm073087.pdf. Accessed June 5, 2015
- 15. Council for International Organizations of Medical Sciences (CIOMS). Practical aspects of signal detection in pharmacovigilance: Report of CIOMS working group VIII. Geneva, Switzerland, 2010.
- 16. Marshall V, Baylor NW. Food and Drug Administration regulation and evaluation of vaccines. Pediatrics, 2011; 127(1): S23–30. [PubMed: 21502242]
- 17. Chen. RT.: Davis. RL.: Rhodes. PH. Special methodological issues in pharmacoepidemiology studies of vaccine safety. In: Strom. BL.. editor. Pharmacoepidemiology. 4th. John Wiley & Sons; Sussex: 2005
- 18. Centers for Disease Control and Prevention. State School Immunization Requirements Vaccine 2015 and Exemption Laws. Feb-Mar. Available at: http://www.cdc.gov/phlp/docs/schoolvaccinations.pdf. Accessed June 5, 2015
- 19. Centers for Disease Control and Prevention. State Immunization Laws for Healthcare Workers and Patients. Nov. 2014 Searchable database available at: http://www2a.cdc.gov/vaccines/ statevaccsApp/default.asp. Accessed June 5, 2015
- 20. Kulldorff M, Davis RL, Kolczak M, Lewis E, Lieu T, Platt R. A maximized sequential probability ratio test for drug and vaccine safety surveillance. Seq Anal, 2011; 30: 58–78.
- 21. Li L, Kulldorff M. A conditional maximized sequential probability ratiotest for pharmacovigilance. Stat Med., 2010; 29: 284–95. [PubMed: 19941282]
- 22. Tse A, Tseng HF, Greene SK, Vellozzi C, Lee GM. Signal identification and evaluation for risk of febrile seizure in children following trivalent inactivated influenza vaccine in the Vaccine Safety Datalink Project, 2010–2011. Vaccine, 2012; 30: 2024–31. [PubMed: 22361304]
- 23. Rowhani-Rahbar A, Klein NP, Lewis N, Fireman B, Ray P, Rasgon B, et al. Immunization and Bell's palsy in children: a case-centered analysis. Am J Epidemiol, 2012; 175: 878–85. [PubMed: 22411861]

- 24. Klein NP, Fireman B, Yih WK, Belongia EA, Lewis E, Kulldorff M, et al. Measles-mumpsrubella-varicella combination vaccine and the risk of febrile seizures. Pediatrics, 2010; 126: e1–8. [PubMed: 20587679]
- 25. Baxter R, Bakshi N, Fireman B, Lewis E, Ray P, Vellozzi, et al. Lackofassociation of Guillain-Barre Syndrome with vaccinations. Clin Infect Dis., 2013; 57: 197–204. [PubMed: 23580737]
- 26. Glanz JM, McClure DL, Xu S, Hambidge SJ, Lee M, Kolczak MS, et ah Four different study designs to evaluate vaccine safety were equally validated with contrasting limitations. J Clin Epidemiol, 2006; 59: 808–18. [PubMed: 16828674]
- 27. Farrington CP. Control without separate controls: evaluation of vaccine safety using case-only methods. Vaccine, 2004; 22: 2064–70. [PubMed: 15121324]
- 28. Koebnick C, Langer-Gould AM, Gould MK, Chao CR, Iyer RL, Smith N, et al. Sociodemographic characteristics of members of a large, integrated health care system: comparison with US Census Bureau data. Perm J., 2012; 16: 37–41.
- 29. Thompson WW, Price C, Goodson B, Shay DK, Benson P, Hinrichsen VL, et al. Earlythimerosal exposure and neuropsychological outcomes at 7 and 10years. N Engl J Med., 2007; 357: 1281–92. [PubMed: 17898097]
- 30. Lopalco PL, Johansen K, Ciancio B, De Carvalho Gomez H, Kramarz P, Giesecke J. Monitoring and assessing vaccine safety: a European perspective. Expert Rev Vaccines, 2010; 9: 371–80. [PubMed: 20370548]
- 31. Trifiro G, Coloma PM, Rijnbeek PR, Romio S, Mosseveld B, Weibel D, et al. Combining multiple healthcare databases for postmarketing drug and vaccine safety surveillance: whyand how?J Intern Med., 2014; 275: 551–61. [PubMed: 24635221]