

A REVIEW ON PHENOTHIAZINE MOLECULE PROVIDES THE CHEMICAL STRUCTURE FOR VARIOUS BIOLOGICAL ACTIVITY

Pratibha S. Jadhav*, Mayur S. Bhosale¹

*Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy,
Pravaranagar, Maharashtra, India-413736.

¹Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy,
Pravaranagar, Maharashtra, India-413736

Article Received on 01 Jan. 2026,

Article Revised on 21 Jan. 2026,

Article Published on 01 Feb. 2026,

<https://doi.org/10.5281/zenodo.1842882>

*Corresponding Author

Pratibha S. Jadhav

Department of Pharmaceutical Chemistry, Pravara Rural College of Pharmacy, Pravaranagar, Maharashtra, India-413736.

How to cite this Article: Pratibha S. Jadhav*, Mayur S. Bhosale¹ (2026). A Review On Phenothiazine Molecule Provides The Chemical Structure For Various Biological Activity. "World Journal of Pharmaceutical Research, 15(3), 546-563.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACTS

Heterocyclic compounds, including thiazine, are characterized by a ring structure that contains four carbon atoms, one nitrogen atom, and one sulfur atom. $S(C_6H_4)_2NH$ Phenothiazine is a benzo derivative of tricyclic fused rings, which incorporates sulfur and nitrogen as heteroatoms. The tricyclic configuration is crucial for the physicochemical and biological properties of phenothiazines, and the synthesis process is enhanced through the application of green chemistry and functional group modifications to yield more active derivatives. Literature showed that wide range of pharmacological activities like antibacterial, anti-inflammatory antifungal, anti-tuberculosis, and anticancer properties are present with phenothiazine derivatives. Phenothiazine exhibit efficacy but also possess toxicity, including neurotoxicity and cardio toxicity, necessitating the optimization of their pharmacokinetic profiles. Furthermore, advancements in synthetic methodologies have facilitated the creation of novel derivatives

with enhanced efficacy and safety profiles. This review consolidates existing knowledge regarding phenothiazine derivatives, focusing on their synthesis, biological activities, and potential therapeutic applications, highlighting their flexibility and significance in drug design. The objective of this review is to promote further research by investigating structure-activity relationships and recent developments in the field, emphasizing the therapeutic

potential of phenothiazine across various disease models. This review offers a thorough examination of the history of phenothiazine, their synthesis, and their biological activities. The ability of phenothiazine derivatives to inhibit key enzymes and influence biological pathways positions them as promising candidates for drug development.

KEYWORDS: Phenothiazine, Heterocyclic Scaffold, Antibacterial, anti-proliferative, anti-inflammatory, anti-tubercular, antifungal, pharmacokinetic.

INTRODUCTION

Phenothiazine (PTZ) is a thiazine compound of organic origin, characterized by the chemical formula $S(C_6H_4)_2NH$. It appears as a powder that ranges in color from light green to steel-blue, developing a greenish-brown hue when exposed to sunlight. The molecular weight of phenothiazine is 199.27 g/mol, with a melting point of 185°C and a boiling point of 371°C. The IUPAC designation for phenothiazine is 10H-dibenzo-1,4-thiazine. This compound features a core ring structure comprising two benzene rings (pheno) linked by a tricyclic nucleus that includes a sulfur atom (thio) at the 5th position and a nitrogen atom (azo) at the 10th position.^[1] The tricyclic phenothiazine ring, along with the length of the alkyl bridge that connects the nitrogen atom at position 10 (N-10) of the ring to the terminal amine in the side chain, plays a key role in determining how effective phenothiazine is against cancer cells.^[2,3] Interestingly, the activity is more strongly related to the type of substituent in the phenothiazine ring rather than the specific nature of the attached side chain.^[4]

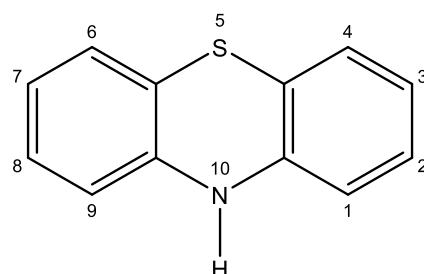
Heterocyclic compounds containing nitrogen and sulfur atoms exhibit a range of biological activities, as the presence of these functional groups enhances the reactivity and potency of these compounds.^[5] Phenothiazine is classified within the thiazine group of heterocyclic compounds, characterized by its structure, which consists of two benzene rings interconnected in a tricyclic arrangement, along with, a sulfur and a nitrogen atom.^[6] Various modifications to the phenothiazine nucleus have led to the development of numerous derivatives with promising therapeutic effects.^[7] The neuroleptic properties of phenothiazine derivatives represent one of their most fascinating pharmacological characteristics.^[8] Phenothiazine offers a broad spectrum of medicinal advantages, including anti-inflammatory activity,^[9] bactericidal properties,^[10] anti-depressant effects,^[11] anti-psychotropic capabilities,^[12] anti-tumor properties,^[13] anti-viral effects^[14] anti-cancer activities^[15] and anti-tubercular effects^[16] making it widely utilized across the globe today due to its significant therapeutic potential.

Historical Context and Importance

The initial discovery of phenothiazine can be traced back to the 19th century, when they were employed as dyes in the textile industry. The medicinal properties of this compound began to gain recognition in the early 20th century. Shortly thereafter, the first clinically relevant phenothiazine derivative, methylene blue, emerged. This compound became extensively used as both an antiseptic and an antimalarial treatment.^[17]

The significant advancement in phenothiazine research occurred in the 1950s with the identification of chlorpromazine, the first medication classified as an antipsychotic. As a result, chlorpromazine opened new pathways for the management of psychiatric disorders, marking the beginning of modern psychopharmacology and significantly improving the treatment of schizophrenia and bipolar disorder compared to earlier methods. This development led to the creation of a diverse range of phenothiazine derivatives that exhibited enhanced efficacy and minimized side effects.^[18,19]

Scope of Review


This review seeks to provide a comprehensive analysis of the synthesis, biological activities, mechanisms of action, and potential applications of phenothiazines. It primarily addresses the following essential elements:

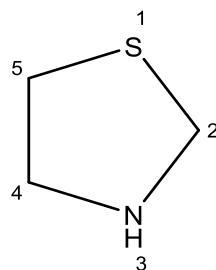
- Synthetic methods, including both traditional and contemporary techniques, aimed at enhancing pharmacological profiles.^[17]
- Mechanistic understanding regarding interactions with biological targets, structure-activity relationships (SAR), and molecular modeling investigations.^[19]
- Challenges and future perspectives; approaches to enhance efficacy and minimize toxicity, in addition to addressing drug resistance issues.^[19]
- Chemical structure and physicochemical characteristics that influence biological activity.^[20]
- The extensive array of biological activities: antimicrobial, anticancer, antipsychotic, and anti-inflammatory effects.^[21]

Chemistry, Structure and Properties

Phenothiazine, a tricyclic heterocyclic compound that incorporates nitrogen (n) and sulfur(s) within its structure, along with its derivatives, is regarded as one of the most adaptable organic structures in terms of biological activity.^[21] A carbocyclic compound is defined as a cyclic organic compound where each carbon atom is arranged in a ring structure. If the ring

system includes at least one atom that is not carbon, it is classified as a heterocyclic compound. A heterocyclic ring may contain multiple heteroatoms, which can be either similar or different, and can exist in saturated or unsaturated forms. Examples of heterocyclic compounds include thiazine, which features a ring composed of four carbon atoms, one nitrogen atom, and one sulfur atom, along with elements such as O, N, S, Se, Te, and P. Thiazines are utilized in various applications, including insecticides, dyes, and tranquilizers. There exists a wide array of known 1, 4-thiazine compounds, with the majority being derivatives of phenothiazine. (C₁₂H₉NS) Phenothiazine itself is a benzo derivative of tricyclic fused rings, incorporating heteroatoms of sulfur and nitrogen. There is neutral nitrogen in the phenothiazine nucleus (Fig. 1). Each of the two aromatic rings that are connected to a nitrogen atom withdraws electrons, thus reducing the fundamental characteristic. This nitrogen usually does not combine with acid to produce a salt. All phenothiazines are easily oxidized, especially when moisture and sunlight are present.^[22]

Fig. 1: Structure of Phenothiazine.

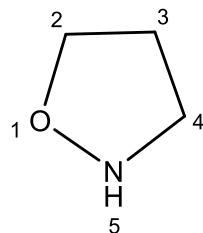

Physicochemical properties

The biological activity of phenothiazines is strongly influenced by their physicochemical properties. These include, among others:

Sr. No.	Property	Characteristics
1.	Molecular formula	C ₁₂ H ₉ NS (basic structure)
2.	Molecular Weight	199.27 g/mol (varies with substitutions)
3.	Log P (Lipophilicity)	3.5–5.5 (moderate to high)
4.	pKa (of N-H group)	8.0–9.0 (affects ionization and receptor interaction)
5.	Solubility	Poor in water, soluble in organic solvents (e.g., ethanol, chloroform)
6.	Melting Point	175–190°C (varies among derivatives)
7.	Absorption/Fluorescence	Exhibits UV-Vis absorption and fluorescence properties

Phenothiazine used starting material in many derivative such as

1. Thiazolidine


Thiazolidines are heterocyclic compounds characterized by five-membered rings that are saturated with a thio group and an amine group. The thio group is consistently located at the first position, while the amine group is found at the third position.

Molecular formula: C_3H_7NS

Molecular Weight: 89.16 g/mol

Thiazolidine moieties are recognized for their diverse biological activities, including antiviral, anticancer, anti-tubercular, antimicrobial, anthelmintic, and anticonvulsant properties.^[23,34]

2. Oxazolidine

An Oxazolidine is a compound characterized by a five-membered ring that consists of three carbon atoms, one nitrogen atom, and one oxygen atom. The oxygen and NH groups occupy the 1 and 3 positions, respectively. In derivatives of Oxazolidine, there is consistently a carbon atom situated between the oxygen and the nitrogen.

All carbon atoms in Oxazolidine are in a reduced state when compared to oxazole and oxazoline. Oxazolidines are molecules that exhibit extensive pharmacological activity and can function as anticonvulsants, anti-inflammatory agents, antineoplastic agents, and treatments for chronic and infectious diseases, as well as possessing antibacterial and anticancer properties. Certain derivatives of oxazolidine, such as oxazolidinones, represent a

novel class of antimicrobial agents that feature a distinctive structure and demonstrate significant efficacy against gram-positive pathogenic bacteria.^[25,26]

Molecular Formula: C₃H₇NO

Molecular weight: 73.09 g/mol

Structure Activity Relationship (SAR) of Phenothiazine

1. N-10 Substitutions

- Alkyl groups (such as CH₃, C₂H₅, C₃H₇) or modifications of Piperazine → improve the affinity for dopamine D₂ receptors, thereby enhancing the efficacy of antipsychotics; for example, chlorpromazine and trifluoperazine.^[28,29]
- Long-chain aliphatic groups → result in increased lipophilicity and better penetration into the central nervous system; they also amplify sedative effects; for instance, promethazine.^[28]
- Quaternary ammonium salts → improve antimicrobial effectiveness through their interaction with bacterial membranes.^[27]

2. Substitutions on the six-membered ring (Positions 2, 3, 7, and 8)

1. Electron donating groups (-OCH₃, -CH₃, -OH, -NH₂)

- Improve antioxidant and neuroprotective properties.^[29]

2. Electron withdrawing groups (-Cl, -Br, -NO₂, -CF₃)

- Enhance antimicrobial and anticancer properties by increasing lipophilicity and membrane permeability.^[29]

3. Sulfur oxidation (Sulfoxides / Sulfones)

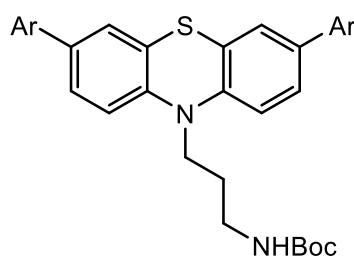
- Increases solubility in water, decreases penetration into the central nervous system, but enhances antifungal activity (for instance, sulfoxide derivatives utilized as anti-tubercular agents).^[28,29]

Synthesis of Phenothiazine

The conventional synthesis of phenothiazines primarily involves cyclization reactions utilizing precursor compounds such as diphenylamine and sulfur-based reagents. The methods that are typically employed include the following:

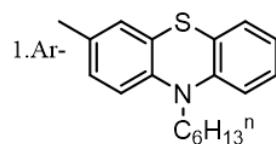
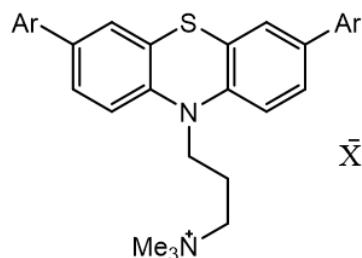
The classical synthesis of phenothiazines fundamentally encompasses thermal cyclization, condensation and diazotization reactions. One of the earliest techniques involved the reaction

of diphenylamine with sulfur at elevated temperatures (approximately 250-300°C) to produce the distinctive tricyclic nucleus of phenothiazine, referred to as the Bucherer-Berg reaction. Additional traditional synthesis methods include Ullmann-type condensation, where copper catalysts facilitate the reaction of halodiphenylamines, resulting in the formation of a C-S bond.^[30,31]

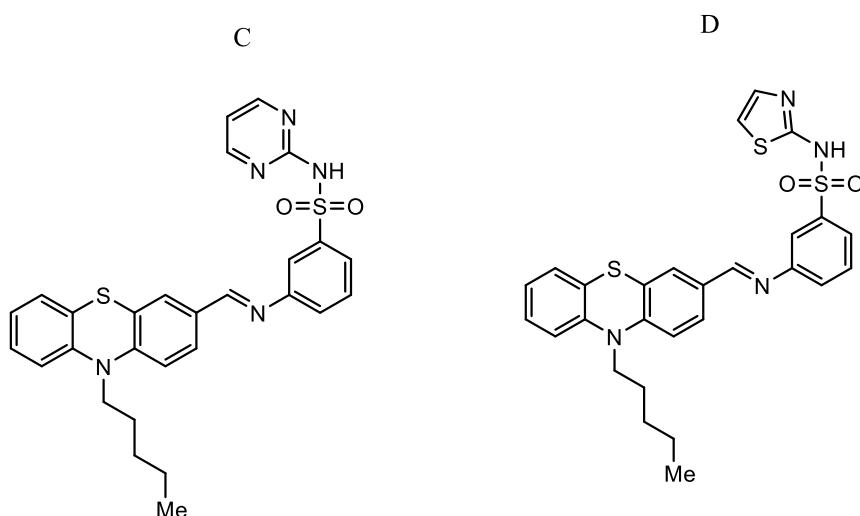


Biological activities of phenothiazine

Phenothiazine demonstrates a wide range of pharmacological effects, which encompass antimicrobial, antibacterial, antihelminthic, antimalarial, and local anesthetic activities,^[32] Additionally, it exhibits antihistaminic and antipsychotic effects,^[33] anticholinergic (anti-parkinsonian) activity^[34] antipruritic,^[35] and antiemetic effects.^[36] Furthermore, it possesses analgesic, antidepressant,^[37] antispasmodic, antiarrhythmic, sedative, antitussive, radioprotective, skeletal muscle relaxant, coronary vasodilator, and anti-inflammatory properties.^[38]

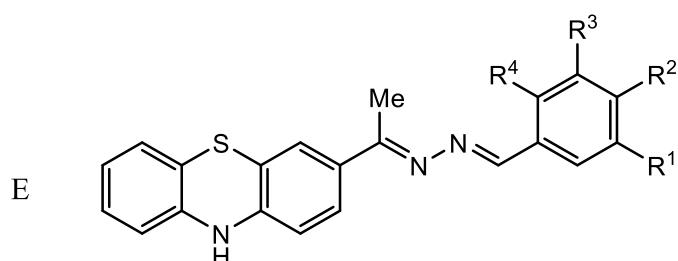
1. Antibacterial activity



a) The synthesis of 3,7-di(hetero)aryl-substituted phenothiazines (A) and 3,7-di(hetero)aryl-substituted phenothiazinyl-N-propyl trimethylammonium (B) salts was assessed for their antibacterial efficacy against gram-positive bacteria (*Mycobacterium tuberculosis*) and gram-negative bacteria (*Pseudomonas aeruginosa*, *Escherichia coli*, *Actinobacter baumannii*, and *Klebsiella pneumonia*).^[39]

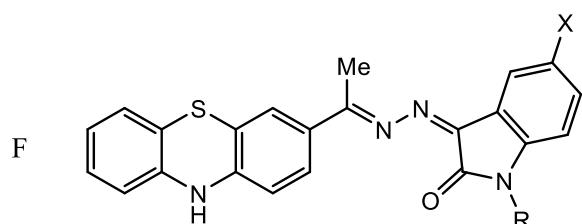
A


2. Ar-P-anisyl 3. Ar-2-thienyl
4. Ar-Phenyl 5. Ar-P-CICH
6. Ar-P-NCCH

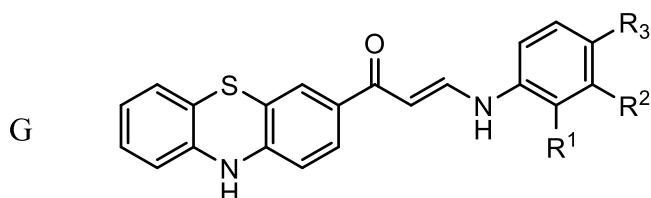
B


2. Ar-P-anisyl 3. Ar-2-thienyl
4. Ar-Phenyl 5. Ar-P-CICH
6. Ar-P-NCCH

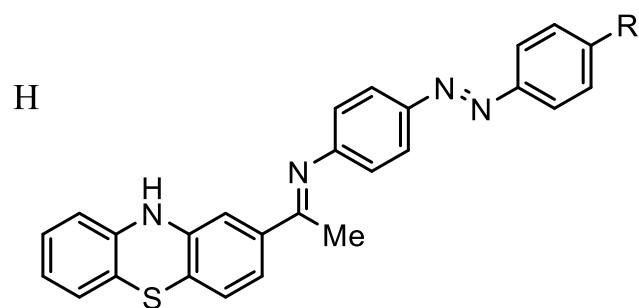
b) The synthesis of 4-(((10-hexyl-10H-phenothiazin-3-yl) methylene) amino)-N-(pyrimidin-2-yl) benzenesulfonamide (C) and 4-(((10-hexyl-10H-phenothiazin-3-yl) methylene) amino)-N-(thiazol-2-yl) benzenesulfonamide (D) was conducted. The antibacterial properties were assessed against *Staphylococcus aureus*, *E. coli*, and *Candida albicans* using the disc diffusion method.^[40]



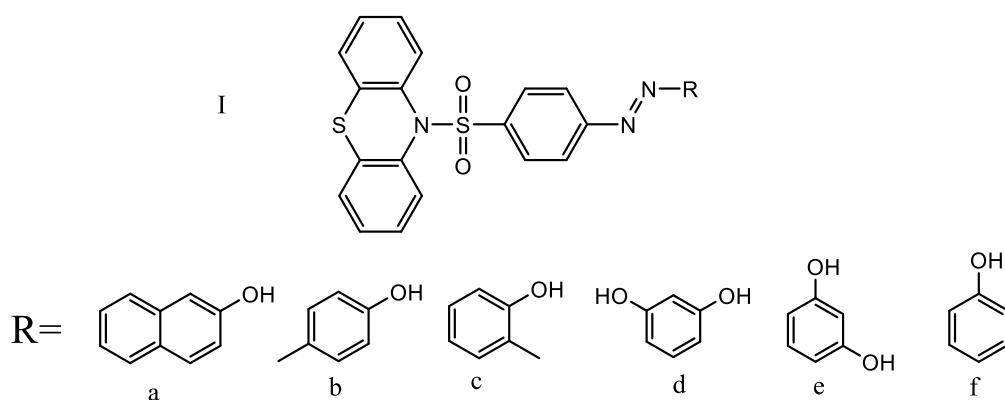
2. Anti-proliferative Activity


a) The synthesis of phenothiazine-isatin derivatives (F) and phenothiazine-benzylidene-hydrazone derivatives (E), along with the synthesis of isomeric derivatives of phenothiazine-enaminones (G), was conducted. A variety of novel phenothiazine conjugates were synthesized and evaluated for their potential as anticancer agents. These compounds underwent testing for their antiproliferative activity against the National Cancer Institute's extensive panel of various cancer cell lines, which includes leukemia, non-small cell lung cancer (NSCLC), colon cancer, central nervous system (CNS) cancer, melanoma, ovarian cancer, renal cancers, prostate cancer, and breast cancer cells.^[41]

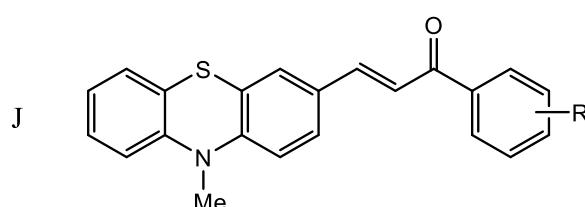
- a) R₁=H, R₂= N(Me)2, R₃=H, R₄=H
- b) R₁=H, R₂= OMe, R₃=OH, R₄=H
- c) R₁=NO₂, R₂=H, R₃=H, R₄=C1
- d) R₁=H, R₂=NO₂, R₃=C1, R₄=H



- a) R=H, X=H
- b) R=H, X=Cl
- c) R=C2H5, X=Cl

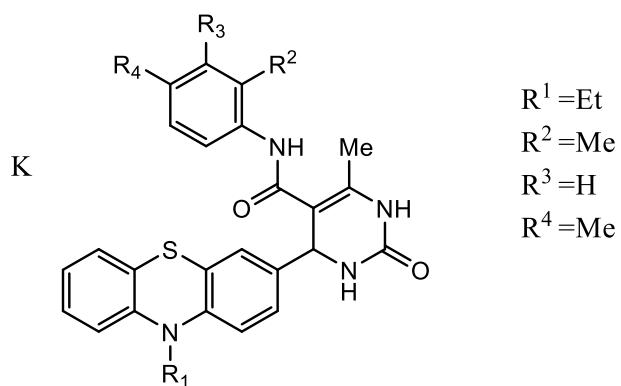

- a) R₁=H, R₂=H, R₃=H
- b) R₁=Me, R₂=H, R₃=H
- c) R₁=H.R₂=OMe, R₃=H
- d) R₁=H, R₂=H.R₃=OMe
- e) R₁=H.R₂=H.R₃=Cl
- f) R₁=H.R₂=H.R₃=F
- g) R₁=OMe, R₂=H, R₃=OMe
- h) R₁=H, R₂=H.R₃=I
- i) R₁=H.R₂=H.R₃=NO₂
- j) R₁=F, R₂=H.R₃=F

b) The synthesis of 2-(E)-(N-(azobenzyl)-4-iminoethan-1-yl)-10H-phenothiazines is conducted. These compounds are assessed for their anticancer activity against MCF-7 cell lines using the MTT assay.^[42]

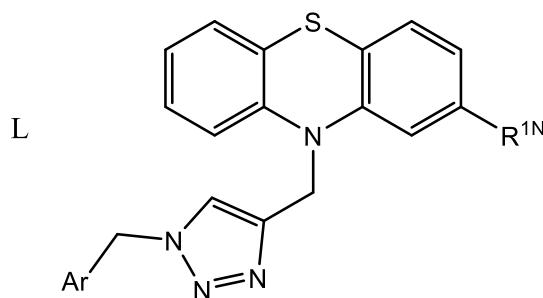


a) R = H, b) R = Me, c) R = CH₂CH₃

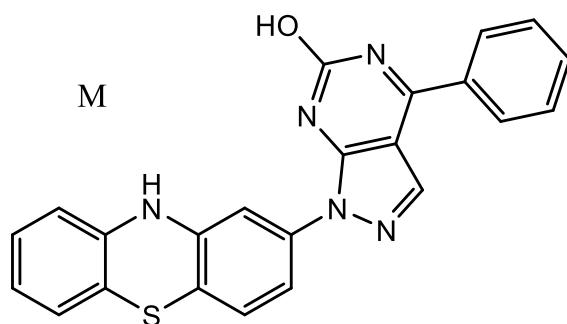
c) The synthesis of 1-((4-((10H-phenothiazin-10-yl)sulfonyl)phenyl) diazenyl) derivatives was subsequently assessed for its in vitro anticancer effectiveness against the breast cancer cell line MDA-MB-231.^[43]


d) The synthesis of 3-(10-methyl-10H-phenothiazin-3-yl)-1-substituted phenylprop-2-en-1-ones, which are phenothiazine derivatives, was evaluated for their antitumor efficacy against MCF-7 breast cancer cell lines using MTT and LDH assays.^[44]

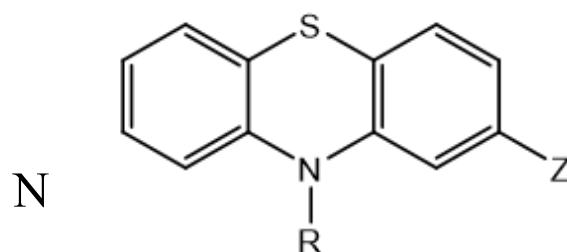
R = a) H, b) Et, c) Me


3. Anti-inflammatory activity

a) The phenothiazinyl tetrahydro-pyrimidine-carboxamide derivatives were subsequently assessed for their in vitro anti-inflammatory activity using the protein denaturation method.^[45]


4. Anti-tubercular activity

a) The diverse hybrids of 1, 2, 3-triazole phenothiazine (Synthesis of 1-((4-((10H-phenothiazin-10-yl)sulfonyl)phenyl) diazenyl) derivatives) were assessed for their anti-tubercular efficacy against *M. tuberculosis* employing the MABA method.^[46]


- a) $R^1 = \text{H}$, $\text{Ar} = 4\text{-NO}_2$
- b) $R^1 = \text{H}$, $\text{Ar} = 2\text{-F}$
- c) $R^1 = \text{H}$, $\text{Ar} = 4\text{-CN}$
- d) $R^1 = \text{H}$, $\text{Ar} = 4\text{-OMe}$

b) The synthesized some novel 2- heterocyclic substitutes phenothiazines having a Pyrazolo [3,4-d] pyrimidine nucleus using Biginelli multi component cyclocondensation reaction which posses anti tubercular activity.^[47]

5. Antifungal Activity

The synthesized phenothiazine and their derivatives, which demonstrated in vitro antifungal properties. These compounds were assessed for their potential antifungal efficacy against 14 strains of fungi associated with nosocomial infections. Pipothiazine and promethazine exhibited activity at elevated concentrations; however, one of the more straightforward derivatives displayed significant activity even at lower concentrations.^[48]

Z = H: SO₂(CH₃)₂ R=COCH₂.COCH₂Cl

Future Prospects

Future studies should focus on the optimization of phenothiazine derivatives, investigating their synergistic effects with current anticancer and antimicrobial agents, and performing thorough clinical trials to confirm their safety and effectiveness. Research into their interactions with neurotransmitter systems may also uncover new therapeutic uses. The combination of phenothiazine with immunotherapies could potentially boost anti-tumor responses, while customized combinations targeting specific cancers or bacterial pathogens might enhance treatment accuracy. In-depth pharmacokinetic studies are crucial for evaluating long-term effects, drug interactions, and dosing strategies. Furthermore, the development of phenothiazine derivatives with improved selectivity and bioavailability could broaden their therapeutic applications and enhance clinical results.^[49]

CONCLUSION

Phenothiazine have surfaced as a multifaceted heterocyclic group of compounds possessing a wide range of pharmacological applications that extend beyond their conventional role in antipsychotics. This review examines the complex role of phenothiazine derivatives within medicinal chemistry, emphasizing their wide-ranging biological activities and therapeutic potential. The structural adaptability of phenothiazine enables the creation of innovative compounds that demonstrate significant antimicrobial, anti-inflammatory, antifungal, anti-

tubercular, antioxidant, and anticancer properties. Importantly, certain derivatives have shown effectiveness against various cancer cell lines, establishing them as promising candidates for drug development. However, despite their potential, issues related to toxicity and bioavailability need to be resolved to promote clinical application. The incorporation of advanced synthetic techniques has resulted in enhanced efficacy and safety profiles for these compounds. Future investigations should concentrate on clarifying structure-activity relationships (SAR) to optimize therapeutic results. In conclusion, this review highlights the significance of phenothiazine in drug design and advocates for further research into its therapeutic applications across a range of disease models.

CONFLICT OF INTEREST

The authors have no conflicts of interest regarding this investigation.

REFERENCES

1. Mosnaim AD, Ranade VV, Wolf ME, Puente J, Antonieta Valenzuela M. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. *Am J Ther.*, 2006; 13(3): 261–73.
2. Kristiansen JE, Dastidar SG, Palchoudhuri S, Roy DS, Das S, Hendricks O, et al. Phenothiazines as a solution for multidrug resistant tuberculosis: From the origin to present. *Int Microbiol Off J Span Soc Microbiol.*, 2015 Mar; 18(1): 1–12.
3. Pajeva IK, Wiese M, Cordes HP, Seydel JK. Membrane interactions of some catamphiphilic drugs and relation to their multidrug-resistance-reversing ability. *J Cancer Res Clin Oncol.* 1996 Jan; 122(1): 27–40.
4. Tsakovska I, Wiese M, Pajeva I. Molecular Modeling of Phenothiazines and Structurally Related Multidrug Resistance Modulators: Comparative Study in Human and Animal Tumor Cell Lines. *Biotechnol Biotechnol Equip.*, 2003 Jan; 17(2): 163–9.
5. Saraswat P, Jeyabalan G, Hassan MohdZ, Rahman MU, Nyola NK. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moieties. *Synth Commun.*, 2016 Oct 17; 46(20): 1643–64.
6. Meyer A, Ryan J. 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides with Carbonyl Dipolarophiles Yielding Oxazolidine Derivatives. *Molecules*, 2016 July 23; 21(8): 935.

7. Wolan A, Kowalska-Six JA, Rajerison H, Césario M, Cordier M, Six Y. 1,3-Dipolar cycloadditions with azomethine ylide species generated from aminocyclopropanes. *Tetrahedron*, 2018 Sept; 74(38): 5248–57.
8. Kalkman HO, Neumann V, Hoyer D, Trickleton MD. The role of α_2 -adrenoceptor antagonism in the anti-cataleptic properties of the atypical neuroleptic agent, clozapine, in the rat. *Br J Pharmacol.*, 1998 Aug; 124(7): 1550–6.
9. Motohashi N, Kurihara T, Satoh K, Sakagami H, Mucsi I, Pusztai R, et al. Antitumor activity of benzo[a]phenothiazines. *Anticancer Res.*, 1999; 19(3A): 1837–42.
10. Motohashi N, Kawase M, Saito S, Sakagami H. Antitumor Potential and Possible Targets of Phenothiazine-Related Compounds. *Curr Drug Targets*, 2000 Nov 1; 1(3): 237–46.
11. Andreani A, Rambaldi M, Locatelli A, Aresca P, Bossa R, Galatulas I. Potential antitumor agents XVIII (1). Synthesis and cytotoxic activity of phenothiazine derivatives. *Eur J Med Chem.*, 1991 Jan; 26(1): 113–6.
12. Motohashi N, Kurihara T, Yamanaka W, Satoh K, Sakagami H, Molnár J. Relationship between biological activity and dipole moment in benzo[a]phenothiazines. *Anticancer Res.*, 1997; 17(5A): 3431–5.
13. Kurihara T, Motohashi N, Sakagami H, Molnár J. Relationship between cytotoxic activity and dipole moment for phthalimido- and chloroethyl-phenothiazines. *Anticancer Res.*, 1999; 19(5B): 4081–3.
14. Dhople AM. In vitro activities of phenothiazine-type calmodulin antagonists against *Mycobacterium leprae*. *Microbios.*, 1999; 98(390): 113–21.
15. Bansal E, KA. Synthesis of some newer potent antiinflammatory substituted phenothiazines. *Orient J Chem.*, 199 AD; 15(3): 489–94.
16. Viveiros M, Amaral L. Enhancement of antibiotic activity against poly-drug resistant *Mycobacterium tuberculosis* by phenothiazines. *Int J Antimicrob Agents*, 2001 Mar; 17(3): 225–8.
17. González-González A, Vazquez-Jimenez LK, Paz-González AD, Bolognesi ML, Rivera G. Recent Advances in the Medicinal Chemistry of Phenothiazines, New Anticancer and Antiprotozoal Agents. *Curr Med Chem.*, 2021 Dec 8; 28(38): 7910–36.
18. Amaral L, Viveiros M, Thakur N, Antunes LCS, Lambert PA. Enhanced killing of antibiotic-resistant bacterial pathogens by phenothiazines. *Int J Antimicrob Agents*, 2017; 50(5): 659–64.

19. Machado D, Couto I, Perdigão J, Rodrigues L, Portugal I, Baptista P, et al. Contribution of efflux to the emergence of isoniazid and multidrug resistance in *Mycobacterium tuberculosis*. *PLoS One*, 2020; 15(6): 0233500.
20. Kalia, S., M G. Phenothiazines: Synthesis, structural modifications, and biological activity., *Eur J Med Chem.*, 2020; 207: 112729.
21. Petkova, V., Nikolov, S., & Chakarova. Anticancer potential of phenothiazine derivatives: Mechanistic insights and future perspectives. *Cancer Lett.*, 2018; 430: 113-121.
22. Blois MS. Antioxidant Determinations by the Use of a Stable Free Radical. *Nature*, 1958 Apr; 181(4617): 1199–200.
23. Hetal R. Makwana, Ali H. Malani. A Brief Review Article: Thiazolidine Derivatives and Their Pharmacological Activities. *IOSR J Appl Chem IOSR-JAC EISSN 2278-5736*, 2017 Nov; 10(11): 76–84.
24. Yashshree Pandey*, Pramod Kumar Sharma, Nitin Kumar, ASingh. Biological Activities of Thiazolidine – A Review, 3(2): 980-985, CODEN (USA): IJPRIF ISSN : 0974-43. *Int J Pharm Tech Res.*, 2011 June; 3(2): 980–5.
25. Pandit N, Singla RK, Shrivastava B. Current Updates on Oxazolidinone and Its Significance. *Int J Med Chem.*, 2012 Feb 26; 2012: 1–24.
26. Branco-Junior JF, Teixeira DRC, Pereira MC, Pitta IR, Galdino-Pitta MR. The Role of Oxazolidine Derivatives in the Treatment of Infectious and Chronic Diseases. *Curr Bioact Compd* [Internet]. 2017 Sept 7 [cited 2025 Dec 27]; 13(4). Available from: <http://www.eurekaselect.com/148366/article>
27. Mittal, A., et al. "SAR studies of phenothiazine derivatives in neurological disorders. *Bioorg Med Chem.*, 2019; 27: 987–1002.
28. Huang, M., et al. Physicochemical and pharmacokinetic properties of phenothiazines in drug development. *J Med Chem.*, 2021; 64: 1123–45.
29. Basu, A., et al. Structure-activity relationships of phenothiazines as antimicrobials and anticancer agents. *Eur J Med Chem.*, 2020; 195.
30. Smith J, Johnson K. Classical synthetic methods for phenothiazine derivatives: Historical perspectives and applications. *Org Chem.*, 2015; 80(12): 4567–79.
31. Kumar R, Gupta P, Sharma A. Ullmann-type and Sandmeyer reactions in phenothiazine synthesis: A comprehensive review. *Eur J Med Chem.*, 2018; 157: 1223–38.
32. Varga B, Csonka Á, Csonka A, Molnár J, Amaral L, Spengler G. Possible Biological and Clinical Applications of Phenothiazines. *Anticancer Res.*, 2017 Nov; 37(11): 5983–93.

33. Fiorentino F, Nocentini A, Rotili D, Supuran CT, Mai A. Antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants potently activate pharmacologically relevant human carbonic anhydrase isoforms II and VII. *J Enzyme Inhib Med Chem.*, 2023 Dec; 38(1): 2188147.

34. Puranik N, Song M. Therapeutic Role of Heterocyclic Compounds in Neurodegenerative Diseases: Insights from Alzheimer's and Parkinson's Diseases. *Neurol Int.*, 2025 Feb 7; 17(2): 26.

35. Pyatigorskaya NV, Brkich GE, Pavlov AN, Beregovykh VV, Evdokimova OV. A Scientific Methodology for Expansion of Anti-Parkinson Drug Product Range. *J Pharm Sci Res.*, 2017 Sept; 9(9): 1561–5.

36. Bhatnagar, A.; Pemawat, G. Recent developments of antipsychotic drugs with phenothiazine hybrids. *Rev Chem Biol Interact*, 2022; 12(4): 77–87.

37. Rácz B, Spengler G. Repurposing Antidepressants and Phenothiazine Antipsychotics as Efflux Pump Inhibitors in Cancer and Infectious Diseases. *Antibiot Basel Switz*, 2023 Jan 10; 12(1): 137.

38. Posso MC, Domingues FC, Ferreira S, Silvestre S. Development of Phenothiazine Hybrids with Potential Medicinal Interest: A Review. *Molecules*, 2022 Jan 3; 27(1): 276.

39. Khelwati H, van Geelen L, Kalscheuer R, Müller TJ. Synthesis, Electronic, and Antibacterial Properties of 3,7-Di(hetero)aryl-substituted Phenothiazinyl N-Propyl Trimethylammonium Salts. *Mol Basel Switz*, 2024 May 3; 29(9): 2126.

40. El-Sedik MS, Mohamed MBI, Abdel-Aziz MS, Aysha TS. Synthesis of New D- π -A Phenothiazine-Based Fluorescent Dyes: Aggregation Induced Emission and Antibacterial Activity. *J Fluoresc.*, 2025 May; 35(5): 3119–30.

41. Sarhan MO, Haffez H, Elsayed NA, El-Haggar RS, Zaguary WA. New phenothiazine conjugates as apoptosis inducing agents: Design, synthesis, In-vitro anti-cancer screening and ^{131}I -radiolabeling for in-vivo evaluation. *Bioorganic Chem.* 2023 Dec; 141: 106924.

42. Shanmugam S, Neelakandan K, Gopalakrishnan M, Pazhamalai S. Design, synthesis, characterization and biological evaluation of some 2-(E)-(N-(azobenzyl)-4-iminoethan-1-yl)-10H-phenothiazines. *Mater Today Proc.*, 2021; 42: 989–1001.

43. D. Shanti M, D. Shanti K, Meshram J, Raut M, Nandekar K. Design, Synthesis and Bio-evaluation of New Phenothiazine Derivatives of Sulfonamide Dyes as Anticancer Agents. *Adv Mater Proc.*, 2021 Dec 3; 5(3): 1–6.

44. Venkatesan K, Satyanarayana VSV, Sivakumar A, Ramamurthy C, Thirunavukkarusu C. Synthesis, spectral characterization and antitumor activity of phenothiazine derivatives. *J Heterocycl Chem.*, 2020 July; 57(7): 2722–8.

45. Sivaramakarthikeyan R, Karuppasamy A, Iniyaval S, Padmavathy K, Lim WM, Mai CW, et al. Phenothiazine and amide-ornamented novel nitrogen heterocyclic hybrids: synthesis, biological and molecular docking studies. *New J Chem.*, 2020; 44(10): 4049–60.

46. Bayoumy NM, Fekri A, Tawfik EH, Fadda AA. Synthesis, Characterization and Antimicrobial Evaluation of Some New Heterocycles Incorporating Phenothiazine Moiety. *Polycycl Aromat Compd.*, 2021 May 28; 41(5): 982–91.

47. Suaad. M. Al. Araji., Mohammad. R. Ahamad and Luma S. Ahamed. synthesis of new Nsubstituted phenothiazine derivative. *AL-Mustansiriya J Sci.* 2010; 21(5): 134–223.

48. Madrid PB, Polgar WE, Toll L, Tanga MJ. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors. *Bioorg Med Chem Lett.*, 2007 June; 17(11): 3014–7.

49. Zou X, Xie B. Therapeutic Mechanisms of Phenothiazine Drugs: A Mini-Review of Advances in Cancer Treatment and Antibiotic Resistance. *Iran J Pharm Res [Internet]*. 2025 Feb 8 [cited 2025 Dec 29]; 24(1). Available from: <https://brieflands.com/journals/ijpr/articles/157923>