

WORLD JOURNAL OF PHARMACEUTICAL RESEARCH

SJIF Impact Factor 8.453

Volume 13, Issue 10, 292-306.

Review Article

ISSN 2277-7105

THE EMERGING DEVELOPMENT OF POLYCYSTIC OVARIAN SYNDROME

Priya Chandel*a, Vaishalia and Manju Jakharb

^aChandigarh College of Pharmacy Landran, Mohali, Punjab, 140307, India.
 ^bSchool of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, H.P. 173205, India.

Article Received on 29 March 2024,

Revised on 19 April 2024, Accepted on 09 May 2024

DOI: 10.20959/wjpr202410-32370

*Corresponding Author Priya Chandel

Chandigarh College of Pharmacy Landran, Mohali, Punjab, 140307, India.

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a complex illness, which is characterised by elevated testosterone levels, irregular menstruation cycle and tiny cysts on one or both polycystis ovaries. PCOS is characterized by hyperandrogenism, hyperinsulinemia, and alopecia, which are hallmarks of PCOS. The genetic etiology of the syndrome is unknown. Several genetic studies and pharmacological studies involving NK3R antagonists encourage similarly investigate the neuroendocrine aspects of the condition. A genome-wide methylation study revealed changes in DNA and gene expression in pathways such as type 1 diabetes mellitus pathway, p53 signaling pathway and NOD. The multiple combination drug designs may be helpful to treat PCOS, and the combination of sex steroids and nitric oxide (NOD) inhibitors may be useful to treat this condition.

KEYWORDS: PCOD, Reproductive disorder, Cysts, Infertility.

INTRODUCTION

A complex illness known as polycystic ovarian syndrome (PCOS) is characterised by elevated testosterone levels, irregular menstruation cycle and tiny cysts on one or both polycystic ovaries.^[1] The condition may have morphological causes (Polycystic ovaries), or it may be mostly biochemical (Hyperandrogenemia). Hyperandrogenism, a clinical feature of PCOS, can cause monthly irregularities, microcysts in the ovaries, and suppression of follicular development.^[2] At least 5-7% of adult women have PCOS, which is a lethal disorder.^[3] About 5 million American women of childbearing age have PCOS, and the cost of identifying

and treating it each year is estimated to be over more than billions, according to the National Institutes of Health Office of Disease Prevention. The majority of women who have PCOS are obese or overweight, in which increased androgen secretion were observed but also compromises with metabolic and reproductive abilities. The definition of PCOS has spurred an amazing expansion of scientific knowledge about this condition, which must also be aimed toward bettering tailored medical and, consequently, therapeutic techniques. According to different studies, PCOS affects 4% - 11% of women between the ages of adulthood and elder. PCOS is the most common endocrine condition among women of reproductive age in the United States. [4] Women seeking assistance from health care professionals to identify the cause of issues including obesity, acne and infertility frequently obtain a diagnosis of PCOS. It has been linked to increased risks for endometrial cancer, cardiovascular disease, dyslipidemia, and type-2 diabetes.^[5] HPO aixs function is disrupted by the condition polycystic ovary syndrome, which is primarily defined by the presence of additional androgenrelated symptoms. This illness affects between 6% and 20% of reproductive-aged women, depending on the diagnostic criteria. [6] PCOS also associated with hormonal irregularities, prolonged anovulation, and infertility are among the typical clinical symptoms. Chronic hyperandrogenism is linked to defective hypothalamic-pituitary feedback, hyper secretion of LH, early luteinisation of granulosa cells, abnormal oocyte maturation, and early arrest of activated major follicles. [7] PCOS has a significant financial impact. Each year, the United States spends about \$4 billion on the disease's minor morbidities, including as hirsutism, infertility, and diabetes mellitus. Each year, more than 800 million dollars are added to the Australian health system's budget to treat the illness linked to PCOS. The severity of PCOS required hospitalization but if misdiagnosis occurs then it can associate to future health complication. [8] As a result of it, correct and timely PCOS diagnosis is critical not only to prevent future health complications but also to reduce financial costs and burden. [9]

Clinical features

The number of conditions that are associated with this issue makes it far more complicated than its name would suggest. Patients with PCOD frequently have eight millimeter-long cysts in the ovarian sac. The ovary contains more than 12 cysts. Due to this situation, almost 70% of women are infertile. The PCOS disorder, which causes rapid androgen hormone, stages that cause hirsutism.

Symptoms

- **Menstrual abnormality:** The majority of people have this trait. Menstrual abnormalities include oligomenorrhea, amenorrhea (irregular, infrequent, or missing menstrual cycles), and polymenorrhea.
- Excess androgen: Male hormone levels that are higher can manifest physically as extra face and body hair.
- Enlarged ovaries: In order to be diagnosed with PCOS, Subjects also have an irregular menstrual cycle or exhibit symptoms of excess androgen. Small cysts containing several sac can be discovered by ultrasound.
- **Infertility:** PCOS causes female infertility linked to hormonal and diseased states.
- **Obesity:** Obese women make up roughly half of those with polycystic ovarian syndrome.
- **Type 2 diabetes:** Insulin resistance affects the body's capacity to utilise insulin and is common in women with polycystic ovarian syndrome.

Etiology

PCOS can be described as an oligogenic disease in which multiple interactions occur in which Genetic and environmental factors determine heterogeneous clinical, biochemical factors Phenotype. Although the familial and genetic etiology of PCOS remains unknown. Lack of phenotypic information hinders formal segregation analysis. Nonetheless, contemporary literature suggests that PCOS occurs within families also known Autosomal dominant pattern. The environmental factors involved in PCOS are exacerbated by Poor Dietary Choices and Lack of Exercise: Contagious Dealers and Toxins can also play a role. PCOS reproductive and metabolic points are all often reversed with lifestyle changes such as weight loss and exercise. [11]

Epidemiology of PCOS

The incidence of PCOS varies according to diagnostic criteria like 3.4% of the world population were suffering from PCOS. A community-based incidence study using the discovered Rotterdam criteria about 20% of women had PCOS, 70% of which had not been previously diagnosed.^[12]

A study conducted among the Pakistani population found a correlation with hormones levels and PCOS were observed. This cross-sectional study will include affected and healthy people Individual. Laboratory tests were recorded and blood samples were taken for hormones Analysis using immunoradiometric and radioimmunoassay. They population containing high level of BMI, FSH, LH, and prolactin compared to healthy individuals. The study has concluded that increased androgen levels leading to progression From PCOS.

Pathophysiology

1. Primary ovarian pathophysiology

In humans, the factors affecting follicular development are coordinated in a way that is not normally present is only one follicle selected for final maturation and sequential ovulation. The maximum number of ovarian follicles, about 6-7 million, exists at a certain stage midpregnancy and limited to about 2-3 million primordial follicles at birth. Next, primordial follicles are continuously recruited from this pool, with mechanisms to administer penetration of primordial follicles into the growth zone is essential for conservation ovarian reserve to maintain fertility. [13] These poorly understood early stages of the follicle the increase is independent of gonadotropins and is influenced by autocrine, paracrine and endocrine factors. There is a dynamic stability between development and hibernation. In PCOS, the stability between Androgen, anti-polycystic hormone, and FSH are disrupted, resulting in follicles becoming inactive. Cornucopia LH promotes theca cells to produce androgens, but the concentration and conversion of FSH androgens to estradiol are not enough, leading to failure to select the dominant follicle, so chronic ovulation. [14] AHE, secreted through granulomatous cells, performs a governs this stability because it inhibits the primary-to-basic transition, Oocyte. Thus, PCOS is characterized by an enlarged flare pathway of small but the subsequent cessation of growth leads to the typical polycystic appearance. It was suggested that the cysts of the PCOS ovary are intrinsically different from the cysts of the normal ovary. Theca cells obtained from a woman with PCOS retain their phenotype with an increase in androgens secreted by increased expression of CYP17A1 or P450c17 preference. Immunohistochemistry Studies have shown that proteins involved in the "backdoor" alternative pathway of Steroid formation were more strongly expressed in PCOS myocytes. [15] Genome-wide linkage studies directed towards a specific locus, DENND1A, alternative junction of DENND1A transcription produces multiple variants. Expression of a variant, DENND1A.V2, which is larger in the theca cell of PCOS. Strangely, remove this variant Summary of the common theca telephone phenotype in PCOS ovaries, during over expression in normal female theca cells synthesize the PCOS phenotype. [16] Mechanism surrogate join law adjustment seems to be outside of DENND1A genes. [17]

2. Insulin Resistance/Hyperinsulinemia

Insulin resistance (IR) and hyperinsulinemia are common in women with PCOS regardless of adiposity, body fat profile, and androgen levels. Women with PCOS are at risk of developing excessive glucose tolerance and type 2 diabetes sweet.^[18] The pathogenesis of IR in PCOS reflects the interplay of genetic influences, non-hereditary intrauterine and ectopic environmental factors, and alternative adaptations to excess power. However, in the context of PCOS, perhaps puberty it will play an important role in Molecular origin of IR and hyperinsulinemia. During puberty, teenagers ride coach decreased insulin sensitivity during puberty. This was first described in the attempt Understanding attenuation of glycemic manipulation in juvenile type 1 diabetes. Here Transient IR and hyperinsulinemia are thought to be caused by an increase in explosive hormones and IGF-1 levels during this growth period to provide more amino acids. Skip this IR and hyperinsulinemia are thought to be caused by an increase in growth hormone and IGF1 levels during this increased period to provide more important amino acids. Puberty IR seems are selective for glucose metabolism, while protein metabolism appears to be generally responsive to insulin action. [19] It is important to note that IR in girls with PCOS is tissue-selective. Resistance to the metabolic movements of insulin has been reported mainly in skeletal muscle, adipose tissue and liver; while the sensitivity to Insulin movements on steroidogenesis persist in the adrenal glands and ovaries. Therefore paradoxes; while some tissues show IR in women with PCOS, steroid-producing tissues remain sensitive to insulin. The molecular mechanism responsible for IR in PCOS includes defective psot receptor insulin activity, increase free fatty acids, improve cytokine secretion and increase androgens. Intra-abdominal adipocytes show increased release of free fatty acids and increased cytokines secretes, for example, TNF-alpha, IL-6, leptin and resistin. Expanded free fatty acid flow through portal vein to the liver and subsequently affects excretion, metabolism, and peripheral insulin movement. Thus, the fat distribution, which substitutes for the greater presence of Weight problems, or an enlarged BMI, can also be extremely implicated in PCOS. [20] Some Studies have further suggested that IR in subjects with PCOS may be promoted by mechanism is different from that of obesity. In fact, women with PCOS are reported have higher levels of insulin receptors and serine phosphorylation of insulin receptors substrate -1 leads to impaired insulin signalling and intrinsic IR regardless of total or body mass without fat. In addition, an anti-inflammatory tissue amplified by PCOS and weight Problems have been described in granulosa cells and ovarian tissue. [19]

3 Neuroendocrine alterations

3.1. Changes in GnRH and Gonadotropin Secretion in PCOS

One sign of PCOS is the presence of secretes gonadotropins, LH and FSH, controls sterilization in ovaries, follicles movement and ovulation which is not diagnosed at earlier stages. [21-23] Therefore, it is practically assumed that gonadotropins are altered excretion profiles can affect basic features of PCOS, including hyperandrogenism and ovulatory dysfunction. Indeed, cyclic LH levels multiply, LH expansion: improved FSH ratio, frequency and/or amplitude of LH pulses, as well as A sudden drop in FSH levels is often described in women with PCOS.^[7] A small fraction of PCOS patients have hyperandrogenism, particularly when obesity is associated, show no increase in baseline or affected LH levels, further supporting heterogeneity presentation of the syndrome. Although LH is considered a biomarker of GnRH and LHn has been reported in several regimes that may contribute to LH.[24] Improved gonadotropin verbose profiles compatible with the tuning of the GnRH oscillator profile, likely reflects the expansion of the GnRH impulse generation effort. Indeed, classic Neuroendocrine studies have determined that a pattern of GnRH secretion is defined by a high range shock promotes the secretion of LH via FSH by the pituitary gland. [25] While it can be done that a major change in the level of the GnRH pulse generator network can lead to changes in some patients, statistics from medical studies and unique experiments highlighting the contributing role of disruption as a key modulator of GnRH neurodegeneration, including insulin and androgens, the extent of which is thought to be altered in PCOS. [26] Considering that hyperandrogenism is a sign of PCOS, a lot of attention has been paid investigate possible mechanisms through which dysregulation of androgen secretion contribute to the neuroendocrine changes of the syndrome. Indeed, the evidence is indisputable suggest that long-term androgens interfere with sex steroids' ability to regulate GnRH/LH secretion via classical feedback loops. This will lead to a reduction in negative feedback to progesterone and estrogen, ovarian steroid movements will produce a contribute to and maintain the LH-secreting features of PCOS. [25] Reality, clinical facts highlighting the negative feedback reduction of progesterone and estrogen, associated for androgen excess, which plays a role in reporting an increase in LH impulses in PCOS patients. In addition, decreased susceptibility to negative progesterone feedback due to early onset hyperandrogenism, which is mechanistically associated with increased LH secretion in girls with PCOS, although only half of the patients seem to clearly display impaired negative memories of progesterone. From a mechanistic point of view, it is miraculous that GnRH neurons seem to lack of major sex steroid receptors responsible for bad memories, [27] while estrogen beta receptor, whose function in controlling the rest of GnRH neurons remains

unclear, is currently. Therefore, it is conceivable that the most important one has an effect on excess androgens on remakrs regulation loops in different development windows happening at neuronal sites other than GnRH cells.

3.2. Altered Kisspeptin Signaling in PCOS

Among the various neurons associated with GnRH neurons, the Kiss 1 neuron produces Kisspeptins, which have emerged in the last decade as key regulators of GnRH neurodegeneration, and Ovulation. Kisspeptins is one of the most important activators of GnRH neurons identified up to now. [27] Diverse populations of KISS1/Kiss1 neurons have been recognized in mammals, such as humans, rodents, and non-human primates. A distinctive and conversational KISS1 neuronal cell population has been implicated exact multiplication of the mean hypothalamus, or its radio equivalent at Human. However, there is limited empirical evidence available to support or refute this possibility. Even though Lean sata for human and non-human primates, an overview of rodent preclinical regimens may provide neurohormonal insight into PCOS. Studies of PCOS rodent fashion due to postnatal androgen advertising mentioned Chronic inhibition of hypothalamic Kiss1 expression. [28] A consistent finding with the validated inhibitory motion of sex steroids on Kiss1 expression in ARC and consistent with a similar observation in neonatal estrus models of female rats. However, specific models of androgenization have been proposed for different purposes dysregulation of kiss1/kispeptin expression in the hypothalamus. Therefore, it could be the actual change of the Kiss1 system depends on the development window and the process of Androgen advertising.

4. Genetics

Studies of monozygotic and heterozygous twins have shown a reasonable heritability of PCOS. Other epidemiological studies are likely to point to the importance of threat consideration lifelong biological factors and techniques; low initial and fetal weight androgen exposure; rapid weight gain after birth; early adrenarche and early age in pubertal development; adult weight and lifestyle reputation. Some of the person's genomic alerts for PCOS provided new information about Pathophysiology. As shown above, the function of the DENND1A junction transcript in the ovary thecal cell steroidogenesis is being studied. PCOS susceptibility in the FSHB gene is also closely associated with a decrease in circulating FSH levels^[29,30] and varies phenotype shows reduced stimulation of follicles; delayed puberty, and less chance of creating diploid pairs.^[31] Together, these genetic findings point to a co-primary neuroendocrine pathogenesis of PCOS, along with its probable ovarian etiology. This Genetic

studies and pharmacological studies involving NK3R antagonists encourage similarly investigate the neuroendocrine aspects of PCOS. Another effective use of the genomic-realistic combination of indicators shows what can be done occasional influence of biological pathways. Such Mendelian stochastic analyzes have points to sporadic roles in PCOS etiology for higher BMI, higher IR and decreased serum SHBG concentrations, which may act by increasing the biological activity of androgens or other sex steroids. Finally, a well-studied but unexplained association between genetic variations regulation of menopause later and more sensitive to PCOS is of interest. [29] Here suggests that perhaps the evolutionary dissimilarity of this common genetic disease may have impacted fertility would be explained by its co-sensitivity to the conserved fertility rate advanced age.

5. Epigenetics

Several GWAS studies as well as replication studies in Chinese and Caucasian subjects have recognized the LH/goriogonadotropin receptor (LHCGR) as a gene sensitive to PCOS. [32] Increased LH activity is a common feature of PCOS and can contribute to defective follicular formation and hyperandrogenism commonly seen in the patients. LHCGR hypomethylation was first described in a mouse model of PCOS and recently confirmed in human peripheral blood and granulosa cells from PCOS topics. [33,34] Reduced LHCGR methylation is known to increase expression. LHCGR hypomethylation, which causes hypersensitivity to LH, can is also a plausible mechanism underlying PCOS susceptibility. In addition to gene-targeted studies, genome-wide methylation studies in the ovaries of women have PCOS revealed changes in DNA methylation and gene expression in pathways such as type 1 diabetes mellitus pathway, p53 signaling pathway and NOD. -like receptor signaling pathway metabolic pathways, as well as metabolic pathways involved in ovarian and intra-ovarian function steroidogenesis. [35,36] In peripheral blood cells, differential methylation was observed in pathways involving immune responses and pathways of most cancers. [37] Interestingly, the association with Immune pathways were further described in another profile referring to PCOS with Epigenetic changes in pathways implicated in autoimmune and allergic diseases, such as type 1 diabetes, thyroid disease and asthma.^[38] and is used to match these findings in ovarian tissue. [35] The regulation of gene expression by microRNAs is considered an additional class of epigenetic regulation. A genome-wide cyclic miRNA expression profile identified deregulated miRNA diversity in girls with PCOS. These miRNA species are associated with glycometabolism and the developmental pathway of ovarian follicles. [39,40] Interestingly, miRNA592 was shown to be unregulated and inversely associated with LHCGR stages in PCOS suffer.^[41]

6. Altered sympathetic nerve activity

Several GWAS studies as well as replication studies in Chinese and Caucasian subjects have recognized the LH/goriogonadotropin receptor (LHCGR) as a gene sensitive to PCOS. [32] Increased LH activity is a common feature of PCOS and can contribute to defective follicular formation and hyperandrogenism commonly seen in the patients. LHCGR hypomethylation was first described in a mouse model of PCOS and recently confirmed in human peripheral blood and granulosa cells from PCOS topics. [33,34] Reduced LHCGR methylation is known to increase expression. LHCGR hypomethylation, which causes hypersensitivity to LH, can is also a plausible mechanism underlying PCOS susceptibility. In addition to gene-targeted studies, genome-wide methylation studies in the ovaries of women have PCOS revealed changes in DNA methylation and gene expression in pathways such as type 1 diabetes mellitus pathway, p53 signaling pathway and NOD. -like receptor signaling pathway metabolic pathways, as well as metabolic pathways involved in ovarian and intra-ovarian function steroidogenesis. [35,36] In peripheral blood cells, differential methylation was observed in pathways involving immune responses and pathways of most cancers. [37] Interestingly, the association with Immune pathways were further described in another profile referring to PCOS with Epigenetic changes in pathways implicated in autoimmune and allergic diseases, such as type 1 diabetes, thyroid disease and asthma.^[38] and is used to match these findings in ovarian tissue. [35] The regulation of gene expression by microRNAs is considered an additional class of epigenetic regulation. A genome-wide cyclic miRNA expression profile identified deregulated miRNA diversity in girls with PCOS. These miRNA species are associated with glycometabolism and the developmental pathway of ovarian follicles. [39,40] Interestingly, miRNA592 was shown to be unregulated and inversely associated with LHCGR stages in PCOS suffer.[41]

Treatment

Nonphramacological approaches: The primary cause of PCOS is unknown; hence the side effects are targeted for treatment. Few treatment methods address all aspects of the illness, and patients who crave virility may choose not to seek therapy despite the close proximity of symptoms. For PCOS individuals who are obese, losing weight has several advantages. Losing weight has an impact on the levels of androgen, luteinizing hormones, and oestrogen. Additionally, it affects ovulation regulation, advancing the likelihood of pregnancy.

Pharmacological approaches

Clomiphene: Clomiphene citrate is the medicine of choice for causing ovulation in PCOS, even if the exact mechanism of action is uncertain. The first dose was 50 mg/day for five days.is offered. If ovulation occurs but there is no pregnancy, 50 mg/day for five days is sustained during the subsequent cycles. However, if ovulation no longer occurs following the During the first cycle, the dosage can be increased to 100mg five days a week for at least 30 days after the therapy's initial course. After three guides of therapy, additional therapy is often not advised; however, up to six cycles can be explored before additional therapy is considered. About 30% of pregnancies treated with clomiphene are successful, but 20% of them end in spontaneous abortions or stillbirths.^[45]

Gonadotropins: If metformin and/or clomiphene medication are unsuccessful, other options include human menopausal gonadotropin and FSH to trigger ovulation. In a research with 302 women, 132 were given low-dose FSH on cycle day 4 with weekly incremental increases of 25 devices, while 123 patients were given clomiphene 50 mg for five days starting on cycle day 4 with the dose titrated up to a 100 and 50 mg/day. [46]

Low dose FSH was employed in this study since high doses are linked to an increased risk of multiple pregnancies and OHSS, even though gonadotropins may be more effective than clomiphene for promoting ovulation.

Birth control pills: The menstrual cycle is regulated by those medications, which also lower testosterone levels. (Drospirenone)

Anti-androgens: These medications lower testosterone levels, which promote excessive hair growth and ance. (Spironolactone)

Fertility drugs: Extremely conducive to administration ad expenditing ovulation in PCOD ladies (Comiohene Citrate)

CONCLUSION

As the emerging Complication PCOS is need to diagnosed first to start treatment. The complication associated with PCOS can turn to other disease also. The multiple combination drug designs may be helpful to treat PCOS. PCOS associated with greater number of cysts in ovarian sac which can grow further to cause diverse effect. So, As a result of it if it is not addressed properly it can be biggest challange to solve this crisis.

Abbreviation used

Nihodp: National Institutes of Health Office of Disease Prevention PCOS: Polycystic Ovarian Syndrome

Fsh: Follicle Stimulating Hormone LH: Luteinizing Hormone

Lhcgr: Luteinizing Hormone goriogonadotropin receptor BMI: Basal Metabolic Index

REFRENCES

- 1. Sylvia, L. M., & DiPiro, J. T. Allergic and pseudoallergic drug reactions. Pharmacotherapy: A pathophysiologic approach. New York: McGraw-Hill, 2011; 8.
- 2. Lin, L. H., Baracat, M. C., Maciel, G. A., Soares Jr, J. M., & Baracat, E. C. Androgen receptor gene polymorphism and polycystic ovary syndrome. International Journal of Gynecology & Obstetrics, 2013; 120(2): 115-118.
- 3. Aubuchon, M., & Legro, R. S. Polycystic ovary syndrome: current infertility management. Clinical obstetrics and gynecology, 2011; 54(4): 675-684.
- 4. Ndefo, U. A., Eaton, A., & Green, M. R. Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. Pharmacy and therapeutics, 2013; 38(6): 336.
- 5. McFarland, C. Treating polycystic ovary syndrome and infertility. MCN: The American Journal of Maternal/Child Nursing, 2012; 37(2): 116-121.
- 6. Escobar-Morreale, H. F. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nature Reviews Endocrinology, 2018; 14(5): 270-284.
- 7. Azziz, R., Carmina, E., Chen, Z., Dunaif, A., Laven, J. S., Legro, R. S., & Yildiz, B. O. Polycystic ovary syndrome. Nature reviews Disease primers, 2016; 2(1): 1-18.
- 8. Hart, R., & Doherty, D. A. The potential implications of a PCOS diagnosis on a woman's long-term health using data linkage. The journal of clinical endocrinology & metabolism, 2015; 100(3): 911-919.
- 9. Kamangar, F., Okhovat, J. P., Schmidt, T., Beshay, A., Pasch, L., Cedars, M. I., ... & Shinkai, K. Polycystic ovary syndrome: special diagnostic and therapeutic considerations for children. Pediatric dermatology, 2015; 32(5): 571-578.
- 10. Ndefo, U. A., Eaton, A., & Green, M. R. Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. Pharmacy and therapeutics, 2013; 38(6): 336.
- 11. Shannon, M., & Wang, Y. Polycystic ovary syndrome: a common but often unrecognized condition. Journal of midwifery & women's health, 2012; 57(3): 221-230.

- Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M, & Harrison J.
 E. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The lancet, 2012; 380(9859): 2163-2196.
- 13. Hsueh, A. J., Kawamura, K., Cheng, Y., & Fauser, B. C. Intraovarian control of early folliculogenesis. Endocrine reviews, 2015; 36(1): 1-24.
- 14. Lebbe, M., & Woodruff, T. K. Involvement of androgens in ovarian health and disease. Molecular human reproduction, 2013; 19(12): 828-837.
- 15. Marti, N., Galván, J. A., Pandey, A. V., Trippel, M., Tapia, C., Müller, M., & Flück, C.E. Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome. Molecular and cellular endocrinology, 2017; 441: 116-123.
- 16. McAllister, J. M., Modi, B., Miller, B. A., Biegler, J., Bruggeman, R., Legro, R. S., & Strauss, J. F. Overexpression of a DENND1A isoform produces a polycystic ovary syndrome theca phenotype. Proceedings of the National Academy of Sciences, 2014; 111(15): E1519-E1527.
- Tee, M. K., Speek, M., Legeza, B., Modi, B., Teves, M. E., McAllister, J. M., & Miller,
 W. L. Alternative splicing of DENND1A, a PCOS candidate gene, generates variant 2.
 Molecular and cellular endocrinology, 2016; 434: 25-35.
- 18. Diamanti-Kandarakis, E., & Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocrine reviews, 2012; 33(6): 981-1030.
- 19. Ibáñez, L., Oberfield, S. E., Witchel, S., Auchus, R. J., Chang, R. J., Codner, E., ... & Lee, P. A. An international consortium update: pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Hormone research in paediatrics, 2017; 88: 371-395.
- 20. Ibanez, L., Ong, K. K., Lopez-Bermejo, A., Dunger, D. B., & De Zegher, F. Hyperinsulinaemic androgen excess in adolescent girls. Nature reviews Endocrinology, 2014; 10(8): 499-508.
- 21. Fauser, B. C., Tarlatzis, B. C., Rebar, R. W., Legro, R. S., Balen, A. H., Lobo, R., ... & Barnhart, K. Consensus on women's health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertility and sterility, 2012; 97(1): 28-38.
- 22. Dumesic, D. A., Oberfield, S. E., Stener-Victorin, E., Marshall, J. C., Laven, J. S., & Legro,

- R. S. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocrine reviews, 2015; 36(5): 487-525.
- 23. Rosenfield, R. L., & Ehrmann, D. A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine reviews, 2016; 37(5): 467-520.
- 24. Moenter, S. M. Leap of faith: does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity?. Neuroendocrinology, 2015; 102(4): 256-266.
- 25. Thompson, I. R., & Kaiser, U. B. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Molecular and cellular endocrinology, 2014; 385(1-2): 28-35.
- 26. Moore, A. M., & Campbell, R. E. The neuroendocrine genesis of polycystic ovary syndrome: a role for arcuate nucleus GABA neurons. The Journal of steroid biochemistry and molecular biology, 2016; 160: 106-117.
- 27. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P., & Tena-Sempere, M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiological reviews, 2012; 92(3): 1235-1316.
- 28. Brown, R. E., Wilkinson, D. A., Imran, S. A., Caraty, A., & Wilkinson, M. Hypothalamic kiss1 mRNA and kisspeptin immunoreactivity are reduced in a rat model of polycystic ovary syndrome (PCOS). Brain research, 2012; 1467: 1-9.
- 29. Hayes, M. G., Urbanek, M., Ehrmann, D. A., Armstrong, L. L., Lee, J. Y., Sisk, R., & Dunaif, A. Genome-wide association of polycystic ovary syndrome implicates alterations in gonadotropin secretion in European ancestry populations. Nature communications, 2015; 6(1): 1-13.
- 30. Day, F. R., Hinds, D. A., Tung, J. Y., Stolk, L., Styrkarsdottir, U., Saxena, R., & Perry, J. R. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nature communications, 2015; 6(1): 1-7.
- 31. Mbarek, H., Steinberg, S., Nyholt, D. R., Gordon, S. D., Miller, M. B., McRae, A. F., ... & Boomsma, D. I. Identification of common genetic variants influencing spontaneous dizygotic twinning and female fertility. The American Journal of Human Genetics, 2016; 98(5): 898-908.
- 32. Mutharasan, P., Galdones, E., Peñalver Bernabé, B., Garcia, O. A., Jafari, N., Shea, L. D., & Urbanek, M. Evidence for chromosome 2p16. 3 polycystic ovary syndrome

- susceptibility locus in affected women of European ancestry. The Journal of Clinical Endocrinology & Metabolism, 2013; 98(1): E185-E190.
- 33. Zhu, J. Q., Zhu, L., Liang, X. W., Xing, F. Q., Schatten, H., & Sun, Q. Y. Demethylation of LHR in dehydroepiandrosterone-induced mouse model of polycystic ovary syndrome. Molecular human reproduction, 2010; 16(4): 260-266.
- 34. Wang, P., Zhao, H., Li, T., Zhang, W., Wu, K., Li, M., & Chen, Z. J. Hypomethylation of the LH/choriogonadotropin receptor promoter region is a potential mechanism underlying susceptibility to polycystic ovary syndrome. Endocrinology, 2014; 155(4): 1445-1452.
- 35. Wang, X. X., Wei, J. Z., Jiao, J., Jiang, S. Y., Yu, D. H., & Li, D. Genomewide DNA methylation and gene expression patterns provide insight into polycystic ovary syndrome development. Oncotarget, 2014; 5(16): 6603.
- 36. Yu, Y. Y., Sun, C. X., Liu, Y. K., Li, Y., Wang, L., & Zhang, W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertility and sterility, 2015; 104(1): 145-153.
- 37. Shen, H. R., Qiu, L. H., Zhang, Z. Q., Qin, Y. Y., Cao, C., & Di, W. Genomewide methylated DNA immunoprecipitation analysis of patients with polycystic ovary syndrome. PloS one, 2013; 8(5): e64801.
- 38. Li, S., Zhu, D., Duan, H., Ren, A., Glintborg, D., Andersen, M., & Tan, Q. Differential DNA methylation patterns of polycystic ovarian syndrome in whole blood of Chinese women. Oncotarget, 2017; 8(13): 20656.
- 39. Jiang, L., Huang, J., Chen, Y., Yang, Y., Li, R., Li, Y., & Yang, D. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine, 2016; 53(1): 280-290.
- 40. Wu, H. L., Heneidi, S., Chuang, T. Y., Diamond, M. P., Layman, L. C., Azziz, R., & Chen, Y. H. The expression of the miR-25/93/106b family of micro-RNAs in the adipose tissue of women with polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism, 2014; 99(12): E2754-E2761.
- 41. Song, J., Luo, S., & Li, S. W. miRNA-592 is downregulated and may target LHCGR in polycystic ovary syndrome patients. Reproductive Biology, 2015; 15(4): 229-237.
- 42. Lansdown, A., & Rees, D. A. The sympathetic nervous system in polycystic ovary syndrome: a novel therapeutic target?. Clinical endocrinology, 2012; 77(6): 791-801.
- 43. Giallauria, F., Palomba, S., Manguso, F., Vitelli, A., Maresca, L., Tafuri, D., ... & Orio, F.

- Abnormal heart rate recovery after maximal cardiopulmonary exercise stress testing in young overweight women with polycystic ovary syndrome. Clinical endocrinology, 2008; 68(1): 88-93.
- 44. Tekin, G., Tekin, A., Kılıçarslan, E. B., Haydardedeoğlu, B., Katırcıbaşı, T., Koçum, T., ... & Müderrisoğlu, H. Altered autonomic neural control of the cardiovascular system in patients with polycystic ovary syndrome. International Journal of Cardiology, 2008; 130(1): 49-55.
- 45. Ndefo, U. A., Eaton, A., & Green, M. R. Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. Pharmacy and therapeutics, 2013; 38(6): 336.
- 46. Badawy, A., Mosbah, A., & Shady, M. RETRACTED: Anastrozole or letrozole for ovulation induction in clomiphene-resistant women with polycystic ovarian syndrome: a prospective randomized trial, 2008.
- 47. Ndefo, U. A., Eaton, A., & Green, M. R. Polycystic ovary syndrome: a review of treatment options with a focus on pharmacological approaches. Pharmacy and therapeutics, 2013; 38(6): 336.