

EXPLORING THE ROLE OF IMMUNOMETABOLISM AND MICROBIOME IN VITILIGO: OPPORTUNITIES FOR NEW THERAPEUTICS

Naiya R. Patel^{*1}, Raajvi Kapopra², Anantray Acharya³, Jaymina Panthaki⁴,
Ashok Kumar⁵, Divyakant Patel⁶

^{1,2,3}Pharm D. Department of Pharmacy Practice, Sharda School of Pharmacy, Gandhinagar, Gujarat, India.

⁴Assistant Professor, Department of Pharmaceutics, Sharda School of Pharmacy
Gandhinagar, Gujarat, India.

⁵Assistant Professor, Department of Pharmacy Practice, Sharda School of Pharmacy
Gandhinagar, Gujarat, India.

⁶Professor, Department of Pharmacognosy, Sharda School of Pharmacy Gandhinagar, Gujarat, India.

Article Received on 15 Jan. 2026,
Article Revised on 05 Feb. 2026,
Article Published on 16 Feb. 2026,

<https://doi.org/10.5281/zenodo.18659544>

*Corresponding Author

Naiya R. Patel

Pharm D. Department of Pharmacy Practice, Sharda School of Pharmacy, Gandhinagar, Gujarat, India.

How to cite this Article: Naiya R. Patel^{*1}, Raajvi Kapopra², Anantray Acharya³, Jaymina Panthaki⁴, Ashok Kumar⁵, Divyakant Patel⁶ (2026). Exploring The Role of Immunometabolism And Microbiome In Vitiligo: Opportunities For New Therapeutics. World Journal of Pharmaceutical Research, 15(4), 483-506.

This work is licensed under Creative Commons Attribution 4.0 International license.

ABSTRACT

Vitiligo, a chronic autoimmune depigmentation disorder affecting 0.5-2% globally, manifests through melanocyte destruction driven by immunometabolic dysregulation, oxidative stress, and gut microbiota dysbiosis. This review elucidates metabolic reprogramming in immune cells—monocytes shifting to glycolysis, M1 macrophages favoring PPP, and CD8+ T cells/TRMs relying on FAO—alongside gut-skin axis disruptions marked by reduced SCFAs, altered bile acids, and tryptophan metabolites that exacerbate IFN-γ/CXCL10-mediated inflammation. Emerging therapies targeting JAK-STAT, Nrf2-ARE, IL-15/CD122, and microbiome modulation offer promising avenues for restoring immune-metabolic homeostasis and achieving durable repigmentation. Vitiligo emerges as a systemic immunometabolic disorder in which oxidative stress, immune dysregulation, and gut microbiota-derived metabolites

converge to drive melanocyte destruction and defective repigmentation.

KEYWORDS: Vitiligo, Immunometabolism, Gut-skin axis, SCFAs, Oxidative stress, Microbiome dysbiosis.

1. INTRODUCTION

Vitiligo is a skin condition characterised by the loss of melanocytes and a decrease in pigmentation, impacting 0.5-2% of people worldwide. It is linked to metabolic problems such as insulin resistance and lipid imbalances, as well as comorbidities like type 1 diabetes and metabolic syndrome, especially in non-segmental vitiligo (NSV), which is the most prevalent systemic subtype. Divided into NSV, segmental vitiligo (SV), and forms that are unclassified, vitiligo is characterized by mechanisms involving genetics, autoimmunity, oxidative stress, and inflammation, which lead to the destruction of melanocytes. NSV exhibits increased innate immune activity, B-cell stimulation, and broader metabolic associations when compared to SV. Immunometabolism—referring to the metabolic alteration of immune cells through glucose and lipid pathways—fuels immune dysfunction in vitiligo, leading to disrupted homeostasis. These findings provide promising opportunities for innovative therapies aimed at targeting the intersection of metabolic and immune processes^[1] Oxidative stress plays a crucial role in the initiation and progression of vitiligo, leading to the death of melanocytes and loss of skin color. Despite progress in understanding the condition, the underlying internal triggers are still unclear, and localized treatments often do not succeed, indicating a potential systemic cause beyond just the skin. The gut-skin connection offers an important perspective, with imbalances in gut microbiota—observed in vitiligo patients compared to healthy individuals—associated with skin conditions such as atopic dermatitis, psoriasis, and urticaria. Research has demonstrated changes in the composition of microbiota in those with vitiligo, and the use of antibiotics has been shown to reduce pigmentation loss in experimental models, implying that microbial metabolites may increase serum levels and disturb skin immunity.^[2] Vitiligo lesions are described with the following characteristics: Light or depigmented spots and areas Typically have clear edges Can be round, oval, or elongated Borders may appear convex Vary in size from a few millimeters to several centimeters Gradually expand outward over time at an irregular pace.^[3]

2. Immunometabolism in Vitiligo

Vitiligo is an autoimmune skin condition characterised by the loss of melanocytes and resulting depigmentation. It affects about 0.5-2% of people worldwide and is associated with

conditions like insulin resistance, lipid abnormalities, and metabolic disorders. Its mechanisms involve genetics, immune responses, oxidative stress, and inflammation, although the exact immunometabolic causes are still unclear. Vitiligo is classified into non-segmental (NSV, most common and systemic), segmental (SV), and unclassified types. NSV is marked by a strong innate immune response, B-cell activation, and associations with type 1 diabetes, cardiovascular diseases, and metabolic syndrome, unlike SV.^[1] Emerging evidence links metabolic syndrome and dyslipidemia to various skin conditions, including psoriasis, lichen planus, and vitiligo. Leptin, a polypeptide hormone secreted by adipocytes and enterocytes, modulates energy homeostasis and body weight, with prior studies associating its levels to insulin resistance, obesity, hypertension, and dyslipidemia. To date, no data exist on lipid profiles, leptin, and C-reactive protein (CRP) levels in Iranian vitiligo patients. This study therefore evaluates these metabolic markers in this population.^[4]

2.1 Metabolic Reprogramming of Immune Cells

Cell type	Subset	Stimuli / Status	Metabolic change	Functional change	Signal molecules	PMID
Monocyte	CD14+	LPS	↑ Glycolysis, ↓ OXPHOS	↑ Inflammatory cytokines (TNF- α , IL-6, IL-1 β , IL-10), ↑ Phagocytosis	TLR4	27991883
	CD14+	P3C	↑ Glycolysis, ↑ OXPHOS	—	TLR2	27991883
	—	Fungi <i>Candida</i>	↑ Glycolysis, ↑ OXPHOS, ↑ Glutaminolysis	↑ Inflammatory cytokines (TNF- α , IL-6, IL-1 β), ↑ ROS	C-type lectin	28922415
	CD14++CD16-	NA	↑ Glycolysis, ↑ PPP	Defense response	NA	24671955
	CD14+CD16++	NA	↑ OXPHOS	Anti-inflammatory	NA	24671955
	CD14+CD40+	Hcy (CKD)	↑ Hcy, ↑ SAH, ↑ SAM/SAH	↓ DNA methylation, ↑ inflammatory cytokines and chemokines	↓ DNMT1 — ↑ CD40	27992360
Macrophage	M1	LPS / IFN- γ	↑ Glycolysis, ↑ PPP	Pro-inflammatory	AKT / mTOR / HIF1 α	29777212

	M2	IL-4	↑ FAO, ↑ OXPHOS, ↓ PPP	Anti-inflammatory	STAT6 – AMPK	29777212
	Mox	OxPL	↓ Glycolysis, ↑ Glutaminolysis	Anti-oxidant activity, anti-inflammatory	TLR2 – Syk	29891687
Dendritic cell	BM-derived DC	No stimuli	↑ Lipid β-oxidation / OXPHOS	Antagonize DC activation	AMPK	20351312
	BM-derived DC	LPS / Zymosan / Curdlan	↑ Glycolysis, ↓ OXPHOS	↑ Maturation, motility, migration	PI3K / AKT	20351312
	BM-derived DC	CCL21 / CCL19	↑ Glycolysis	↑ Migration, trafficking to draining lymph node	CCR7 – HIF1α	30824325
	CD1c+ mDC	TLR agonists	↑ Glycolysis, ↑ Mitophagy, ↓ OXPHOS	Activation	TLR7/8 – BNIP3	30455688
Dendritic cell	pDC	TLR agonists	↑ OXPHOS, ↑ Glutaminolysis	Activation	TLR7/8 – BNIP3	30455688
	Tolerogenic DC	Dexamethasone & vitamin D3	↑ OXPHOS, ↑ FAO	Tolerogenic, ↑ ROS	NA	25917094
T cell	Naïve	NA	OXPHOS, FAO	Homeostasis	TSC1 – mTORC1	29677474
	Th1	NA	↑ Glycolysis	↑ Inflammatory cytokine (IFN-γ)	LDHA, histone acetylation of <i>Ifng</i>	27708054
	Th17	NA	↑ Glycolysis	Pro-inflammatory	HIF1	21871655
	Treg	NA	↑ OXPHOS	Anti-inflammatory	Myc	28416194
	Memory CD8+ T cell	NA	↑ OXPHOS, FAO	Longevity, quick response	NA	22889213
B cell	Mouse splenic B	BCR engagement	↑ Glycolysis	↑ Proliferation / growth	PI3K / AKT / mTOR	16449529
	Mouse splenic B	IL-4	↑ Glycolysis	↑ Survival	STAT6	17911579
	Peripheral blood B	anti-IgM / LPS	↑ Glycolysis, ↑ OXPHOS	↑ Proliferation and antibody production	HIF1α, c-Myc	24616478

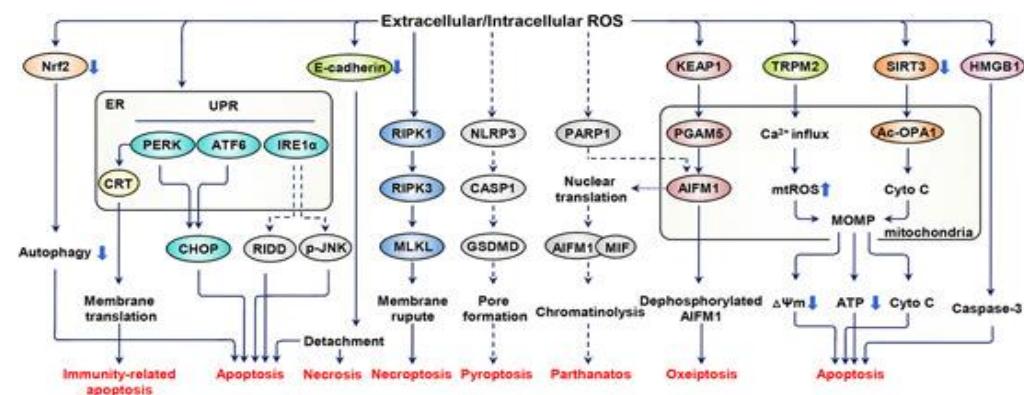

	Memory B cell	NA	↑ OXPHOS	Durable antibody production	Mpc2	27396958
--	---------------	----	----------	-----------------------------	------	----------

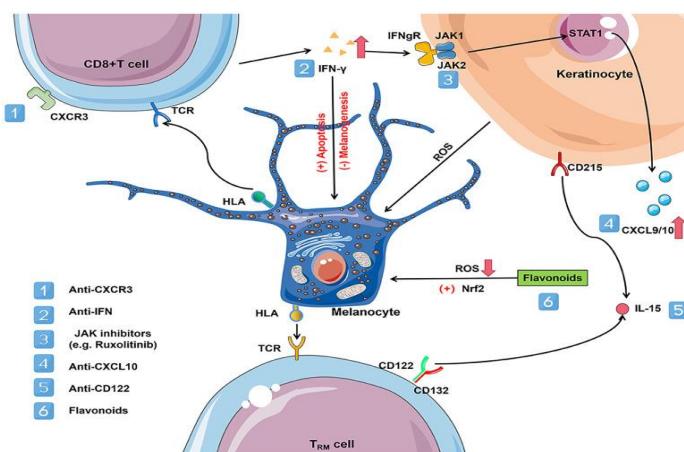
Table 1: Metabolic reprogramming in immune cells.^[5]

Monocytes serve as innate immune sentinels that detect environmental alterations and maintain pools of tissue macrophages and dendritic cells^[6] Upon LPS stimulation, human CD14+ monocytes preferentially shift to glycolysis rather than OXPHOS, rapidly mounting host defense through inflammatory cytokine production (TNF- α , IL-6, IL-1 β) and enhanced phagocytosis.^[7] This mirrors the Warburg effect characteristic of cancer cells.^{[8][9]} Under glucose deprivation, monocytes sustain pro-inflammatory functions by enhancing fatty acid oxidation (FAO) to power OXPHOS, compensating for impaired Warburg metabolism and meeting elevated energy demands during LPS activation.^[10] Unlike LPS stimulation, synthetic bacterial lipopeptide P3C or *Candida albicans* simultaneously boost both glycolysis and OXPHOS, driving pro-inflammatory cytokine release and reactive oxygen species (ROS) production via Toll-like receptor 2 or C-type lectin signaling pathways^[11]

2.2 Oxidative Stress and Melanocyte Dysfunction

Lipids, as primary constituents of cellular membranes, play a critical role in oxidative stress processes. Additionally, dyslipidemia and conventional atherosclerosis risk factors—such as diabetes, hypertension, and smoking—activate the NADPH oxidase system, resulting in excessive superoxide anion generation that exacerbates oxidative stress.^[12] Pietrzak et al. were the first to propose that lipid peroxidation contributes to vitiligo pathogenesis.^[13] Karadağ et al. demonstrated that hyperhomocysteinemia—not only a recognized cardiovascular risk factor—may also promote vitiligo development by inhibiting tyrosinase activity.^[14] Studies report significantly elevated homocysteine levels in patients with active vitiligo compared to those with stable disease, potentially triggering oxidative stress, endoplasmic reticulum stress, and proinflammatory cytokine expression.^[15] N-homocysteinylated proteins—formed via N-linkage of homocysteine's carboxyl group to lysine residues' ε -amino groups—act as neoantigens, triggering CD8+ T cell-mediated autoimmune destruction of melanocytes^[16]

Figure: Interconnected Regulated Cell Death Pathways in Vitiligo Melanocytes.^[17]


Melanocytes produce melanin, the pigment imparting color to skin, hair, and eyes, while shielding skin from damaging UV radiation, modulating pigmentation, and contributing to sensory/neurological functions. Their dysfunction underlies hypopigmentation/hyperpigmentation disorders, skin cancers, and neurological conditions. Compared to humans, animals exhibit greater pigment diversity—including melanin, carotenoids, oxyhemoglobin, and reduced hemoglobin—alongside more complex vertebrate skin architecture, yielding richer cutaneous coloration.^[18] Melanocytes, specialized dendritic cells, uniquely synthesize melanin via complex chemical and enzymatic pathways. Animal melanin primarily comprises **eumelanin** (dark, black/brown, insoluble pigment in dark skin/hair) and **pheomelanin** (light red/yellow, sulfur-containing, alkali-soluble pigment)^{[18][19]} Melanoblasts (melanocyte precursors) serve as key models in developmental and structural biology research. These cells draw global interest from scientists and clinicians developing novel therapeutic approaches for biological, pathophysiological, and technological challenges in pigmentation disorders. Extensive animal melanocyte model studies reveal critical genes, proteins, and signaling pathways underlying dermatological conditions.^{[18][20]} Melanocyte stem cells (McSCs), skin stem cells originating from the neural crest in vertebrates^[21] During embryogenesis, neural crest cells migrate dorsolaterally—connecting somites to non-neural ectoderm—to form melanoblasts, which then disperse to colonize developing hair follicles (HFs) and epidermis. In the epidermal basal layer, these melanoblasts progress to precursor cells, an intermediate stage before differentiating into mature, functional melanocytes (MCs).^[18]

2.3 Adaptive immunity in vitiligo

Numerous studies confirm that antigen-specific CD8+ T cells drive melanocyte destruction in human vitiligo, with early observations documenting T-cell infiltration in lesional skin of

affected patients.^[22] CD8+ T cells were observed in close proximity to degenerating melanocytes within the epidermis.^[23] Furthermore, the frequency of melanocyte antigen tetramer-positive CD8+ T cells in vitiligo patients' blood correlates with disease severity, and these cells demonstrate melanocyte-killing capacity in vitro.^{[24][25]} Finally, purified CD8+ T cells from vitiligo lesional skin—but not CD8-depleted T cells— infiltrate patients' healthy skin ex vivo and trigger melanocyte apoptosis in situ, confirming CD8+ T cells as both necessary and sufficient for melanocyte destruction in human vitiligo.^[26] Key antigenic proteins identified in vitiligo include gp100, MART1, tyrosinase, and tyrosinase-related proteins 1 and 2 (TYRP1/2).^{[24][27][28][29]} Certain mouse models of vitiligo similarly identify CD8+ T cells as primary disease effectors, with IFN- γ emerging as a pivotal pathogenic cytokine.^{[30][31]} CD4+ T cells are also present within vitiligo lesions.^[23] CD4+ T cells are present in vitiligo lesions, yet their direct role in pathogenesis remains unconvincing. They prove dispensable in mouse vitiligo models, where their absence actually exacerbates disease—suggesting potential Treg suppressive functions.^[30] Other mouse models of vitiligo have been established that depend on CD4+ T cells.^{[32][33]} Regulatory T cells (Tregs) exhibit dysregulation in vitiligo patients, though the precise nature of these defects remains controversial and lacks consensus across studies. Reported abnormalities include reduced circulating Treg numbers, impaired skin-homing capacity due to defective CXCR3/CCR4 expression, and compromised suppressive function characterized by FoxP3 instability, diminished IL-10 secretion, and metabolic exhaustion from impaired FAO/OXPHOS switching. These heterogeneous Treg deficiencies fail to counterbalance effector CD8+ T-cell expansion, allowing unchecked IFN- γ /CXCL10-driven melanocyte destruction. Therapeutic strategies enhancing Treg stability (e.g., low-dose IL-2) or function (e.g., PI3K δ inhibitors) show promise in restoring immune tolerance.^{[34][35][36][37]}

2.4 Therapeutic Targets in Immunometabolism (e.g., IFN- γ axis, JAK-STAT, Nrf2-ARE)
Uncovering the biological mediators and the molecular mechanisms of metabolic defects in melanocyte degeneration and autoimmunity is essential for novel therapeutic targets and drugs intercepting the process of vitiligo. The experience with systemic biological therapies for psoriasis suggests that a similar approach might be successfully used in vitiligo. Promising treatments targeting the IFN- γ chemokine axis, JAK-STAT pathway, and Nrf2-ARE pathway, have recently emerged.^[1]

Figure: Therapeutic Pathways in Melanocyte Protection^[1]

I. The IFN- γ chemokine axis

The reduction in the level of IFN- γ , a key cytokine of the immune system in glucose metabolism, can improve glucose metabolism, as demonstrated in a mouse model with low IFN- γ levels^[38]. Furthermore, functional studies in mouse models confirm that IFN- γ , its receptor (IFN γ R), STAT1, CXCL10, and CXCR3 play critical roles in inducing hypopigmentation characteristic of vitiligo.^{[39][31][40]} In a mouse model, CXCR3-targeting depleting antibodies reduced self-reactive T cell numbers and reversed vitiligo manifestations^[41]. In conditional STAT1 knockout mice, functional studies demonstrate that keratinocyte-derived chemokines and IFN- γ signaling drive vitiligo development and homing of autoreactive T cells to the epidermis. Conversely, epidermal immune cells—including endogenous T cells, Langerhans cells, and $\gamma\delta$ T cells—are dispensable for this process.^[42] IFN- γ directly suppresses melanogenesis and triggers melanocyte apoptosis.^[43] A recent single-cell sequencing study in vitiligo revealed that fibroblasts from different sites exhibit varying IFN- γ responsiveness, which governs their capacity to recruit CD8+ T cells. The study further showed greater upregulation of CXCL9 and CXCL10 in high-incidence areas. Using the Cre-loxP system, researchers generated IFN- γ receptor knockout mice that were protected from vitiligo development.^[44] Thus, the IFN- γ axis offers promising therapeutic targets for vitiligo treatment.^[45]

II. JAK-STAT pathway

Recent evidence links JAK-STAT pathway dysregulation to metabolic disorders. Janus kinase 2 (JAK2) specifically associates with central obesity and elevated waist circumference.^[45] JAK3-deficient mice display metabolic disturbances, including insulin resistance, weight gain, elevated fasting insulin and glucose levels, impaired glucose tolerance, and hepatic

steatosis.^[46] Recent reports highlight JAK inhibitors' therapeutic potential in vitiligo. A case report also documented a JAK inhibitor improving glucose levels in a 19-year-old with type 1 diabetes.^[47] Topical JAK inhibitor ruxolitinib cream achieved its primary endpoint in two pivotal phase 3 trials, along with key secondary endpoints. A significantly higher proportion of patients reached $\geq 75\%$ improvement in F-VASI score (quantifying vitiligo skin symptoms) at week 24 compared to placebo.^[1] Ruxolitinib cream is the first FDA-approved topical therapy for nonsegmental vitiligo in adults and children aged 12 years and older.^[48] Shiu *et al.* suggest that combining JAK inhibitors with therapies addressing keratinocyte metabolic defects could offer a novel vitiligo treatment strategy.

3. gut skin axis

The gut-skin axis forms part of the larger gut-organ axis framework, highlighting bidirectional gut-organ communication through neural, endocrine, and immune pathways.^[50] This framework integrates the gut microbiota with multiple organs, the immune system, and the gut itself.^[51] The gut-skin axis forms part of the larger gut-organ axis framework, highlighting bidirectional gut-organ communication through neural, endocrine, and immune pathways.^[52] The gut and skin exhibit structural and functional parallels, including shared embryonic origins, symbiotic microbiomes, innervation patterns, and immune capabilities.^[53] The gut microbiota plays a central role in sustaining gut-skin homeostasis and forms the foundation of the gut-skin axis theory.^[54] The gut microbiota comprises bacteria, fungi, parasites, protozoa, and viruses, with bacteria being predominant.^[55] Over 90% of gut bacteria belong to the phyla Bacteroidetes and Firmicutes.^[56] The Bacteroidota:Firmicutes ratio serves as a standard metric for evaluating gut microbiota composition and diversity.^[57] Gut bacteria are classified as beneficial (e.g., Bifidobacteria, Lactobacillus) or opportunistic pathogens (e.g., Staphylococci, Clostridia) that can cause infections under dysbiotic conditions.^[58]

3.1 Immune Modulation\

Vitiligo, a chronic condition, demands lifelong management through immunomodulators, phototherapy, or surgical grafting. Yet, approximately 40% of patients experience relapse within one year of discontinuing therapy.^[59] Technological advances have spurred alternative targeted therapies for vitiligo. Recent immunomodulation targeting JAK signaling, TRM cells, and Tregs shows strong therapeutic promise.

The IFN- γ –CXCL9/10–CXCR3 axis critically drives CD8+ T cell-mediated melanocyte destruction. Keratinocytes detect IFN- γ , triggering JAK-STAT-mediated production of CXCL9/10. The JAK family—JAK1, JAK2, JAK3, TYK2—forms cytokine-induced heterodimers that activate distinct STAT proteins[60]. JAK inhibitors represent a novel class of small molecule-targeted therapies for rheumatoid arthritis, a chronic inflammatory joint disease. In dermatology, topical and systemic JAK inhibitors have shown substantial progress.^[61] A case report documented hair regrowth and skin repigmentation in a patient with comorbid alopecia areata and vitiligo following ruxolitinib treatment, a JAK1/2 inhibitor.^[62] This offers potential vitiligo therapy, as both conditions share IFN- γ -driven pathogenesis reliant on CD8+ T cells.^[63] Recent phase 2 trials demonstrated ruxolitinib's efficacy in treating vitiligo, exhibiting strong clinical relevance and therapeutic impact^[64] Tofacitinib, another pan-JAK inhibitor, demonstrates repigmentation potential, particularly when combined with phototherapy to stimulate melanocytes, yielding superior treatment outcomes.^[65] Literature indicates maximal repigmentation occurs on facial lesions, while trunk and lower extremity patches respond less robustly. This highlights regional specificity in vitiligo, with some lesions exhibiting bilateral symmetric distribution.^[66] Notably, much of the regained pigmentation faded after discontinuing ruxolitinib, whereas hair regrowth proved more durable^[62] Although these autoimmune diseases share similar pathogenesis, JAK inhibitors produce divergent clinical outcomes. Given JAK signaling complexity, potential toxicities from broad inhibition warrant consideration.

The rapid yet transient repigmentation by JAK inhibitors underscores vitiligo's persistent recurrence. These agents block cytotoxic cell chemotaxis without eliminating long-lived skin-resident TRM cells sustained by IL-15 signaling. Subsequent research has targeted IL-15 pathways; anti-CD122 antibody (targeting the IL-15 receptor β subunit shared by human/mouse TRM cells) reduces IFN- γ production and depletes autoreactive CD8+ TRM cells in established murine vitiligo.^[67] Treg cells possess immunosuppressive properties, making their expansion a promising strategy. This can be accomplished through ectopic expression of key regulators: IL-2, TNF receptor 2, and Notch-1.^[68] IL-2 drives Treg differentiation, while Tregs express high-affinity IL-2 receptors to preferentially capture it. TNF receptor 2, highly expressed on Tregs, efficiently expands natural Tregs when stimulated, as seen in graft-versus-host disease models. Notch-1 inhibition boosts Treg numbers and suppressive function in transplantation settings.

Treg cell therapy offers another avenue: harvesting patient-derived Tregs, expanding them ex vivo, and reinfusing them. Challenges include their low blood abundance and slow in vitro expansion for clinical-scale application.^[69] Gene gun-mediated CCL22 overexpression enhances Treg recruitment to the epidermis, representing the preferred current approach to boost Treg numbers and slow vitiligo progression.^[70] CAR-Treg therapy enhances Treg quality by engineering antigen-specific Tregs ex vivo. These modified cells recognize targeted antigens upon reinfusion, triggering intracellular signaling for superior suppression compared to nonspecific bystander Tregs.^[68] CAR technology enables efficient in vitro expansion of abundant, antigen-specific Treg cells. By conferring specificity, conventional antigen-specific T cells can be reprogrammed into functional Tregs.^[71]

3.2 Microbial Metabolites

Research observed a decline in bacterial taxa usually linked to a healthy gut microbiome and a reduction in SCFA-producing taxa in people with vitiligo.^[72] Butyrate is essential for maintaining gut barrier integrity and has anti-inflammatory and immune-regulatory effects in autoimmune conditions. Nonetheless, its effectiveness depends on factors like concentration, site of action, and the host's physiological state.^{[72][73]} Studies on neonatal melanocytes indicate that butyrate is cytotoxic at concentrations over 1 mM.^[74] Conversely, at lower, non-toxic levels (0.5 and 1 mM), butyrate greatly promotes melanocyte differentiation, leading to melanosome formation and increased pigmentation.^[75] Topical use of butyrate, alone or combined with *S. epidermidis* and glycerol, notably decreased UVB-induced IL-6 levels.^[76] Propionate lowers melanin synthesis in melanocytes, and at 4 mM, it significantly inhibits tyrosinase activity without harming cell growth, suggesting that propionate reduces melanogenesis by downregulating tyrosinase gene expression.^[77] While prior studies seem to challenge SCFAs' anti-inflammatory effects, note that vitiligo patients often exhibit reduced SCFA levels, potentially limiting their anti-inflammatory and high-dose cytotoxic benefits. Tissue-specific GPCR expression and SCFA affinity variations must also be factored in. Collectively, SCFAs likely mediate diverse physiological effects via multiple pathways, with outcomes shaped by concentration gradients, tissue distribution, and host metabolism.

Studies show gut microbiota-derived ursodeoxycholic acid (UDCA, a secondary bile acid formed by hydroxylating primary bile acids) counters UV-induced skin damage by curbing intracellular oxidative stress and inflammation. In experiments, UDCA reduced melanin content in normal human melanocytes.^[78] However, this study utilized an aging skin model

inconsistent with vitiligo pathogenesis. Moreover, UDCA exhibits anti-inflammatory and antioxidant properties, warranting further investigation of its role in vitiligo. At 5 mM concentration, kynurenine (KYN) significantly suppressed melanocyte DNA synthesis.^[79] Further studies confirm that kynurenine (KYN), derived from microbial metabolism and fibroblast activity, suppresses DNA synthesis and markedly reduces metabolic function in primary human melanocytes. Kynurenine accumulation also disrupts tyrosinase activity in vitiligo lesions, downregulates tyrosinase expression in melanocyte-keratinocyte co-cultures, and diminishes melanosome formation in 3D human skin equivalents. As noted earlier, vitiligo patients show elevated serum kynurenine aminotransferase levels, causing kynurenine pathway shunting and systemic KYNA buildup.^[82] Thus, excessive kynurenine (KYN) buildup in vitiligo patients likely harms melanocytes and drives disease pathogenesis. Oxidative stress depletes epidermal tryptophan, reducing serotonin and melatonin levels.^[83] In vitro studies demonstrate that melanophores in lower vertebrates show dose-dependent pigmentation responses to 5-HT1 and 5-HT2 receptor agonists, whereas 5-HT3 and 5-HT4 receptor agonists trigger dose-dependent pigment aggregation.^{[84][85][86]} The serotonin/5-HT7 receptor triggers an adaptive response that boosts pigmentation during environmental stress via multiple signaling pathways, such as cAMP-PKA-MAPK, Rab27a/RhoA, and PI3K/AKT.^[87] Emotional stress lowers skin serotonin levels, thereby impairing melanin production.^[88] Consequently, fluoxetine, a selective serotonin reuptake inhibitor, effectively treats pigment loss disorders.^[89] Indole derivatives, acting as endogenous AHR ligands, activate AHR signaling and alleviate psoriasis and certain dermatitis conditions.^{[90][91]}

3.3 Immune Dysregulation

Abnormal activation and dysregulated antigen-presenting functions of dendritic cells (DCs) arise from multiple interconnected factors. DAMPs trigger PRR activation, promoting DC maturation and migration, which subsequently activates T cells in lymph nodes. Inflammatory cytokines like TNF- α , IL-6, and IL-1 β further amplify DC activation and antigen presentation.^[92] Additionally, innate immune mediators like IFN- γ , produced by natural killer (NK) cells and innate lymphoid cells, upregulate HLA class I expression on melanocytes, thereby enhancing CD8+ T cell recognition.^[93] TLR signaling in dendritic cells (DCs) concurrently upregulates HLA molecules and promotes their maturation, reinforcing the innate-adaptive immunity interface. However, the exact mechanisms by which these cytokines regulate DC function in vitiligo remain poorly understood.

DC dysfunction in antigen presentation is closely linked to melanocyte damage and apoptosis.^[94] Studies demonstrate that dendritic cells (DCs) activate specific T cells through melanocyte antigen presentation, resulting in melanocyte damage and apoptosis.^[95] DCs also secrete cytokines such as TNF- α and IFN- γ , further damaging melanocytes and causing their apoptosis and functional impairment.^[96] Thus, dysregulated DC activation and defective antigen presentation, combined with innate immune-driven HLA expression changes, critically contribute to vitiligo pathogenesis and offer novel therapeutic targets. Inhibiting DC antigen presentation or their CD8+ T-cell interactions could effectively interrupt a pivotal step in the autoimmune cascade.^[97]

4. Impact of Microbiome on Immune Cell Metabolic Pathways

Short-chain fatty acids (SCFAs) modulate innate immune cells including macrophages, neutrophils, and dendritic cells (DCs). Additionally, SCFAs exert bidirectional regulation on antigen-specific adaptive immunity mediated by T cells and B cells.^[101] Regulating metabolic processes in immune cells is essential for maintaining homeostasis and driving immunopathogenesis. Recent evidence shows that the gut microbiota influences immunometabolism, particularly via metabolites like short-chain fatty acids, bile acids, and tryptophan derivatives.^[102]

5. Therapeutics: Current and Emerging Therapeutic Opportunities

Vitiligo is a skin disorder marked by the progressive loss of melanocytes, resulting in depigmented white patches on the skin.^[98] Vitiligo's pathogenesis is currently linked to immune dysregulation, particularly the hyperactivation of CXCR3+ CD8+ cytotoxic T cells.^[99] Current vitiligo treatments like tofacitinib (JAK-STAT inhibitor) and tacrolimus (calcineurin inhibitor) face challenges: poor delivery to CXCR3+CD8+ T cells at the dermal-epidermal junction, systemic side effects, and limited topical penetration. Microneedles (MNs), especially solid MNs, offer a promising alternative by creating skin micropores for targeted drug delivery to this site, with studies showing significant lesion improvement without notable side effects in treatment-resistant cases.^[100]

5.1 Targeting Immunometabolic Pathways

Recent therapeutic advances have introduced promising treatments that target the IFN- γ chemokine axis, JAK-STAT signaling pathway, and Nrf2-ARE pathway[1]. In vitiligo mouse models, an anti-CD122 antibody targeting IL-15 signaling effectively reversed depigmentation. Systemic or local anti-CD122 treatment reduced IFN- γ production by tissue-

resident memory T cells (TRMs) and achieved sustained repigmentation.^[103] Antioxidant pathways are under active investigation for their clinical potential in vitiligo treatment. The Nrf2/ARE pathway can enhance antioxidant gene expression, while the PI3K/AKT pathway regulates melanocyte proliferation and maturation.^[104]

CONCLUSION

Vitiligo emerges as a systemic immunometabolic disorder in which oxidative stress, immune dysregulation, and gut microbiota-derived metabolites converge to drive melanocyte destruction and defective repigmentation. Metabolic reprogramming of innate and adaptive immune cells, coupled with dysbiosis and altered SCFAs, bile acids, and tryptophan pathways, sustains chronic inflammation and tissue-specific autoimmunity. Integrating gut–skin axis modulation with therapies targeting IFN- γ , JAK–STAT, Nrf2/ARE, and Treg/TRM biology offers a rational framework for next-generation, mechanism-based interventions in vitiligo.

REFERENCES

1. Lyu, Chen, and Yonghu Sun. "Immunometabolism in the pathogenesis of vitiligo." *Frontiers in immunology*, 10 Nov, 2022; 13: 1055958., doi:10.3389/fimmu.2022.1055958
2. Ni, Qingrong et al. "Gut microbiota dysbiosis orchestrates vitiligo-related oxidative stress through the metabolite hippuric acid." *Microbiome.*, vol. 13,(1): 112. 6 May, 2025, doi:10.1186/s40168-025-02102-0.
3. Ortonne J. Vitiligo and other disorders of Hypopigmentation. Bolognia J, Jorizzo J, Rapini R, eds. *Dermatology*, 2nd. Spain: Elsevier, 2008; Vol 1: 65.
4. Aryanian Z, Shirzadian A, Farzaneh S, Goodarzi A, Azizpour A, Hatami P. Metabolic Derangement in Patients with Vitiligo: A Cross-Sectional Study. *Journal of Investigative Medicine*, 2023; 70(4): 963-966. doi:[10.1136/jim-2021-002062](https://doi.org/10.1136/jim-2021-002062).
5. Sun (孙李哲), Lizhe et al. "Metabolic Reprogramming in Immune Response and Tissue Inflammation." *Arteriosclerosis, thrombosis, and vascular biology* vol. 40,9 (2020): 1990-2001. doi:10.1161/ATVBAHA.120.314037.
6. Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: Circulation inflammatory monocyte as biomarker for inflammatory diseases. *Biomarker research*, 2014; 2: 1.
7. Lachmandas E, Boutens L, Ratter JM, Hijmans A, Hooiveld GJ, Joosten LA, Rodenburg RJ, Fransen JA, Houtkooper RH, van Crevel R, Netea MG, Stienstra R. Microbial

stimulation of different toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes. *Nature microbiology*, 2016; 2: 16246.

8. Liberti MV, Locasale JW. The warburg effect: How does it benefit cancer cells? *Trends in biochemical sciences*, 2016; 41: 211–218.
9. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: The metabolic requirements of cell proliferation. *Science*, 2009; 324: 1029–1033
10. Raulien N, Friedrich K, Strobel S, Rubner S, Baumann S, von Bergen M, Korner A, Krueger M, Rossol M, Wagner U. Fatty acid oxidation compensates for lipopolysaccharide-induced warburg effect in glucose-deprived monocytes. *Front Immunol.*, 2017; 8: 609.
11. Dominguez-Andres J, Arts RJW, Ter Horst R, Gresnigt MS, Smeekens SP, Ratter JM, Lachmandas E, Boutens L, van de Veerdonk FL, Joosten LAB, Notebaart RA, Ardavin C, Netea MG. Rewiring monocyte glucose metabolism via c-type lectin signaling protects against disseminated candidiasis. *PLoS Pathog*, 2017; 13: e1006632.
12. Steffen Y, Vuillaume G, Stolle K, Roewer K, Lietz M, Schueller J, et al. Cigarette smoke and LDL cooperate in reducing nitric oxide bioavailability in endothelial cells via effects on both eNOS and NADPH oxidase. *Nitric Oxide.*, (2012); 27(3): 176–84. doi:10.1016/j.niox.2012.06.006.
13. Pietrzak A, Bartosinska J, Hercogova J, Lotti TM, Chodorowska G. Metabolic syndrome in vitiligo. *Dermatol Ther* (2012); 25 Suppl 1: S41–3. doi:10.1111/dth.12012.
14. Karadag AS, Tutal E, Ertugrul DT, Akin KO, Bilgili SG. Serum holotranscobalamin, vitamin B12, folic acid and homocysteine levels in patients with vitiligo. *Clin Exp Dermatol.*, (2012); 37(1): 62–4. doi:10.1111/j.1365-2230.2011.04142.x.
15. Jadeja SD, Mansuri MS, Singh M, Patel H, Marfatia YS, Begum R. Association of elevated homocysteine levels and methylenetetrahydrofolate reductase (MTHFR) 1298 A > C polymorphism with vitiligo susceptibility in Gujarat. *J Dermatol Sci.*, (2018); 90(2): 112–22. doi:10.1016/j.jdermsci.2018.01.003.
16. Jakubowski H. Molecular basis of homocysteine toxicity in humans. *Cell Mol Life Sci.*, (2004); 61(4): 470–87. doi:10.1007/s00018-003-3204-7.
17. Chen, Jianru *et al.* “Mechanisms of melanocyte death in vitiligo.” *Medicinal research reviews*, 41(2): (2021): 1138-1166. doi:10.1002/med.21754.
18. Ali SA, Parveen N. The vertebrate pigmentary system: from pigment cells to disorders. Bentham Science Publishers, 2021.

19. Ali SA, Naaz I, Zaidi KU, Ali AS. Recent updates in melanocyte function: the use of promising bioactive compounds for the treatment of hypopigmentary disorders. *Mini Rev Med Chem.*, 2017; 17: 785–798. doi:10.2174/1389557516666161223153953
20. Ali SA, Naaz I. Current challenges in understanding the story of skin pigmentation-Bridging the morpho-anatomical and functional aspects of mammalian melanocytes. *Muscle Cell and Tissue*, 2015: 262–85.
21. Salinas E, Ruano-Rivadeneira F, Leal JI, Caprile T, Torrejón M, Arriagada C. Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications. *Front Cell Dev Biol*, 2025; 12: 1457506. doi:10.3389/fcell.2024.1457506.
22. Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. *The American journal of pathology*, 1996; 148: 1219–1228.
23. van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P. Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. *Lab Invest*, 2000; 80: 1299–1309. doi:10.1038/labinvest.3780138.
24. Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. *The Journal of experimental medicine*, 1998; 188: 1203–1208. doi:10.1084/jem.188.6.1203.
25. Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ, Das PK. Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. *Lab Invest.*, 2003; 83: 683–695. doi:10.1097/01.lab.0000069521.42488.1b.
26. van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, Vyth-Dreese FA, Luiten RM. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients. *J Invest Dermatol.*, 2009; 129: 2220–2232. doi:10.1038/jid.2009.32. This paper showed that CD8+ T cells are necessary and sufficient for melanocyte destruction in human vitiligo, clearly implicating vitiligo as an autoimmune disease.
27. Palermo B, Campanelli R, Garbelli S, Mantovani S, Lantelme E, Brazzelli V, Ardigo M, Borroni G, Martinetti M, Badulli C, et al. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the

etiopathogenesis of vitiligo. *J Invest Dermatol.*, 2001; 117: 326–332. doi:10.1046/j.1523-1747.2001.01408.x.

28. Okamoto T, Irie RF, Fujii S, Huang SK, Nizze AJ, Morton DL, Hoon DS. Anti-tyrosinase-related protein-2 immune response in vitiligo patients and melanoma patients receiving active-specific immunotherapy. *J Invest Dermatol.*, 1998; 111: 1034–1039. doi:10.1046/j.1523-1747.1998.00411.x.

29. Kemp EH, Waterman EA, Gawkrodger DJ, Watson PF, Weetman AP. Autoantibodies to tyrosinase-related protein-1 detected in the sera of vitiligo patients using a quantitative radiobinding assay. *Br J Dermatol.*, 1998; 139: 798–805. doi:10.1046/j.1365-2133.1998.02503.x.

30. Gregg RK, Nichols L, Chen Y, Lu B, Engelhard VH. Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice. *J Immunol.*, 2010; 184: 1909–1917. doi:10.4049/jimmunol.0902778.

31. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin. *J Invest Dermatol.*, 2012; 132: 1869–1876. doi:10.1038/jid.2011.463.

32. Lambe T, Leung JC, Bouriez-Jones T, Silver K, Makinen K, Crockford TL, Ferry H, Forrester JV, Cornall RJ. CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interactions. *Journal of immunology* (Baltimore, Md.: 1950) 2006; 177: 3055–3062. doi:10.4049/jimmunol.177.5.3055.

33. Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloudian CE, Chan CC, Carroll MW, Moss B, Rosenberg SA, Restifo NP. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. *Proceedings of the National Academy of Sciences of the United States of America.*, 1999; 96: 2982–2987. doi:10.1073/pnas.96.6.2982.

34. Klarquist J, Denman CJ, Hernandez C, Wainwright DA, Strickland FM, Overbeck A, Mehrotra S, Nishimura MI, Le Poole IC. Reduced skin homing by functional Treg in vitiligo. *Pigment Cell Melanoma Res.*, 2010; 23: 276–286. doi:10.1111/j.1755-148X.2010.00688.x.

35. Tu CX, Jin WW, Lin M, Wang ZH, Man MQ. Levels of TGF-beta(1) in serum and culture supernatants of CD4(+)CD25 (+) T cells from patients with non-segmental vitiligo. *Arch Dermatol Res.*, 2011; 303: 685–689. doi:10.1007/s00403-011-1154-8.

36. Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. *PLoS One*, 2012; 7: e37513. doi:10.1371/journal.pone.0037513.

37. Zhou L, Li K, Shi YL, Hamzavi I, Gao TW, Henderson M, Huggins RH, Agbai O, Mahmoud B, Mi X, et al. Systemic analyses of immunophenotypes of peripheral T cells in non-segmental vitiligo: implication of defective natural killer T cells. *Pigment Cell Melanoma Res.*, 2012; 25: 602–611. doi:10.1111/j.1755-148X.2012.01019.x.

38. Greer RL, Dong X, Moraes AC, Zielke RA, Fernandes GR, Peremyslova E, et al. Akkermansia muciniphila mediates negative effects of IFNgamma on glucose metabolism. *Nat Commun.*, (2016); 7: 13329. doi:10.1038/ncomms13329.

39. Harris JE. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. *Immunol Rev.*, (2016) 269(1): 11–25. doi:10.1111/imr.12369.

40. Agarwal P, Rashighi M, Essien KI, Richmond JM, Randall L, Pazoki-Toroudi H, et al. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. *J Invest Dermatol.*, 2015; 135(4): 1080–8. doi:10.1038/jid.2014.529.

41. Richmond JM, Masterjohn E, Chu R, Tedstone J, Youd ME, Harris JE. CXCR3 depleting antibodies prevent and reverse vitiligo in mice. *J Invest Dermatol.*, 2017; 137(4): 982–5. doi:10.1016/j.jid.2016.10.048.

42. Richmond JM, Bangari DS, Essien KI, Currimbhoy SD, Groom JR, Pandya AG, et al. Keratinocyte-derived chemokines orchestrate T-cell positioning in the epidermis during vitiligo and may serve as biomarkers of disease. *J Invest Dermatol.*, 2017; 137(2): 350–8. doi:10.1016/j.jid.2016.09.016.

43. Ng CY, Chiu YC, Chan YP, Lin YJ, Chung PH, Chung WH, et al. Skin interstitial fluid and plasma multiplex cytokine analysis reveals IFN-gamma signatures and granzyme b as useful biomarker for activity, severity and prognosis assessment in vitiligo. *Front Immunol.*, 2022; 13: 872458. doi:10.3389/fimmu.2022.872458.

44. Xu Z, Chen D, Hu Y, Jiang K, Huang H, Du Y, et al. Anatomically distinct fibroblast subsets determine skin autoimmune patterns. *Nature*, 2022; 601(7891): 118–24. doi:10.1038/s41586-021-04221-8.

45. Ge D, Gooljar SB, Kyriakou T, Collins LJ, Swaminathan R, Snieder H, et al. Association of common JAK2 variants with body fat, insulin sensitivity and lipid profile. *Obes (Silver Spring)*, 2008; 16(2): 492–6. doi:10.1038/oby.2007.79.

46. Mishra J, Verma RK, Alpini G, Meng F, Kumar N. Role of janus kinase 3 in predisposition to obesity-associated metabolic syndrome. *J Biol Chem.*, 2015; 290(49): 29301–12. doi:10.1074/jbc.M115.670331.

47. Chaimowitz NS, Ebenezer SJ, Hanson IC, Anderson M, Forbes LR. STAT1 gain of function, type 1 diabetes, and reversal with JAK inhibition. *N Engl J Med.*, 2020; 383(15): 1494–6. doi:10.1056/NEJMc2022226.

48. Sheikh A, Rafique W, Owais R, Malik F, Ali E. FDA Approves ruxolitinib (Opzelura) for vitiligo therapy: A breakthrough in the field of dermatology. *Ann Med Surg (Lond)*, 2022; 81: 104499. doi:10.1016/j.amsu.2022.104499.

49. Shiu J, Zhang L, Lentsch G, Flesher JL, Jin S, Polleys C, et al. Multimodal analyses of vitiligo skin identify tissue characteristics of stable disease. *JCI Insight*, 2022; 7(13): e154585. doi:10.1172/jci.insight.154585.

50. Ahlawat S, Asha, Sharma KK. Gut-organ axis: A microbial outreach and networking. *Lett Appl Microbiol*, 2021; 72: 636–668. doi:10.1111/lam.13333.

51. Guo Y, Chen X, Gong P, Li G, Yao W, Yang W. The gut-organ-axis concept: Advances the application of gut-on-chip technology. *Int J Mol Sci.*, 2023; 24: 4089. doi:10.3390/ijms24044089.

52. Mahmud MR, Akter S, Tamanna SK, Mazumder L, Esti IZ, Banerjee S, Akter S, Hasan MR, Acharjee M, Hossain MS, Pirttilä AM. Impact of gut microbiome on skin health: Gut-skin axis observed through the lenses of therapeutics and skin diseases. *Gut Microbes*, 2022; 14: 2096995. doi:10.1080/19490976.2022.2096995.

53. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. *Cell*, 2015; 161: 264–276. doi:10.1016/j.cell.2015.02.047.

54. Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin axis. *Front Microbiol.*, 2018; 9: 1459. doi:10.3389/fmicb.2018.01459.

55. Komine M. Recent advances in psoriasis research; The clue to mysterious relation to gut microbiome. *Int J Mol Sci.*, 2020; 21: 2582. doi:10.3390/ijms21072582.

56. Buhas MC, Gavrilas LI, Candrea R, Catinean A, Mocan A, Miere D, Tătaru A. Gut microbiota in psoriasis. *Nutrients*, 2022; 14: 2970. doi:10.3390/nu14142970.

57. Frioux C, Ansorge R, Ozkurt E, Ghassemi Nedjad C, Fritscher J, Quince C, Waszak SM, Hildebrand F. Enterosignatures define common bacterial guilds in the human gut microbiome. *Cell Host Microbe.*, 2023; 31: 1111–1125 e6. doi:10.1016/j.chom.2023.05.024.

58. Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sasaki LY. Gut microbiota, inflammatory bowel disease, and colorectal cancer. *World J Gastroenterol.*, 2022; 28: 4053–4060. doi:10.3748/wjg.v28.i30.4053.

59. Cavalié M., Ezzedine K., Fontas E., Montaudié H., Castela E., Bahadoran P., et al. (2015). Maintenance Therapy of Adult Vitiligo with 0.1% Tacrolimus Ointment: a Randomized, Double Blind, Placebo-Controlled Study. *J. Invest. Dermatol.*, 135(4): 970–974. 10.1038/jid.2014.527.

60. Angelini J., Talotta R., Roncato R., Fornasier G., Barbiero G., Dal Cin L., et al. (2020). JAK-inhibitors for the Treatment of Rheumatoid Arthritis: A Focus on the Present and an Outlook on the Future. *Biomolecules.* 10(7): 1002. 10.3390/biom10071002.

61. Solimani F., Meier K., Ghoreschi K. (2019). Emerging Topical and Systemic JAK Inhibitors in Dermatology. *Front. Immunol.*, 10: 2847. 10.3389/fimmu.2019.02847.

62. Harris J. E., Rashighi M., Nguyen N., Jabbari A., Ulerio G., Clynes R., et al. (2016). Rapid Skin Repigmentation on Oral Ruxolitinib in a Patient with Coexistent Vitiligo and Alopecia Areata (AA). *J. Am. Acad. Dermatol.*, 74(2): 370–371. 10.1016/j.jaad.2015.09.073.

63. Bertolini M., McElwee K., Gilhar A., Bulfone-Paus S., Paus R. (2020). Hair Follicle Immune Privilege and its Collapse in Alopecia Areata. *Exp. Dermatol.*, 29(8): 703–725. 10.1111/exd.14155.

64. Rosmarin D., Pandya A. G., Lebwohl M., Grimes P., Hamzavi I., Gottlieb A. B., et al. (2020). Ruxolitinib Cream for Treatment of Vitiligo: a Randomised, Controlled, Phase 2 Trial. *The Lancet.*, 396 (10244): 110–120. 10.1016/S0140-6736(20)30609-7.

65. Liu L. Y., Strassner J. P., Refat M. A., Harris J. E., King B. A. (2017). Repigmentation in Vitiligo Using the Janus Kinase Inhibitor Tofacitinib May Require Concomitant Light Exposure. *J. Am. Acad. Dermatol.*, 77 (4): 675–682. e671. 10.1016/j.jaad.2017.05.043.

66. Bergqvist C., Ezzedine K. (2021). Vitiligo: A Focus on Pathogenesis and its Therapeutic Implications. *J. Dermatol.*, 48(3): 252–270. 10.1111/1346-8138.15743.

67. Richmond J. M., Strassner J. P., Zapata L., Jr., Garg M., Riding R. L., Refat M. A., et al. (2018). Antibody Blockade of IL-15 Signaling Has the Potential to Durably Reverse Vitiligo. *Sci. Transl. Med.*, 10(450): 1. 10.1126/scitranslmed.aam7710.

68. Mukhatayev Z., Ostapchuk Y. O., Fang D., Le Poole I. C. (2021). Engineered Antigen-specific Regulatory T Cells for Autoimmune Skin Conditions. *Autoimmun. Rev.*, 20 (3), 102761. 10.1016/j.autrev., 2021: 102761.

69. Sakaguchi S., Mikami N., Wing J. B., Tanaka A., Ichiyama K., Ohkura N. (2020). Regulatory T Cells and Human Disease. *Annu. Rev. Immunol.*, 38: 541–566. 10.1146/annurev-immunol-042718-041717.

70. Eby J. M., Kang H.-K., Tully S. T., Bindeman W. E., Peiffer D. S., Chatterjee S., et al. (2015). CCL22 to Activate Treg Migration and Suppress Depigmentation in Vitiligo. *J. Invest. Dermatol.* 135 (6): 1574–1580. 10.1038/jid.2015.26.

71. Rosado-Sánchez I., Levings M. K. (2020). Building a CAR-Treg: Going from the Basic to the Luxury Model. *Cell Immunol.*, 358, 104220. 10.1016/j.cellimm.2020.104220.

72. Kumar S., Mahajan S., Kale D., Chourasia N., Khan A., Asati D., et al. (2024). Insights into the gut microbiome of vitiligo patients from India. *BMC Microbiol.*, 24: 440 2024 Oct 28. doi:10.1186/s12866-024-03529-5, PMID.

73. Gerunova L. K., Gerunov T. V., P'yanova L. G., Lavrenov A. V., Sedanova A. V., Delyagina M. S., et al. (2024). Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review. *J. Vet. Sci.*, 25: e23. doi:10.4142/jvs.23230, PMID.

74. Du Y., Li X., An Y., Song Y., Lu Y. (2022). Association of gut microbiota with short-chain fatty acids and inflammatory cytokines in diabetic patients with cognitive impairment: a cross-sectional, non-controlled study. *Front. Nutr.*, 9: 930626. doi:10.3389/fnut.2022.930626, PMID.

75. Goenka S. (2024). Exploring the effect of butyric acid, a metabolite from periodontopathic bacteria, on primary human melanocytes: An in vitro study. *J. Oral Biosci.*, 66: 253–259. doi:10.1016/j.job.2024.01.002, PMID.

76. Keshari S., Balasubramaniam A., Myagmardoloonjin B., Herr D. R., Negari I. P., Huang C. M. (2019). Butyric acid from probiotic *Staphylococcus epidermidis* in the skin microbiome Down-regulates the ultraviolet-induced pro-inflammatory IL-6 cytokine via short-chain fatty acid receptor. *Int. J. Mol. Sci.*, 20: 4477. doi:10.3390/ijms20184477, PMID.

77. Kao H. J., Wang Y. H., Keshari S., Yang J. J., Simbolon S., Chen C. C., et al. (2021). Propionic acid produced by *Cutibacterium acnes* fermentation ameliorates ultraviolet B-induced melanin synthesis. *Sci. Rep.* 11: 11980. doi:10.1038/s41598-021-91386-x, PMID:

78. Moon I. J., Yoo H., Paik S. H., Kim H. T., Kim S. Y., Song Y., et al. (2021). Ursodeoxycholic acid may inhibit environmental aging-associated hyperpigmentation. *Antioxidants*, 10: 267. doi:10.3390/antiox10020267, PMID.

79. Walczak K., Langner E., Makuch-Kocka A., Szelest M., Szalast K., Marciniak S., et al. (2020). Effect of tryptophan-derived AhR ligands, kynurenone, Kynurenic acid and FICZ, on proliferation, cell cycle regulation and cell death of melanoma cells-in vitro studies. *Int. J. Mol. Sci.*, 21: 7946. doi:10.3390/ijms21217946, PMID.

80. Walczak K., Szalast K., Krasowska D. (2023). The biological interactions between kynurenone and AhR in melanocytes: in vitro studies. *Amino Acids.*, 55: 947–954. doi:10.1007/s00726-023-03279-0, PMID.

81. Ferreira Branquinho M. S., Silva M. B. B., Castilho G. A., Cavalcante J., Barros S. B. M., Clara R. O., et al. (2022). Kynurenone inhibits melanogenesis in human melanocyte-keratinocyte co-cultures and in a reconstructed 3D skin model. *Exp. Dermatol.*, 31, 427–432. doi:10.1111/exd.14486, PMID.

82. Singh A., Gotherwal V., Junni P., Vijayan V., Tiwari M., Ganju P., et al. (2017). Mapping architectural and transcriptional alterations in non-lesional and lesional epidermis in vitiligo. *Sci., Rep.*, 7: 9860. doi:10.1038/s41598-017-10253-w, PMID.

83. Schallreuter K. U., Salem M. A., Gibbons N. C., Martinez A., Slominski R., Lüdemann J., et al. (2012). Blunted epidermal L-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 1: epidermal H₂O₂/ONOO(–)-mediated stress abrogates tryptophan hydroxylase and dopa decarboxylase activities, leading to low serotonin and melatonin levels. *FASEB J.*, 26: 2457–2470. doi:10.1096/fj.11-197137, PMID.

84. Ali S. A., Salim S., Sahni T., Peter J., Ali A. S. (2012). 5-HT receptors as novel targets for optimizing pigmentary responses in dorsal skin melanophores of frog, *Hoplobatrachus tigerinus*. *Br. J. Pharmacol.*, 165: 1515–1525. doi:10.1111/j.1476-5381.2011.01630.x, PMID.

85. Yue Y., Zhong M., An X., Feng Q., Lai Y., Yu M., et al. (2022). Serotonin (5-HT) 2A receptor involvement in melanin synthesis and transfer via activating the PKA/CREB signaling pathway. *Int. J. Mol. Sci.*, 23: 6111. doi:10.3390/ijms23116111, PMID.

86. Wu H. L., Pang S. L., Liu Q. Z., Wang Q., Cai M. X., Shang J. (2014). 5-HT1A/1B receptors as targets for optimizing pigmentary responses in C57BL/6 mouse skin to stress. *PLoS One* 9: e89663. doi:10.1371/journal.pone.0089663, PMID.

87. Tang H. H., Zhang Y. F., Yang L. L., Hong C., Chen K. X., Li Y. M., et al. (2023). Serotonin/5-HT7 receptor provides an adaptive signal to enhance pigmentation response to environmental stressors through cAMP-PKA-MAPK, Rab27a/RhoA, and PI3K/AKT signaling pathways. *FASEB J.* 37: e22893. doi:10.1096/fj.202201352RR, PMID: 36111111.

88. Liao S., Lv J., Zhou J., Kalavagunta P. K., Shang J. (2017). Effects of two chronic stresses on mental state and hair follicle melanogenesis in mice. *Exp. Dermatol.*, 26: 1083–1090. doi:10.1111/exd.13380, PMID: 28333111.

89. Slominski A. T., Zmijewski M. A., Skobowiat C., Zbytek B., Slominski R. M., Steketee J. D. (2012). Sensing the environment: regulation of local and global homeostasis by the skin's neuroendocrine system. *Adv. Anat. Embryol. Cell Biol.*, 212: v–115. doi:10.1007/978-3-642-19683-6_1, PMID: 22706111.

90. Uberoi A., Bartow-McKenney C., Zheng Q., Flowers L., Campbell A., Knight S. A. B., et al. (2021). Commensal microbiota regulates skin barrier function and repair via signaling through the aryl hydrocarbon receptor. *Cell Host Microbe.*, 29: 1235–1248.e8. doi:10.1016/j.chom.2021.05.011, PMID: 34108111.

91. Furue M., Hashimoto-Hachiya A., Tsuji G, 2019; Aryl hydrocarbon receptor in atopic dermatitis and psoriasis. *Int. J. Mol. Sci.*, 20: 5424. doi:10.3390/ijms20215424, PMID: 31303111.

92. Srivastava N, Bishnoi A, Parsad D, Kumaran MS, Vinay K, Gupta S. Dendritic cells subsets are associated with inflammatory cytokine production in progressive vitiligo disease. *Arch Dermatol Res.*, 2021; 313: 759–67. doi:10.1007/s00403-020-02168-w, PMID: 33603111.

93. Jin Y, Roberts GHL, Ferrara TM, Ben S, Geel N, Wolkerstorfer A, et al. Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression. *Nat Commun*, 2019; 10: 391. doi:10.1038/s41467-019-08337-4, PMID: 31303111.

94. Chang WL, Lee WR, Kuo YC, Huang YH. Vitiligo: an autoimmune skin disease and its immunomodulatory therapeutic intervention. *Front Cell Dev Biol.*, 2021; 9: 797026. doi:10.3389/fcell.2021.797026, PMID: 34103111.

95. He G, Li Y, Zeng Y, Zhang Y, Jiang Q, Zhang Q, et al. Advancements in melanoma immunotherapy: the emergence of extracellular vesicle vaccines. *Cell Death Discov.*, 2024; 10: 374. doi:10.1038/s41420-024-02150-9, PMID: 34103111.

96. Ng CY, Chan YP, Chiu YC, Shih HP, Lin YN, Chung PH, et al. Targeting the elevated IFN-gamma in vitiligo patients by human anti- IFN-gamma monoclonal antibody hampers direct cytotoxicity in melanocyte. *J Dermatol Sci.*, 2023; 110: 78–88. doi:10.1016/j.jdermsci.2023.04.006, PMID: 37103111.

97. Wang, Yuting et al. "Innate immune activation in vitiligo: mechanisms and pathophysiological implications." *Frontiers in immunology*, 15 Oct, 2025; 16: 1631074. doi:10.3389/fimmu, 2025,1631074
98. Ezzedine K, Eleftheriadou V, Whitton M, van Geel N. *Vitiligo*. *Lancet*, 2015; 386(9988): 74–84. doi:10.1016/s0140-6736(14)60763-7
99. Khaitan BK, Sindhuja T. Autoimmunity in vitiligo: therapeutic implications and opportunities. *Autoimmun Rev*, 2022; 21(1): 102932. doi:10.1016/j.autrev.2021.102932
100. Salloum A, Bazzi N, Maalouf D, Habre M. Microneedling in vitiligo: a systematic review. *Dermatol Ther*, 2020; 33(6): e14297. doi:10.1111/dth.14297
101. Kim, Chang H. "Immune regulation by microbiome metabolites." *Immunology* vol. 154(2): (2018); 220-229. doi:10.1111/imm.12930
102. Michaudel, Chloé, and Harry Sokol. "The Gut Microbiota at the Service of Immunometabolism." *Cell metabolism*, 2020; 32(4): 514-523. doi:10.1016/j.cmet.2020.09.004
103. Richmond JM, Strassner JP, Zapata L, Garg M, Riding RL, Refat MA, et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. *Sci Transl Med*, 2018; 10(450): eaam7710. doi:10.1126/scitranslmed.aam7710.
104. Zhang J, Hu W, Wang P, Ding Y, Wang H, Kang X. Research progress on targeted antioxidant therapy and vitiligo. *Oxid Med Cell Longev*, 2022; 2022: 1821780.