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ABSTRACT 

Vitiligo, a chronic autoimmune depigmentation disorder 

affecting 0.5-2% globally, manifests through melanocyte 

destruction driven by immunometabolic dysregulation, 

oxidative stress, and gut microbiota dysbiosis. This review 

elucidates metabolic reprogramming in immune cells—

monocytes shifting to glycolysis, M1 macrophages favoring 

PPP, and CD8+ T cells/TRMs relying on FAO—alongside gut-

skin axis disruptions marked by reduced SCFAs, altered bile 

acids, and tryptophan metabolites that exacerbate IFN-

γ/CXCL10-mediated inflammation. Emerging therapies 

targeting JAK-STAT, Nrf2-ARE, IL-15/CD122, and 

microbiome modulation offer promising avenues for restoring 

immune-metabolic homeostasis and achieving durable 

repigmentatio. Vitiligo emerges as a systemic 

immunometabolic disorder in which oxidative stress, immune 

dysregulation, and gut microbiota–derived metabolites 
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converge to drive melanocyte destruction and defective repigmentation. 

  

KEYWORDS: Vitiligo, Immunometabolism, Gut-skin axis, SCFAs, Oxidative stress, 

Microbiome dysbiosis. 

 

1. INTRODUCTION 

Vitiligo is a skin condition characterised by the loss of melanocytes and a decrease in 

pigmentation, impacting 0.5-2% of people worldwide. It is linked to metabolic problems such 

as insulin resistance and lipid imbalances, as well as comorbidities like type 1 diabetes and 

metabolic syndrome, especially in non-segmental vitiligo (NSV), which is the most prevalent 

systemic subtype. Divided into NSV, segmental vitiligo (SV), and forms that are unclassified, 

vitiligo is characterized by mechanisms involving genetics, autoimmunity, oxidative stress, 

and inflammation, which lead to the destruction of melanocytes. NSV exhibits increased 

innate immune activity, B-cell stimulation, and broader metabolic associations when 

compared to SV. Immunometabolism—referring to the metabolic alteration of immune cells 

through glucose and lipid pathways—fuels immune dysfunction in vitiligo, leading to 

disrupted homeostasis. These findings provide promising opportunities for innovative 

therapies aimed at targeting the intersection of metabolic and immune processes
[1]

 Oxidative 

stress plays a crucial role in the initiation and progression of vitiligo, leading to the death of 

melanocytes and loss of skin color. Despite progress in understanding the condition, the 

underlying internal triggers are still unclear, and localized treatments often do not succeed, 

indicating a potential systemic cause beyond just the skin. The gut-skin connection offers an 

important perspective, with imbalances in gut microbiota—observed in vitiligo patients 

compared to healthy individuals—associated with skin conditions such as atopic dermatitis, 

psoriasis, and urticaria. Research has demonstrated changes in the composition of microbiota 

in those with vitiligo, and the use of antibiotics has been shown to reduce pigmentation loss 

in experimental models, implying that microbial metabolites may increase serum levels and 

disturb skin immunity.
[2]

 Vitiligo lesions are described with the following characteristics: 

Light or depigmented spots and areas  Typically have clear edges  Can be round, oval, or 

elongated  Borders may appear convex  Vary in size from a few millimeters to several 

centimeters  Gradually expand outward over time at an irregular pace.
[3] 

 

2. Immunometabolism in Vitiligo 

Vitiligo is an autoimmune skin condition characterised by the loss of melanocytes and 

resulting depigmentation. It affects about 0.5-2% of people worldwide and is associated with 
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conditions like insulin resistance, lipid abnormalities, and metabolic disorders. Its 

mechanisms involve genetics, immune responses, oxidative stress, and inflammation, 

although the exact immunometabolic causes are still unclear. Vitiligo is classified into non-

segmental (NSV, most common and systemic), segmental (SV), and unclassified types. NSV 

is marked by a strong innate immune response, B-cell activation, and associations with type 1 

diabetes, cardiovascular diseases, and metabolic syndrome, unlike SV.
[1]

  Emerging evidence 

links metabolic syndrome and dyslipidemia to various skin conditions, including psoriasis, 

lichen planus, and vitiligo.Leptin, a polypeptide hormone secreted by adipocytes and 

enterocytes, modulates energy homeostasis and body weight, with prior studies associating its 

levels to insulin resistance, obesity, hypertension, and dyslipidemia. To date, no data exist on 

lipid profiles, leptin, and C-reactive protein (CRP) levels in Iranian vitiligo patients. This 

study therefore evaluates these metabolic markers in this population.
[4] 

 

2.1 Metabolic Reprogramming of Immune Cells 

Cell type Subset 
Stimuli / 

Status 

Metabolic 

change 

Functional 

change 

Signal 

molecules 
PMID 

Monocyte 

CD14+ LPS 
↑ Glycolysis,  

↓ OXPHOS 

↑ Inflammatory 

cytokines 

(TNF-α, IL-6, 

IL-1β, IL-10), 

↑ Phagocytosis 

TLR4 27991883 

CD14+ P3C 
↑ Glycolysis, ↑ 

OXPHOS 
– TLR2 27991883 

– Fungi Candida 

↑ Glycolysis, ↑ 

OXPHOS, ↑ 

Glutaminolysis 

↑ Inflammatory 

cytokines 

(TNF-α, IL-6, 

IL-1β), ↑ ROS 

C-type 

lectin 
28922415 

CD14++CD16− NA 
↑ Glycolysis, ↑ 

PPP 

Defense 

response 
NA 24671955 

CD14+CD16++ NA ↑ OXPHOS 
Anti-

inflammatory 
NA 24671955 

CD14+CD40+ Hcy (CKD) 
↑ Hcy, ↑ SAH, 

↑ SAM/SAH 

↓ DNA 

methylation, ↑ 

inflammatory 

cytokines and 

chemokines 

↓ DNMT1 

– ↑ CD40 
27992360 

Macrophage 

 
M1 LPS / IFN-γ 

↑ Glycolysis, ↑ 

PPP 

Pro-

inflammatory 

AKT / 

mTOR / 

HIF1α 

29777212 
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M2 IL-4 

↑ FAO, ↑ 

OXPHOS, ↓ 

PPP 

Anti-

inflammatory 

STAT6 – 

AMPK 
29777212 

Mox OxPL 
↓ Glycolysis, ↑ 

Glutaminolysis 

Anti-oxidant 

activity, anti-

inflammatory 

TLR2 – 

Syk 
29891687 

Dendritic 

cell 

BM-derived 

DC 
No stimuli 

↑ Lipid β-

oxidation / 

OXPHOS 

Antagonize DC 

activation 
AMPK 20351312 

BM-derived 

DC 

LPS / Zymosan 

/ Curdlan 

↑ Glycolysis, ↓ 

OXPHOS 

↑ Maturation, 

motility, 

migration 

PI3K / 

AKT 
20351312 

BM-derived 

DC 

CCL21 / 

CCL19 
↑ Glycolysis 

↑ Migration, 

trafficking to 

draining lymph 

node 

CCR7 – 

HIF1α 
30824325 

CD1c+ mDC TLR agonists 

↑ Glycolysis, ↑ 

Mitophagy, ↓ 

OXPHOS 

Activation 
TLR7/8 – 

BNIP3 
30455688 

Dendritic 

cell 

 

pDC TLR agonists 
↑ OXPHOS, ↑ 

Glutaminolysis 
Activation 

TLR7/8 – 

BNIP3 
30455688 

Tolerogenic DC 
Dexamethasone 

& vitamin D3 

↑ OXPHOS, ↑ 

FAO 

Tolerogenic, ↑ 

ROS 
NA 25917094 

T cell 

Naïve NA 
OXPHOS, 

FAO 
Homeostasis 

TSC1 – 

mTORC1 
29677474 

Th1 NA ↑ Glycolysis 

↑ Inflammatory 

cytokine (IFN-

γ) 

LDHA, 

histone 

acetylation 

of Ifng 

27708054 

Th17 NA ↑ Glycolysis 
Pro-

inflammatory 
HIF1 21871655 

Treg NA ↑ OXPHOS 
Anti-

inflammatory 
Myc 28416194 

Memory CD8+ 

T cell 
NA 

↑ OXPHOS, 

FAO 

Longevity, 

quick response 
NA 22889213 

B cell 

Mouse splenic 

B 

BCR 

engagement 
↑ Glycolysis 

↑ Proliferation 

/ growth 

PI3K / 

AKT / 

mTOR 

16449529 

Mouse splenic 

B 
IL-4 ↑ Glycolysis ↑ Survival STAT6 17911579 

Peripheral 

blood B 
anti-IgM / LPS 

↑ Glycolysis, ↑ 

OXPHOS 

↑ Proliferation 

and antibody 

production 

HIF1α, c-

Myc 
24616478 
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Memory B cell NA ↑ OXPHOS 

Durable 

antibody 

production 

Mpc2 27396958 

Table 1: Metabolic reprogramming in immune cells.
[5] 

 

Monocytes serve as innate immune sentinels that detect environmental alterations and 

maintain pools of tissue macrophages and dendritic cells
[6]

  Upon LPS stimulation, human 

CD14+ monocytes preferentially shift to glycolysis rather than OXPHOS, rapidly mounting 

host defense through inflammatory cytokine production (TNF-α, IL-6, IL-1β) and enhanced 

phagocytosis.
[7]

 This mirrors the Warburg effect characteristic of cancer cells.
[8][9]

 Under 

glucose deprivation, monocytes sustain pro-inflammatory functions by enhancing fatty acid 

oxidation (FAO) to power OXPHOS, compensating for impaired Warburg metabolism and 

meeting elevated energy demands during LPS activation.
[10]

 Unlike LPS stimulation, 

synthetic bacterial lipopeptide P3C or Candida albicans simultaneously boost both glycolysis 

and OXPHOS, driving pro-inflammatory cytokine release and reactive oxygen species (ROS) 

production via Toll-like receptor 2 or C-type lectin signaling pathways
[11] 

 

 

2.2 Oxidative Stress and Melanocyte Dysfunction 

Lipids, as primary constituents of cellular membranes, play a critical role in oxidative stress 

processes. Additionally, dyslipidemia and conventional atherosclerosis risk factors—such as 

diabetes, hypertension, and smoking—activate the NADPH oxidase system, resulting in 

excessive superoxide anion generation that exacerbates oxidative stress.
[12]

 Pietrzak et al. 

were the first to propose that lipid peroxidation contributes to vitiligo pathogenesis.
[13]

 

Karadağ et al. demonstrated that hyperhomocysteinemia—not only a recognized 

cardiovascular risk factor—may also promote vitiligo development by inhibiting tyrosinase 

activity.
[14]

 Studies report significantly elevated homocysteine levels in patients with active 

vitiligo compared to those with stable disease, potentially triggering oxidative stress, 

endoplasmic reticulum stress, and proinflammatory cytokine expression.
[15]

 N-

homocysteinylated proteins—formed via N-linkage of homocysteine's carboxyl group to 

lysine residues' ε-amino groups—act as neoantigens, triggering CD8+ T cell-mediated 

autoimmune destruction of melanocytes
[16]
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Figure: Interconnected Regulated Cell Death Pathways in Vitiligo Melanocytes.
[17]

 

 

Melanocytes produce melanin, the pigment imparting color to skin, hair, and eyes, while 

shielding skin from damaging UV radiation, modulating pigmentation, and contributing to 

sensory/neurological functions. Their dysfunction underlies 

hypopigmentation/hyperpigmentation disorders, skin cancers, and neurological conditions. 

Compared to humans, animals exhibit greater pigment diversity—including melanin, 

carotenoids, oxyhemoglobin, and reduced hemoglobin—alongside more complex vertebrate 

skin architecture, yielding richer cutaneous coloration.
[18]

 Melanocytes, specialized dendritic 

cells, uniquely synthesize melanin via complex chemical and enzymatic pathways. Animal 

melanin primarily comprises eumelanin (dark, black/brown, insoluble pigment in dark 

skin/hair) and pheomelanin (light red/yellow, sulfur-containing, alkali-soluble pigment)
[18][19]

 

Melanoblasts (melanocyte precursors) serve as key models in developmental and structural 

biology research. These cells draw global interest from scientists and clinicians developing 

novel therapeutic approaches for biological, pathophysiological, and technological challenges 

in pigmentation disorders. Extensive animal melanocyte model studies reveal critical genes, 

proteins, and signaling pathways underlying dermatological conditions.
[18][20]

 Melanocyte 

stem cells (McSCs), skin stem cells originating from the neural crest in vertebrates 
[21]

 During 

embryogenesis, neural crest cells migrate dorsolaterally—connecting somites to non-neural 

ectoderm—to form melanoblasts, which then disperse to colonize developing hair follicles 

(HFs) and epidermis. In the epidermal basal layer, these melanoblasts progress to precursor 

cells, an intermediate stage before differentiating into mature, functional melanocytes 

(MCs).
[18] 

 

2.3  Adaptive immunity in vitiligo 

Numerous studies confirm that antigen-specific CD8+ T cells drive melanocyte destruction in 

human vitiligo, with early observations documenting T-cell infiltration in lesional skin of 



www.wjpr.net      │     Vol 15, Issue 4, 2026.      │     ISO 9001: 2015 Certified Journal      │ 

 

 

Naiya et al.                                                                           World Journal of Pharmaceutical Research 

489 

affected patients.
[22]

 CD8+ T cells were observed in close proximity to degenerating 

melanocytes within the epidermis.
[23]

 Furthermore, the frequency of melanocyte antigen 

tetramer-positive CD8+ T cells in vitiligo patients' blood correlates with disease severity, and 

these cells demonstrate melanocyte-killing capacity in vitro.
[24][25]

 Finally, purified CD8+ T 

cells from vitiligo lesional skin—but not CD8-depleted T cells—infiltrate patients' healthy 

skin ex vivo and trigger melanocyte apoptosis in situ, confirming CD8+ T cells as both 

necessary and sufficient for melanocyte destruction in human vitiligo.
[26]

 Key antigenic 

proteins identified in vitiligo include gp100, MART1, tyrosinase, and tyrosinase-related 

proteins 1 and 2 (TYRP1/2).
[24][27][28][29]

 Certain mouse models of vitiligo similarly identify 

CD8+ T cells as primary disease effectors, with IFN-γ emerging as a pivotal pathogenic 

cytokine.
[30][31]

 CD4+ T cells are also present within vitiligo lesions.
[23]

 CD4+ T cells are 

present in vitiligo lesions, yet their direct role in pathogenesis remains unconvincing. They 

prove dispensable in mouse vitiligo models, where their absence actually exacerbates 

disease—suggesting potential Treg suppressive functions.
[30]

 Other mouse models of vitiligo 

have been established that depend on CD4+ T cells.
[32][33]

 Regulatory T cells (Tregs) exhibit 

dysregulation in vitiligo patients, though the precise nature of these defects remains 

controversial and lacks consensus across studies. Reported abnormalities include reduced 

circulating Treg numbers, impaired skin-homing capacity due to defective CXCR3/CCR4 

expression, and compromised suppressive function characterized by FoxP3 instability, 

diminished IL-10 secretion, and metabolic exhaustion from impaired FAO/OXPHOS 

switching. These heterogeneous Treg deficiencies fail to counterbalance effector CD8+ T-cell 

expansion, allowing unchecked IFN-γ/CXCL10-driven melanocyte destruction. Therapeutic 

strategies enhancing Treg stability (e.g., low-dose IL-2) or function (e.g., PI3Kδ inhibitors) 

show promise in restoring immune tolerance.
[34][35][36][37] 

 

2.4 Therapeutic Targets in Immunometabolism (e.g., IFN-γ axis, JAK-STAT, Nrf2-ARE) 

Uncovering the biological mediators and the molecular mechanisms of metabolic defects in 

melanocyte degeneration and autoimmunity is essential for novel therapeutic targets and 

drugs intercepting the process of vitiligo. The experience with systemic biological therapies 

for psoriasis suggests that a similar approach might be successfully used in vitiligo. 

Promising treatments targeting the IFN-γ chemokine axis, JAK-STAT pathway, and Nrf2-

ARE pathway, have recently emerged.
[1] 
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Figure: Therapeutic Pathways in Melanocyte Protection
.[1]

 

 

I. The IFN-γ chemokine axis 

The reduction in the level of IFN-γ, a key cytokine of the immune system in glucose 

metabolism, can improve glucose metabolism, as demonstrated in a mouse model with low 

IFN-γ levels
[38]

 Furthermore, functional studies in mouse models confirm that IFN-γ, its 

receptor (IFNγR), STAT1, CXCL10, and CXCR3 play critical roles in inducing 

hypopigmentation characteristic of vitiligo.
[39][31][40]

 In a mouse model, CXCR3-targeting 

depleting antibodies reduced self-reactive T cell numbers and reversed vitiligo manifestations 

[41]
 In conditional STAT1 knockout mice, functional studies demonstrate that keratinocyte-

derived chemokines and IFN-γ signaling drive vitiligo development and homing of 

autoreactive T cells to the epidermis. Conversely, epidermal immune cells—including 

endogenous T cells, Langerhans cells, and γδ T cells—are dispensable for this process 
[42]

 

IFN-γ directly suppresses melanogenesis and triggers melanocyte apoptosis.
[43]

 A recent 

single-cell sequencing study in vitiligo revealed that fibroblasts from different sites exhibit 

varying IFN-γ responsiveness, which governs their capacity to recruit CD8+ T cells. The 

study further showed greater upregulation of CXCL9 and CXCL10 in high-incidence areas. 

Using the Cre-loxP system, researchers generated IFN-γ receptor knockout mice that were 

protected from vitiligo development.
[44]

  Thus, the IFN-γ axis offers promising therapeutic 

targets for vitiligo treatment.
[45] 

 

II. JAK-STAT pathway 

Recent evidence links JAK-STAT pathway dysregulation to metabolic disorders. Janus kinase 

2 (JAK2) specifically associates with central obesity and elevated waist circumference.
[45]

 

JAK3-deficient mice display metabolic disturbances, including insulin resistance, weight 

gain, elevated fasting insulin and glucose levels, impaired glucose tolerance, and hepatic 
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steatosis.
[46]

 Recent reports highlight JAK inhibitors' therapeutic potential in vitiligo. A case 

report also documented a JAK inhibitor improving glucose levels in a 19-year-old with type 1 

diabetes.
[47]

 Topical JAK inhibitor ruxolitinib cream achieved its primary endpoint in two 

pivotal phase 3 trials, along with key secondary endpoints. A significantly higher proportion 

of patients reached ≥75% improvement in F-VASI score (quantifying vitiligo skin symptoms) 

at week 24 compared to placebo
[1]

 Ruxolitinib cream is the first FDA-approved topical 

therapy for nonsegmental vitiligo in adults and children aged 12 years and older.
[48]

 Shiu et al. 

suggest that combining JAK inhibitors with therapies addressing keratinocyte metabolic 

defects could offer a novel vitiligo treatment strategy. 

 

3. gut skin axis 

The gut-skin axis forms part of the larger gut-organ axis framework, highlighting 

bidirectional gut-organ communication through neural, endocrine, and immune pathways.
[50]

 

This framework integrates the gut microbiota with multiple organs, the immune system, and 

the gut itself.
[51]

 The gut-skin axis forms part of the larger gut-organ axis framework, 

highlighting bidirectional gut-organ communication through neural, endocrine, and immune 

pathways.
[52]

 The gut and skin exhibit structural and functional parallels, including shared 

embryonic origins, symbiotic microbiomes, innervation patterns, and immune capabilities
[53]

 

The gut microbiota plays a central role in sustaining gut-skin homeostasis and forms the 

foundation of the gut-skin axis theory
[54]

 The gut microbiota comprises bacteria, fungi, 

parasites, protozoa, and viruses, with bacteria being predominant.
[55]

 Over 90% of gut 

bacteria belong to the phyla Bacteroidetes and Firmicutes.
[56]

 The Bacteroidota:Firmicutes 

ratio serves as a standard metric for evaluating gut microbiota composition and diversity.
[57]

 

Gut bacteria are classified as beneficial (e.g., Bifidobacteria, Lactobacillus) or opportunistic 

pathogens (e.g., Staphylococci, Clostridia) that can cause infections under dysbiotic 

conditions.
[58] 

 

3.1 Immune Modulation\ 

Vitiligo, a chronic condition, demands lifelong management through immunomodulators, 

phototherapy, or surgical grafting. Yet, approximately 40% of patients experience relapse 

within one year of discontinuing therapy.
[59]

 Technological advances have spurred alternative 

targeted therapies for vitiligo. Recent immunomodulation targeting JAK signaling, TRM 

cells, and Tregs shows strong therapeutic promise. 
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The IFN-γ–CXCL9/10–CXCR3 axis critically drives CD8+ T cell-mediated melanocyte 

destruction. Keratinocytes detect IFN-γ, triggering JAK-STAT-mediated production of 

CXCL9/10. The JAK family—JAK1, JAK2, JAK3, TYK2—forms cytokine-induced 

heterodimers that activate distinct STAT proteins[60]. JAK inhibitors represent a novel class 

of small molecule-targeted therapies for rheumatoid arthritis, a chronic inflammatory joint 

disease. In dermatology, topical and systemic JAK inhibitors have shown substantial 

progress.
[61]

 A case report documented hair regrowth and skin repigmentation in a patient 

with comorbid alopecia areata and vitiligo following ruxolitinib treatment, a JAK1/2 

inhibitor.
[62]

 This offers potential vitiligo therapy, as both conditions share IFN-γ-driven 

pathogenesis reliant on CD8+ T cells.
[63]

 Recent phase 2 trials demonstrated ruxolitinib's 

efficacy in treating vitiligo, exhibiting strong clinical relevance and therapeutic impact
[64]

 

Tofacitinib, another pan-JAK inhibitor, demonstrates repigmentation potential, particularly 

when combined with phototherapy to stimulate melanocytes, yielding superior treatment 

outcomes.
[65]

 Literature indicates maximal repigmentation occurs on facial lesions, while 

trunk and lower extremity patches respond less robustly. This highlights regional specificity 

in vitiligo, with some lesions exhibiting bilateral symmetric distribution.
[66]

 Notably, much of 

the regained pigmentation faded after discontinuing ruxolitinib, whereas hair regrowth 

proved more durable
[62]

  Although these autoimmune diseases share similar pathogenesis, 

JAK inhibitors produce divergent clinical outcomes. Given JAK signaling complexity, 

potential toxicities from broad inhibition warrant consideration. 

 

The rapid yet transient repigmentation by JAK inhibitors underscores vitiligo's persistent 

recurrence. These agents block cytotoxic cell chemotaxis without eliminating long-lived skin-

resident TRM cells sustained by IL-15 signaling. Subsequent research has targeted IL-15 

pathways; anti-CD122 antibody (targeting the IL-15 receptor β subunit shared by 

human/mouse TRM cells) reduces IFN-γ production and depletes autoreactive CD8+ TRM 

cells in established murine vitiligo.
[67]

 Treg cells possess immunosuppressive properties, 

making their expansion a promising strategy. This can be accomplished through ectopic 

expression of key regulators: IL-2, TNF receptor 2, and Notch-1.
[68] 

IL-2 drives Treg 

differentiation, while Tregs express high-affinity IL-2 receptors to preferentially capture it. 

TNF receptor 2, highly expressed on Tregs, efficiently expands natural Tregs when 

stimulated, as seen in graft-versus-host disease models. Notch-1 inhibition boosts Treg 

numbers and suppressive function in transplantation settings. 
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Treg cell therapy offers another avenue: harvesting patient-derived Tregs, expanding them ex 

vivo, and reinfusing them. Challenges include their low blood abundance and slow in vitro 

expansion for clinical-scale application.
[69]

 Gene gun-mediated CCL22 overexpression 

enhances Treg recruitment to the epidermis, representing the preferred current approach to 

boost Treg numbers and slow vitiligo progression.
[70]

 CAR-Treg therapy enhances Treg 

quality by engineering antigen-specific Tregs ex vivo. These modified cells recognize 

targeted antigens upon reinfusion, triggering intracellular signaling for superior suppression 

compared to nonspecific bystander Tregs.
[68]

 CAR technology enables efficient in vitro 

expansion of abundant, antigen-specific Treg cells. By conferring specificity, conventional 

antigen-specific T cells can be reprogrammed into functional Tregs.
[71] 

 

3.2 Microbial Metabolites 

Research observed a decline in bacterial taxa usually linked to a healthy gut microbiome and 

a reduction in SCFA-producing taxa in people with vitiligo.
[72]

 Butyrate is essential for 

maintaining gut barrier integrity and has anti-inflammatory and immune-regulatory effects in 

autoimmune conditions. Nonetheless, its effectiveness depends on factors like concentration, 

site of action, and the host's physiological state.
[72][73]

 Studies on neonatal melanocytes 

indicate that butyrate is cytotoxic at concentrations over 1 mM.
[74]

 Conversely, at lower, non-

toxic levels (0.5 and 1 mM), butyrate greatly promotes melanocyte differentiation, leading to 

melanosome formation and increased pigmentation.
[75]

 Topical use of butyrate, alone or 

combined with S. epidermidis and glycerol, notably decreased UVB-induced IL-6 levels.
[76]

 

Propionate lowers melanin synthesis in melanocytes, and at 4 mM, it significantly inhibits 

tyrosinase activity without harming cell growth, suggesting that propionate reduces 

melanogenesis by downregulating tyrosinase gene expression.
[77]

 While prior studies seem to 

challenge SCFAs' anti-inflammatory effects, note that vitiligo patients often exhibit reduced 

SCFA levels, potentially limiting their anti-inflammatory and high-dose cytotoxic benefits. 

Tissue-specific GPCR expression and SCFA affinity variations must also be factored in. 

Collectively, SCFAs likely mediate diverse physiological effects via multiple pathways, with 

outcomes shaped by concentration gradients, tissue distribution, and host metabolism. 

 

Studies show gut microbiota-derived ursodeoxycholic acid (UDCA, a secondary bile acid 

formed by hydroxylating primary bile acids) counters UV-induced skin damage by curbing 

intracellular oxidative stress and inflammation. In experiments, UDCA reduced melanin 

content in normal human melanocytes.
[78]

 However, this study utilized an aging skin model 
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inconsistent with vitiligo pathogenesis. Moreover, UDCA exhibits anti-inflammatory and 

antioxidant properties, warranting further investigation of its role in vitiligo.At 5 mM 

concentration, kynurenine (KYN) significantly suppressed melanocyte DNA synthesis.
[79]

 

Further studies confirm that kynurenine (KYN), derived from microbial metabolism and 

fibroblast activity, suppresses DNA synthesis and markedly reduces metabolic function in 

primary human melanocytes. Kynurenine accumulation also disrupts tyrosinase activity in 

vitiligo lesions, downregulates tyrosinase expression in melanocyte-keratinocyte co-cultures, 

and diminishes melanosome formation in 3D human skin equivalents.As noted earlier, 

vitiligo patients show elevated serum kynurenine aminotransferase levels, causing kynurenine 

pathway shunting and systemic KYNA buildup.
[82]

 Thus, excessive kynurenine (KYN) 

buildup in vitiligo patients likely harms melanocytes and drives disease pathogenesis. 

Oxidative stress depletes epidermal tryptophan, reducing serotonin and melatonin levels.
[83]

 

In vitro studies demonstrate that melanophores in lower vertebrates show dose-dependent 

pigmentation responses to 5-HT1 and 5-HT2 receptor agonists, whereas 5-HT3 and 5-HT4 

receptor agonists trigger dose-dependent pigment aggregation.
[84][85][86]

 The serotonin/5-HT7 

receptor triggers an adaptive response that boosts pigmentation during environmental stress 

via multiple signaling pathways, such as cAMP-PKA-MAPK, Rab27a/RhoA, and 

PI3K/AKT.
[87]

 Emotional stress lowers skin serotonin levels, thereby impairing melanin 

production.
[88]

 Consequently, fluoxetine, a selective serotonin reuptake inhibitor, effectively 

treats pigment loss disorders.
[89]

 Indole derivatives, acting as endogenous AHR ligands, 

activate AHR signaling and alleviate psoriasis and certain dermatitis conditions.
[90][91] 

 

3.3 Immune Dysregulation 

Abnormal activation and dysregulated antigen-presenting functions of dendritic cells (DCs) 

arise from multiple interconnected factors. DAMPs trigger PRR activation, promoting DC 

maturation and migration, which subsequently activates T cells in lymph nodes. 

Inflammatory cytokines like TNF-α, IL-6, and IL-1β further amplify DC activation and 

antigen presentation.
[92]

 Additionally, innate immune mediators like IFN-γ, produced by 

natural killer (NK) cells and innate lymphoid cells, upregulate HLA class I expression on 

melanocytes, thereby enhancing CD8+ T cell recognition.
[93]

 TLR signaling in dendritic cells 

(DCs) concurrently upregulates HLA molecules and promotes their maturation, reinforcing 

the innate-adaptive immunity interface. However, the exact mechanisms by which these 

cytokines regulate DC function in vitiligo remain poorly understood. 
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DC dysfunction in antigen presentation is closely linked to melanocyte damage and 

apoptosis
[94]

 Studies demonstrate that dendritic cells (DCs) activate specific T cells through 

melanocyte antigen presentation, resulting in melanocyte damage and apoptosis.
[95]

 DCs also 

secrete cytokines such as TNF-α and IFN-γ, further damaging melanocytes and causing their 

apoptosis and functional impairment.
[96]

 Thus, dysregulated DC activation and defective 

antigen presentation, combined with innate immune-driven HLA expression changes, 

critically contribute to vitiligo pathogenesis and offer novel therapeutic targets. Inhibiting DC 

antigen presentation or their CD8+ T-cell interactions could effectively interrupt a pivotal 

step in the autoimmune cascade.
[97] 

 

4. Impact of Microbiome on Immune Cell Metabolic Pathways 

Short-chain fatty acids (SCFAs) modulate innate immune cells including macrophages, 

neutrophils, and dendritic cells (DCs). Additionally, SCFAs exert bidirectional regulation on 

antigen-specific adaptive immunity mediated by T cells and B cells.
[101]

 Regulating metabolic 

processes in immune cells is essential for maintaining homeostasis and driving 

immunopathogenesis. Recent evidence shows that the gut microbiota influences 

immunometabolism, particularly via metabolites like short-chain fatty acids, bile acids, and 

tryptophan derivatives.
[102] 

 

5. Therapeutics: Current and Emerging Therapeutic Opportunities 

Vitiligo is a skin disorder marked by the progressive loss of melanocytes, resulting in 

depigmented white patches on the skin
[98]

 Vitiligo's pathogenesis is currently linked to 

immune dysregulation, particularly the hyperactivation of CXCR3+ CD8+ cytotoxic T 

cells
[99] 

Current vitiligo treatments like tofacitinib (JAK-STAT inhibitor) and tacrolimus 

(calcineurin inhibitor) face challenges: poor delivery to CXCR3+CD8+ T cells at the dermal-

epidermal junction, systemic side effects, and limited topical penetration. Microneedles 

(MNs), especially solid MNs, offer a promising alternative by creating skin micropores for 

targeted drug delivery to this site, with studies showing significant lesion improvement 

without notable side effects in treatment-resistant cases.
[100] 

 

5.1 Targeting Immunometabolic Pathways 

Recent therapeutic advances have introduced promising treatments that target the IFN-γ 

chemokine axis, JAK-STAT signaling pathway, and Nrf2-ARE pathway[1]. In vitiligo mouse 

models, an anti-CD122 antibody targeting IL-15 signaling effectively reversed 

depigmentation. Systemic or local anti-CD122 treatment reduced IFN-γ production by tissue-
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resident memory T cells (TRMs) and achieved sustained repigmentation.
[103]

 Antioxidant 

pathways are under active investigation for their clinical potential in vitiligo treatment. The 

Nrf2/ARE pathway can enhance antioxidant gene expression, while the PI3K/AKT pathway 

regulates melanocyte proliferation and maturation.
[104]

 

 

CONCLUSION 

Vitiligo emerges as a systemic immunometabolic disorder in which oxidative stress, immune 

dysregulation, and gut microbiota–derived metabolites converge to drive melanocyte 

destruction and defective repigmentation. Metabolic reprogramming of innate and adaptive 

immune cells, coupled with dysbiosis and altered SCFAs, bile acids, and tryptophan 

pathways, sustains chronic inflammation and tissue-specific autoimmunity. Integrating gut–

skin axis modulation with therapies targeting IFN-γ, JAK–STAT, Nrf2/ARE, and Treg/TRM 

biology offers a rational framework for next-generation, mechanism-based interventions in 

vitiligo.  
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